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In this paper, the quasi-P wave propagation in epoxy/lead composites is studied by the differential method with polarization stress
and polarization momentum. *e corresponding differential equations are numerically solved by the fourth-order Runge–Kutta
method, and the dynamic effective modulus and density are obtained. Correctness of the results obtained by the differential
method is verified by comparing with the results obtained by the self-consistent method as well as experiments. Results show that
the dynamic effective modulus L1133 and L3333 increase with the increase of aspect ratio δ, whereas L1111 and L1122 decrease with the
increase of δ. *e phase velocity ratio of the quasi-P wave propagation in the composites tends to 1 when the dimensionless wave
number is large, and the dynamic effective density and modulus obtained are not isotropic when δ ≠ 1. It is believed that the
differential method can be a choice for solving dynamic effective properties of heterogeneous composites.

1. Introduction

In daily life, epoxy/lead composites have attracted more and
more attention and been applied in many fields [1–3] since
epoxy resins have the advantages of being green and de-
gradable. *e actual working environment of these com-
posites is complex and changeable, especially in the case of
nondestructive testing carried out on the composites with
wave propagation.When damage degree of the composites is
appraised during this working process, we need to know the
dynamic effective properties of the composites.

*e study of dynamic effective properties of composites
mainly includes two parts: experiments and theoretical
solutions. In the experimental aspect, Tauchert and Guzelsu
tested the propagation of P-wave and shear wave in spherical
particle-reinforced boron-epoxy composite [4]. Kinra tested
the propagation of P-wave in the spherical and randomly
distributed glass spheres/epoxy, lead spheres/epoxy, and
steel spheres/PMMA composites, respectively [5].Wang and
Yuan tested the propagation of higher-order Lamb waves in
composite plates [6].

In terms of theory, the dynamic constitutive relationship
is constructed by ensemble average analysis with periodicity
assumption by considering periodic composites and Bloch
wave. Willis used Fourier series expansion and ensemble
average to derive Green’s function and the analytical dy-
namic effective modulus and density for one-dimensional
periodic elastic composite [7]. Nemat-Nasser used the dy-
namic equivalent inclusion method to construct the dy-
namic effective constitutive relation in the case of periodic
layered elastic composite by introducing eigenstress and
eigenvelocity [8]. Srivastava and Nemat-Nasser derived the
dynamic constitutive relation for the case of cuboid inclu-
sion embedded in the cube matrix of pure elastic unit cell by
introducing the eigenstrain and eigenmomentum with the
dynamic equivalent inclusion method [9]. Sigalas and
Soukoulis analyzed and studied the propagation of elastic
waves in periodic layered composite by the transfer matrix
method [10]. Hou et al. analyzed and studied the trans-
mission spectra of elastic wave propagation in two-di-
mensional lead-epoxy composite [11, 12]. Sigalas and
Economou used the wave function expansion method to
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analyze and calculate the bandgap characteristics of elastic
waves propagating in periodic phononic crystals [13]. Yan
and Wang calculated the band gap structure and fluid-solid
coupling system of one-dimensional periodic gold-epoxy
composites by wavelet analysis [14]. Garćıa-Pablos et al.
firstly analyzed and studied the frequency band structure of
elastic wave propagation in composites by the using finite-
difference time-domain method, and verified the calculated
results by comparing with experimental results [15]. Kafe-
saki and Economou used the multiple scattering method to
analyze and calculate the frequency band of elastic wave
propagation in three-dimensional periodic composites [16].
Kohn et al. used the variational method to analyze and study
the dispersion relations of harmonic wave propagation in
layered periodic elastic composites [17]. Hussein analyzed
the calculation of phononic crystal, photonic crystal, and
electronic band structure, respectively, by means of the
reduced Bloch mode expansion [18].

Another theoretical method is based on the represen-
tative volume element (RVE) with the homogenization
method, where the inclusion is randomly distributed in the
composites. Tsinopoulos et al. solved the longitudinal wave
and shear wave propagation in the random particle-rein-
forced composite with the iterative effective medium ap-
proximation method [19]. Verbis et al. used this method to
analyze and solve the P wave, SH wave, and SV wave
propagation in two-dimensional composite [20]. Kanaun
and Levin used effective medium method to analyze and
solve the case of axial shear wave propagation in infinite
cylinder fiber composite [21]. Kim et al. studied the dynamic
effective properties of longitudinal and shear wave propa-
gation in spherical particle-reinforced two-phased com-
posites with asymptotic expansion of the potential function
and the self-consistent method [22]. Sabina et al. generalized
the static self-consistent method to the dynamic situation by
introducing polarization stress and polarization momentum
and analyzed the dynamic effective properties of spherical
particle-reinforced two-phased composites with P wave and
S wave propagated in the composites [23] and quasi-lon-
gitudinal wave and transverse wave in spherical particle-
reinforced composites and hole problems [24, 25]. Bussink
et al. analyzed and studied the dynamic effective properties
of longitudinal wave and shear wave propagation in two-
dimensional lead-reinforced epoxy [26].

On the other hand, the differential method is usually
used to solve the static problems. Studies have proved the
efficiency of the differential method [27–29]. In this paper,
we study the possibility of analyzing the dynamic effective
properties of two-phase particulate reinforced composites
using the differential method.*e quasi-P wave propagation
in epoxy/lead composites is considered. By introducing the
polarization stress and polarization momentum proposed by
Willis [30], the differential method is generalized to analyze
and solve the dynamic effective properties. *e composite is
assumed to be uniform macroscopically, while on the mi-
croscopic level, the inhomogeneities, with the same shape,
size, and orientation as well as material properties, can be
translationally but not rotationally scattered in the epoxy.
*e work of this paper is as follows. In Section 2, the

materials and basic equations are introduced. *en, by in-
troducing the scattering problem of approximate solution,
the differential method is generalized to dynamic situation
and differential equations are given, where the specific forms
of differential equations are shown in appendix B. In Section
3, by the use of the fourth-order Runge–Kutta method, the
differential equations are numerically solved for different
aspect ratios. Phase velocity ratios obtained by the differ-
ential method are compared to the self-consistent method
and experimental results for verification. Also, dynamic
effective modulus and density obtained by the differential
method are compared to the results obtained by the self-
consistent method. In Section 4, conclusions of this paper
are given.

2. Materials and Methods

For the sake of simplicity, quasi-P wave propagating in a
two-phased linear elastic composite material is considered.
*e wave propagates along the negative direction parallel to
the axis x3, and the material’s principal axes of properties are
fixed and only translational. *e composite structure is
shown in Figure 1, where the spheroid is inclusion and
outside the spheroid is matrix.

Spheroidal inclusions satisfy the following equation:

Ω � x: x21 + x22 +
x23
δ2
< a

2
􏼨 􏼩, (1)

where δ is the aspect ratio and a is the radius.

2.1. Basic Equations. Generally, the motion equation of the
linear elastic material is

div σ � _p. (2)

*e constitutive equation is

σ � Le,

p � ρv,
(3)

where σ denotes stress, L denotes modulus, e denotes strain,
p denotes momentum, ρ denotes density, v denotes velocity,
and the dot above the momentum p denotes derivative with
respect to time.

*e relation between velocity v and displacement u is

eij �
1
2

ui,j + uj,i􏼐 􏼑,

vi � _ui.

(4)

Due to the linearity of equations (2) and (3), considering
the ensemble average of equation (2), we have

div〈σ〉 � 〈 _p〉, (5)

where 〈·〉 represents ensemble average. Considering the
two-phased composite material, where the modulus of the
matrix is L2, density is ρ2, strain is e2, volume fraction of
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matrix is f2, the modulus of inclusion is L1, density is ρ1,
strain is e1, and volume fraction of inclusion is f1, we have

〈e〉 � f1〈e〉1 + f2〈e〉2, (6)

〈v〉 � f1〈v〉1 + f2〈v〉2, (7)

〈σ〉 � f1〈σ〉1 + f2〈σ〉2

� f1L1〈e〉1 + f2L2〈e〉2,
(8)

〈p〉 � f1〈p〉1 + f2〈p〉2

� f1ρ1〈v〉1 + f2ρ2〈v〉2,
(9)

f1 + f2 � 1. (10)

By eliminating 〈e〉2 and 〈v〉2 through (6) and (7), (8)
and (9) can be rewritten as

〈σ〉 � L2〈e〉 + f1 L1 − L2( 􏼁〈e〉1, (11)

〈p〉 � ρ2〈v〉 + f1 ρ1 − ρ2( 􏼁〈v〉1, (12)

with

〈•〉r(x, t) �
1
Ωr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
􏽚

Ur

(•) x, t; x′( 􏼁dx′, (13)

where Ur represents the region x′: x − x′ ∈ Ωr􏼈 􏼉, |Ωr| rep-
resents the volume of Ωr, r represents the r-th phase ma-
terial, x is the spatial coordinate, t is time, and x′ is the center
of the inclusion.

2.2. Single Inclusion Scattering Problem. *e propagation of
plane harmonic wave in composite materials is considered
and has the form [24]:

u0(x, t) � m exp i(kn · x − ωt), (14)

where u0 denotes physical quantities such as stress σ, strain
e, density ρ, and velocity v, m is the amplitude of these
physical quantities, i �

���
−1

√
, k is the wave number, n is the

unit directional vector of wave propagation, and ω is the
circular frequency.

At the same time, polarization stress τ and polarization
momentum π are introduced with the form [30]:

τ � Lr − L0( 􏼁e, (15)

π � ρr − ρ0( 􏼁v, (16)

where r refers to r-th phase material, r � 1 represents in-
clusion, r � 2 represents matrix, L0 represents modulus of
reference medium, and ρ0 represents density of the reference
medium. For the convenience of analysis, let the modulus
and density of the reference medium be the same as the
matrix material. *en, it can be known from (15) and (16)
that the polarization stress and polarizationmomentum only
exist in the inclusion but not in the matrix.

*en, stress σ and momentum p can be obtained from
(15) and (16) with the following form:

σ � L0e + τ, (17)

p � ρ0v + π. (18)

Substituting (17) and (18) into (2) and taking (divτ − _π)

as the body force term, we have

u � u0 + G∗ (divτ − _π) � u0 − S∗ τ − M∗ π, (19)

where G is the elastodynamic Green’s function, S andM are
the quantities related to Green’s function, and ∗ represents
convolution operation. Specific expression of elastodynamic
Green’s function can be seen from equation (A.1) in Ap-
pendix A.

According to the study in [24] and in combination with
(15) and (16), we have

L1 − L0( 􏼁
−1τ + Sx ∗ τ + Mx ∗ π � e0, (20)

ρ1 − ρ0( 􏼁
−1π + St ∗ τ + Mt ∗π � v0, (21)

where Sx,Mx, St, andMt are the quantities related to Green’s
function [24]. It can be verified that Mx � 0 and St � 0
because the inclusion has a center of symmetry, where the
bar aboveMx and St represents the volume average over the
inclusion.

From (20) and (21), we have

τ � L1 − L0( 􏼁
−1

+ Sx􏽨 􏽩
−1
e0, (22)

π � ρ1 − ρ0( 􏼁
−1

+ Mt􏽨 􏽩
−1
v0, (23)

where the specific expressions of Sx andMt can be seen from
equations (A.6) and (A.7) in Appendix A, respectively.

In combination with (15), (16), (22), and (23), we have

e � I + Sx L1 − L0( 􏼁􏽨 􏽩
−1

e0, (24)

v � I + Mt ρ1 − ρ0( 􏼁􏼂 􏼃
−1v0. (25)

x3

x2

x1

θ

ϕ

Figure 1: Illustration of inclusions.
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Assuming that the center of the inclusion is at x′ and
e0 � e0(x′)h(kn), we obtain

〈e〉1(x) � h(kn) I + Sx L1 − L0( 􏼁􏽨 􏽩
−1 1

|Ω|
􏽚
Ω
e0 x′( 􏼁dx′, (26)

〈v〉1(x) � h(kn) I + Mt ρ1 − ρ0( 􏼁􏼂 􏼃
−1 1

|Ω|
􏽚
Ω
v0 x′( 􏼁dx′,

(27)

with

h(kn) �
1

|Ω|
􏽚
Ω
exp(ikn · x)dx. (28)

Due to e0(x′)exp[ikn · x] � e0(x)exp[ikn · x′], e0(x′) �

e0(x)exp[−ikn · (x − x′)] is obtained, then,

〈e〉1(x) � h(kn) I + Sx L1 − L0( 􏼁􏽨 􏽩
−1 1

|Ω|
􏽚
Ω
e0 x′( 􏼁dx′

� h(kn) I + Sx L1 − L0( 􏼁􏽨 􏽩
−1 1

|Ω|
􏽚
Ω
e0(x)exp −ikn · x − x′( 􏼁􏼂 􏼃􏼈 􏼉dx′

� h(kn) I + Sx L1 − L0( 􏼁􏽨 􏽩
−1 1

|Ω|
􏽚
Ω
e0(x)exp ikn · x′ − x( 􏼁􏼂 􏼃􏼈 􏼉d x′ − x( 􏼁

� h(kn)h(kn) I + Sx L1 − L0( 􏼁􏽨 􏽩
−1
e0(x).

(29)

Also, similarly,

〈v〉1(x) � h(kn)h(kn) I + Mt ρ1 − ρ0( 􏼁􏼂 􏼃
−1v0(x). (30)

Substituting (29) and (30) into (11) and (12), we have
〈σ〉 � L2〈e〉 + f1 L1 − L2( 􏼁〈e〉1

� L2〈e〉 + f1 L1 − L2( 􏼁h(kn)h(kn) I + Sx L1 − L0( 􏼁􏽨 􏽩
−1
e0,

(31)

〈p〉 � ρ2〈v〉 + f1 ρ1 − ρ2( 􏼁〈v〉1

� ρ2〈v〉 + f1 ρ1 − ρ2( 􏼁h(kn)h(kn) I + Mt ρ1 − ρ0( 􏼁􏼂 􏼃
−1v0.

(32)

Let L and ρ represent the overall effective modulus and
the overall effective density of the material, respectively.
From equations (31) and (32), we have

〈σ〉 � L〈e〉

� L2〈e〉 + f1 L1 − L2( 􏼁h(kn)h(kn) I + Sx L1 − L0( 􏼁􏽨 􏽩
−1
e0,

(33)

〈p〉 � ρ〈v〉

� ρ2〈v〉 + f1 ρ1 − ρ2( 􏼁h(kn)h(kn) I + Mt ρ1 − ρ0( 􏼁􏼂 􏼃
−1v0.

(34)

2.3. Differential Method. For the two-phased heterogeneous
composite material, it is assumed that the volume fraction of
inclusion is f1 at some time. When the infinitesimal element
of volume dV is removed and the same volume of inclusion
is added, the volume fraction of inclusion is f1 + df1. *en,
the volume of inclusion in the new composite is

f1V + dV − f1dV � f1 + df1( 􏼁V. (35)

Equation (35) can be simplified as [31]

dV

V
�

df1

1 − f1
. (36)

When the volume fraction of inclusion is f1 in com-
posite materials at some time, let the modulus and density of
the composite be L(f1) and ρ(f1), respectively.*en, let the
composite at this time be as matrix, namely, L2 � L(f1) and
ρ2 � ρ(f1). After adding the volume dV of inclusion, let the
overall effective modulus be L(f1 + df1) and density be
ρ(f1 + df1). By replacing L2, ρ2, L, and ρ in equations (33)
and (34) by L(f1), ρ(f1), L(f1 + df1), and ρ(f1 + df1),
respectively, equations (33) and (34) can be rewritten as

L f1 + df1( 􏼁 − L f1( 􏼁􏼂 􏼃〈e〉 �
dV

V
L1 − L f1( 􏼁( 􏼁h(kn)h(kn) I + Sx f1( 􏼁 L1 − L f1( 􏼁( 􏼁􏽨 􏽩

−1
e0, (37)

ρ f1 + df1( 􏼁 − ρ f1( 􏼁􏼂 􏼃〈v〉 �
dV

V
h(kn)h(kn) ρ1 − ρ f1( 􏼁( 􏼁 I + Mt f1( 􏼁 ρ1 − ρ f1( 􏼁( 􏼁􏼂 􏼃

−1v0, (38)
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When dV⟶ 0[32–34], we have

〈e〉 � e0 1 + Ο
dV

V
􏼠 􏼡􏼢 􏼣, (39)

〈v〉 � v0 1 + Ο
dV

V
􏼠 􏼡􏼢 􏼣. (40)

In combination with (36), (39), and (40), equations (37)
and (38) can be rearranged as

dL f1( 􏼁

df1
�

1
1 − f1

h(kn)h(kn) L1 − L f1( 􏼁( 􏼁 I + Sx f1( 􏼁 L1 − L f1( 􏼁( 􏼁􏽨 􏽩
−1

, (41)

dρ f1( 􏼁

df1
�

1
1 − f1

h(kn)h(kn) ρ1 − ρ f1( 􏼁( 􏼁 I + Mt f1( 􏼁 ρ1 − ρ f1( 􏼁( 􏼁􏼂 􏼃
−1

. (42)

*e initial conditions of the corresponding expressions
of (37) and (38) are, respectively,

L f1( 􏼁|f1�0 � L2, (43)

ρ f1( 􏼁|f1�0 � ρ2. (44)

3. Results and Discussion

For the convenience of obtaining numerical results for
quantitative analysis, equations (41)∼(44) are numerically
solved by the fourth-order Runge–Kutta method [35].
Specific formations of equations (41)∼(44) can be seen from
equations (B.24) to (B.25) in Appendix B. *e iteration step
length h is 0.001, and the calculation formula of phase ve-
locity can be seen from equation (B.13). Material properties
are same with the matrix when calculating the phase velocity
of the matrix material, and material properties are taken as
dynamic effective properties when calculating phase velocity
of the composite. *e matrix is epoxy, and inclusion is lead.
Material’s properties are shown in Table 1 [5]:

3.1. Verification of the Differential Method. For δ � 1, quasi-
P wave propagation is calculated by the differential method
and self-consistent method for inclusion volume fractions of
5.4% and 15.9%, respectively. *e ratio of the phase velocity
in the composite and matrix is compared with the experi-
mental results and shown in Figures 2 and 3 below. For
δ � 0.2, quasi-P wave propagation is obtained by the dif-
ferential method and self-consistent method, respectively,
for inclusion volume fraction of 1%. *e ratio of the phase
velocity in the composite and matrix is shown in Figure 4.

As can be seen from Figure 2, when the inclusion volume
fraction is 5.4%, the ratio of the phase velocity calculated by
the differential method is in good agreement with the results
obtained by experiments as well as the self-consistent
method. Figure 3 shows that when the inclusion volume
fraction is 15.9% and the dimensionless wave number ωa/c1
is at 0.3–0.5, the ratio of the phase velocity obtained by the
differential method is larger than the results obtained by the

self-consistent method.*is is mainly due to the influence of
resonance area included in the range of 0.3–0.5, and in other
areas, the results obtained by the differential method are in
good agreement with the self-consistent method and ex-
periments. As can be seen from Figure 4, when δ � 0.2 and
the inclusion volume fraction is 1%, the results obtained by
the differential method are in good agreement with the self-
consistent method. Figures 2–4 also verify the correctness of
results obtained by the differential method.

3.2. Comparisons of Different Forms of Inclusion with the
Differential Method and Self-Consistent Method. When
δ � 0.5 and δ � 5, the differential method and self-consistent
method are used to calculate the phase velocity ratio of
quasi-P wave propagation in the composite material for
inclusion volume fraction of 5.4% and 15.9%, respectively,
and the comparisons of the phase velocity ratio are shown in
Figures 5 and 6.

Figures 5 and 6 show that when the inclusion volume
fraction is 5.4%, results obtained by the differential method
are in good agreement with the self-consistent method.
Phase velocity ratio near the resonance zone obtained by the
differential method is larger than the self-consistent method
when δ � 0.5, and phase velocity ratio near the resonance
zone obtained by the self-consistent method is larger than
the differential method when δ � 5.

When δ � 0.5, 1, and 5, the differential method is used to
calculate the phase velocity ratio of quasi-P wave propa-
gation in the composite material with inclusion volume
fraction of 5.4% and 15.9%, respectively. Results are shown
in Figures 7 and 8.

It can be seen from Figure 8 that when the inclusion
volume fraction is 15.9%, the peak value of the phase velocity
ratio becomes small as the value of δ increases.

Figures 2–8 show that when the dimensionless wave
number ωa/c1 is large, the value of the ratio of the phase
velocity in the composite and matrix tends to 1. *is is
because when ωa/c1 takes a larger value, according to
equation (A.14) in Appendix A, we have h(kn)h(kn)⟶ 0,
and this leads to the right side of equations (41) and (42)

Advances in Materials Science and Engineering 5



tends to zero, namely, the dynamic effective properties of the
composite tend to be same as matrix.

3.3. Dynamic Effective Properties of the Composites with the
Differential Method and Self-Consistent Method. *e dif-
ferential method and self-consistent method are used to
calculate the dynamic effective modulus and density of
quasi-P wave propagation in the composite material for

inclusion volume fractions of 5.4% and 15.9% when δ � 0.5,
1, and 5, respectively. *e dynamic effective density ρ11 and
ρ33 and modulus L1111, L1122, L1133, and L3333 are shown in
Figures 9 and 10. For the convenience of analysis and
discussion, the real part of the obtained results is taken as the
dynamic effective density and modulus.

According to Figures 9 and 10, the dynamic effective
densities obtained by the differential method are larger than
those obtained by the self-consistent method near the

Table 1: Elastic modulus and density of the matrix and inclusion. *e units of modulus and density are GPa and 103Kg/m3, respectively.

Materials ρ L1111 L1122 L1133 L3333 L2323 L1212

Epoxy 1.202 8.377 4.915 4.915 8.377 1.731 1.731
Lead 11.3 55.4598 38.7598 38.7598 55.4598 8.35 8.35

0 1 2 3 4 5 6
ωa (c1)

1.2

1.1

1.0

0.9

0.8

0.7

 R
e (
c p

/c
1)

DM
EM
SCM

f=0.054

Figure 2: Comparison of ratios of the phase velocity in the composite material and matrix obtained by the differential method (DM) and
self-consistent method (SCM), and experimental results (ER) in the case of quasi-P wave propagates in the composite material for inclusion
volume fraction of 5.4% and δ � 1.

0 1 2 3 4 5 6
ωa (c1)

DM
EM
SCM

2.0

1.5

1.0

0.5

 R
e (
c p

/c
1)

f=0.159

Figure 3: Comparison of ratios of the phase velocity in the composite material and matrix obtained by the differential method (DM) and
self-consistent method (SCM), and experimental results (ER) in the case of quasi-P wave propagates in the composite material for inclusion
volume fraction of 15.9% and δ � 1.
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resonance zone when δ � 0.5 and 1, and this means the
results obtained by the differential method are more
accurate.

According to Figures 9 and 10, the dynamic effective
modulus L1111 and L1122 decreases with the increase of δ.
From Figures 9 and 10, the dynamic effective modulus
L1133 and L3333 increases with δ increases when ωa/c1 is
small. *is is because the cross-section geometry of in-
clusion increases as δ increases in parallel to the direction

of x3. Also, when ωa/c1 is small, especially when
ωa/c1⟶ 0, which can be thought as quasi-static con-
dition, the results are in line with the actual case at this
time.

As can be seen from Figures 9 and 10, when δ � 1, the
matrix and inclusion are isotropic materials, and the dy-
namic effective density and modulus are also isotropic.
When δ ≠ 1, although the matrix and inclusion are isotropic,
the dynamic effective density and modulus are not isotropic.

0.0 0.5 1.0 1.5
ωa (c1)

DM
SCM

δ=0.2, f=0.01

1.02

1.00

0.98

0.96

0.94
 R

e (
c p

/c
1)

Figure 4: Comparison of ratios of the phase velocity in the composite material and matrix obtained by the differential method (DM) and
self-consistent method (SCM) when quasi-P wave propagates in the composite material for inclusion volume fraction of 1% and δ � 0.2.
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Figure 5: Comparison of ratios of the phase velocity in the composite material and matrix obtained by the differential method (DM) and
self-consistent method (SCM) when quasi-P wave propagates in the composite material for inclusion volume fraction of 5.4% and 15.9% and
δ � 0.5.
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*is is because when δ � 1, the inclusions are spherical
particles with highly symmetric of geometry, but when δ ≠ 1,
the shape of the inclusion is rotating ellipsoid (δ > 1) and flat
(δ < 1), respectively, and the geometry of the inclusions is not
symmetrical. *erefore, even if the matrix and inclusion are

isotropic, the dynamic effective density and modulus ob-
tained are not isotropic when δ ≠ 1. Furthermore, the dy-
namic effective density and modulus tend to be same for
different δ when the dimensionless wave number ωa/c1 is
large enough.
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Figure 6: Comparison of ratios of the phase velocity in the composite material and matrix obtained by the differential method (DM) and
self-consistent method (SCM) when quasi-P wave propagates in the composite material for inclusion volume fraction of 5.4% and 15.9% and
δ � 5.
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Figure 7: Comparison of ratios of the phase velocity in the composite material andmatrix obtained by the differential method when quasi-P
wave propagates in the composite material for inclusion volume fraction of 5.4% and δ � 0.5, 1, and 5, respectively.
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Figure 8: Comparison of ratios of the phase velocity in the composite material andmatrix obtained by the differential method when quasi-P
wave propagates in the composite material for inclusion volume fraction of 15.9% and δ � 0.5, 1, and 5, respectively.
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Figure 9: Continued.
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Figure 9:When quasi-P wave propagates in the composite material for inclusion volume fraction of 5.4% and δ � 0.5, 1, and 5, the dynamic
effective density ρ11 and ρ33 and dynamic effective modulus L1111, L1122, L1133, and L3333 are obtained by the differential method (DM) and
self-consistent method (SCM), respectively.
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Figure 10: Continued.
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4. Conclusions

In this paper, the dynamic effective properties of a two-
phased composite with quasi-P wave propagation are solved
by the differential method, and the results are compared with
the experimental and theoretical results. From the results, we
have as follows.

(1) *e results obtained by the differential method are
compared with the self-consistent method and ex-
perimental results, and the correctness of the results
obtained by the differential method is verified.

(2) When δ � 0.5 and δ � 1, the peak value of the phase
velocity obtained by the differential method is
slightly higher than the value obtained by the self-
consistent method near the resonance region, which
is more accurate.

(3) When the dimensionless wave number ωa/c1 is large,
the phase velocity ratio of the quasi-P wave propa-
gation in the composites tends to 1.

(4) When δ ≠ 1, even if the inclusion material and the
matrix material are isotropic, the dynamic effective
density and modulus obtained are not isotropic,
which is mainly due to the geometric shape of the
inclusion.

(5) *e dynamic effective modulus L1111 and L1122 de-
creases with the increase of δ, and L1133 and L3333
increases with the increase of δ.

Appendix

A

*e time-reduced elastodynamic Green’s function of the
reference medium is [24]

Gij(x) �
1
8π2

􏽘

3

N�1
􏽚

|ξ|�1
ds

U
N
i (ξ)UN

j (ξ)

c
2
N

δ(ξ · x) +
iω
2cN

exp
iω|ξ · x|

cN

􏼠 􏼡􏼨 􏼩,

(A.1)

where UN
i and cN are the polarization and wave speed of a

plane wave propagation in the direction of the unit vector ξ,
with ξi � (sin θ cos ϕ, sin θ sin ϕ, cos θ) and ξ3 � cos θ
� u, and δ(ξ · x) is the three-dimensional delta-function.

*e functions Sx andMt are related to equation (A.1) as

Sx( 􏼁ijkl � −Gik,lj|(ij),(kl), (A.2)

Mt( 􏼁ij � −ω2
Gij. (A.3)

*en, Sx and Mt are defined by

Sx �
1
Ω
B
Ω×Ω

Sx(x − y)dxdy, (A.4)

Mt � −
ω2

Ω
B
Ω×Ω

G(x − y)dxdy. (A.5)

Specific formations of Sx and Mt are

Sx( 􏼁ijkl �
1
4π

􏽘
3

N�1
􏽚

|ξ|�1
ds ξjU

N
i (ξ)U

N
k (ξ)ξl􏽮 􏽯|(ij)(kl)HN(ζ(ξ)), (A.6)

Mt( 􏼁ij �
1
4π

􏽘

3

N�1
􏽚

|ξ|�1
ds U

N
i (ξ)U

N
j (ξ)FN(ζ(ξ)), (A.7)

where
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Figure 10: When quasi-P wave propagates in the composite material for inclusion volume fraction of 15.9% and δ � 0.5, 1, and 5, the
dynamic effective density ρ11 and ρ33 and dynamic effective modulus L1111, L1122, L1133, and L3333 are obtained by the differential method
(DM) and self-consistent method (SCM), respectively.
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FN(ζ) � δ · 1 − ε kNaζ( 􏼁􏼂 􏼃 · ζ−3
, (A.8)

HN(ζ) � δ · ε kNaζ( 􏼁c
−2
N · ζ−3

, (A.9)

ζ(ξ) �

�����������

ξ21 + ξ22 + δ2ξ23
􏽱

, (A.10)

with

ε(z) �
3(1 − iz)

z
3 e

iz
(sin z − z cos z). (A.11)

*e function h(kn) is

h(kn) � h
⌢

kaζ n3( 􏼁( 􏼁, (A.12)

where

h
⌢

(z) �
3(sin z − z cos z)

z
3 , (A.13)

when z⟶∞, according to L’ Hopital’s rule, we have

lim
z⟶∞

h
⌢

(z) � lim
z⟶∞

3(cos z − cos z + z sin z)

3z
2

� lim
z⟶∞

sin z

z

� 0.

(A.14)

B

According to literature [24] and σ � Le, let
k � L1111 + L1122/2, l � L1133, q � L3311, n � L3333,
m � L1111 + L1122/2, p � L2323, and the inclusion modulus
tensor and dynamic effective modulus were denoted as L1
and L, respectively, so that [36]

L1 � 2k1, l1, q1, n1, 2m1, 2p1( 􏼁, (B.1)

L � (2k, l, q, n, 2m, 2p), (B.2)

L1 − L � 2 k1 − k􏼐 􏼑, l1 − l, q1 − q, n1 − n, 2 m1 − m( 􏼁, 2 p1 − p( 􏼁􏼐 􏼑. (B.3)

Sx � 2ks, ls, qs, ns, 2ms, 2ps( 􏼁. (B.4)

Let where the specific forms of Sx are

2ks �
1
2ρ1

􏽚
1

0
du 1 − u

2
􏼐 􏼑 m

2
1H1(ζ(u)) + m

2
3H3(ζ(u))􏽨 􏽩, (B.5)
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�
1

2 ����ρ1ρ3
√ 􏽚

1

0
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�����

1 − u
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􏽱
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(B.6)

ns �
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􏽚
1

0
duu

2
m

2
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2
1H3(ζ(u))􏽨 􏽩, (B.7)
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2
3H3(ζ(u))􏽨 􏽩, (B.8)
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m1 �

��
ρ1
D

􏽲

p0 1 − u
2

􏼐 􏼑 + n0u
2

− ρ3c
2
1􏽨 􏽩, (B.10)

m3 � −

��
ρ3
D

􏽲

q0 + p0( 􏼁u

�����

1 − u
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􏽱

, (B.11)

with

D � ρ1 p0 + n0 − p0( 􏼁u
2

− ρ3c
2
1􏽨 􏽩

2
+ ρ3 q0 + p0( 􏼁
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(B.12)

Also, the wave speeds are
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+
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c
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2 �

m0 1 − u
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ρ1
. (B.14)

*en,

Sx L1 − L( 􏼁 �

4 k1 − k􏼐 􏼑ks + 2 q1 − q( 􏼁ls, 2 l1 − l􏼐 􏼑ks + n1 − n( 􏼁ls,

2 k1 − k􏼐 􏼑qs + q1 − q( 􏼁ns, 2 l1 − l􏼐 􏼑qs + n1 − n( 􏼁ns,

4 m1 − m( 􏼁ms, 4 p1 − p( 􏼁ps

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.15)
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At the same time, let

I � (1, 0, 0, 1, 1, 1). (B.16)

*en,

I + Sx L1 − L( 􏼁 �
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where
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B.20)
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Similarly, for density, let the inclusion density
ρ1 � (ρ1, ρ3), the dynamic density ρ � (ρ1, ρ3), and
Mt � (M1,M3), then,

I + Mt ρ1 − ρ( 􏼁􏼂 􏼃
−1

�
1

1 + M1 ρ1 − ρ1( 􏼁
,

1
1 + M3 ρ3 − ρ3( 􏼁

􏼠 􏼡,

(B.21)

where the material parameters of Sx andMt are all functions
of inclusion volume fraction with the differential method
which are dynamic effective properties. *e specific forms of
the terms in Mt are

M1 �
1
2ρ1

􏽚
1

0
du m

2
1F1(ζ(u)) + F2(ζ(u)) + m

2
3F3(ζ(u))􏽨 􏽩, (B.22)

M3 �
1
ρ3

􏽚
1

0
du m

2
3F1(ζ(u)) + m

2
1F3(ζ(u))􏽨 􏽩.

(B.23)

Equations (41) and (42) can be rewritten from equations
(B.20) and (B.21) as follows:

dk

df1
�
1
2

h(kn)h(kn)

1 − f1

×
k1 − k􏼐 􏼑 2 l1 − l􏼐 􏼑qs + n1 − n( 􏼁ns + 1􏽨 􏽩 − l1 − l􏼐 􏼑 2 l1 − l􏼐 􏼑ks + n1 − n( 􏼁ls􏽨 􏽩

λ
,

dl

df1
�

h(kn)h(kn)

1 − f1

×
− k1 − k􏼐 􏼑 2 l1 − l􏼐 􏼑ks + n1 − n( 􏼁ls􏽨 􏽩 + l1 − l􏼐 􏼑 2 k1 − k􏼐 􏼑ks + q1 − q( 􏼁ls + 1/2􏽨 􏽩

λ
,

dq

df1
�

h(kn)h(kn)

1 − f1

×
q1 − q( 􏼁 2 l1 − l􏼐 􏼑qs + n1 − n( 􏼁ns + 1􏽨 􏽩 − n1 − n( 􏼁 2 k1 − k􏼐 􏼑qs + q1 − q( 􏼁ns􏽨 􏽩

2λ
,

dn

df1
�

h(kn)h(kn)

1 − f1

×
− q1 − q( 􏼁 2 l1 − l􏼐 􏼑ks + n1 − n( 􏼁ls􏽨 􏽩 + n1 − n( 􏼁 2 k1 − k􏼐 􏼑ks + q1 − q( 􏼁ls + 1/2􏽨 􏽩

λ
,

dm

df1
�

h(kn)h(kn)

1 − f1

m1 − m( 􏼁

4 m1 − m( 􏼁ms + 1
,

dp

df1
�

h(kn)h(kn)

1 − f1

p1 − p( 􏼁

4 p1 − p( 􏼁ps + 1
,

dρ1
df1

�
h(kn)h(kn)

1 − f1

ρ1 − ρ1( 􏼁

1 + M1 ρ1 − ρ1( 􏼁
,

dρ3
df1

�
h(kn)h(kn)

1 − f1

ρ3 − ρ3( 􏼁

1 + M3 ρ3 − ρ3( 􏼁
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B.24)

*e corresponding initial conditions are
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k f1( 􏼁|f1�0 � k2,

l f1( 􏼁|f1�0 � l2,

q f1( 􏼁|f1�0 � q2,

n f1( 􏼁|f1�0 � n2,

m f1( 􏼁|f1�0 � m2,

p f1( 􏼁|f1�0 � p2,

ρ1 f1( 􏼁|f1�0 � ρ1( 􏼁2,

ρ3 f1( 􏼁|f1�0 � ρ3( 􏼁2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B.25)

Equations (B.24) and (B.25) are numerically solved by
the fourth-order Runge–Kutta method, and the iterative
steps are as follows:

yp,n+1 � yp,n +
h

6
Kp,1 + 2Kp,2 + 2Kp,3 + Kp,4􏼐 􏼑, (B.26)

where yp,n is the n-th item of yp, such as yp,0 is the initial
condition of yp when f1 � 0, h is the step length, and

Kp,1 � gp f1( 􏼁n, y1, y2, · · · y8( 􏼁,

Kp,2 � gp f1( 􏼁n +
h

2
, y1 +

h

2
K1,1, y2 +

h

2
K2,1, · · · , y8 +

h

2
K8,1􏼠 􏼡,

Kp,3 � gp f1( 􏼁n +
h

2
, y1 +

h

2
K1,2, y2 +

h

2
K2,2, · · · , y8 +

h

2
K8,2􏼠 􏼡,

Kp,4 � gp f1( 􏼁n + h, y1 + hK1,3, y2 + hK2,3, · · · , y8 + hK8,3􏼐 􏼑,

p � 1, 2, 3 · · · , 8,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B.27)

y1 � k f1( 􏼁,

y2 � l f1( 􏼁,

y3 � q f1( 􏼁,

y4 � n f1( 􏼁,

y5 � m f1( 􏼁,

y6 � p f1( 􏼁,

y7 � ρ1 f1( 􏼁,

y8 � ρ3 f1( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B.28)

Specific iterations are as follows: when f1 � 0, namely
n � 0, we have

K1,1 �
1
2

h(kn)h(kn)

1 − f1

×
k1 − y1( 􏼁 2 l1 − y2( 􏼁qs + n1 − y4( 􏼁ns + 1􏼂 􏼃 − l1 − y2( 􏼁 2 l1 − y2( 􏼁ks + n1 − y4( 􏼁ls􏼂 􏼃

λ
,

K2,1 �
h(kn)h(kn)

1 − f1

×
− k1 − y1( 􏼁 2 l1 − y2( 􏼁ks + n1 − y4( 􏼁ls􏼂 􏼃 + l1 − y2( 􏼁 2 k1 − y1( 􏼁ks + q1 − y3( 􏼁ls + 1/2􏼂 􏼃

λ
,

K3,1 �
h(kn)h(kn)

1 − f1

×
q1 − y3( 􏼁 2 l1 − y2( 􏼁qs + n1 − y4( 􏼁ns + 1􏼂 􏼃 − n1 − y4( 􏼁 2 k1 − y1( 􏼁qs + q1 − y3( 􏼁ns􏼂 􏼃

2λ
,

K4,1 �
h(kn)h(kn)

1 − f1

×
− q1 − y3( 􏼁 2 l1 − y2( 􏼁ks + n1 − y4( 􏼁ls􏼂 􏼃 + n1 − y4( 􏼁 2 k1 − y1( 􏼁ks + q1 − y3( 􏼁ls + 12􏼂 􏼃

λ
,

K5,1 �
h(kn)h(kn)

1 − f1

m1 − y5( 􏼁

4 m1 − y5( 􏼁ms + 1
,

K6,1 �
h(kn)h(kn)

1 − f1

p1 − y6( 􏼁

4 p1 − y6( 􏼁ps + 1
,

K7,1 �
h(kn)h(kn)

1 − f1

ρ1 − y7( 􏼁

1 + M1 ρ1 − y7( 􏼁
,

K8,1 �
h(kn)h(kn)

1 − f1

ρ3 − y8( 􏼁

1 + M3 ρ3 − y8( 􏼁
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B.29)
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K1,2 �
1
2

h(kn)h(kn)

1 − f1 + h/2( 􏼁
×
1
λ

×

k1 − y1 +
h

2
K1,1􏼠 􏼡􏼠 􏼡 2 l1 − y2 +

h

2
K2,1􏼠 􏼡􏼠 􏼡qs + n1 − y4 +

h

2
K4,1􏼠 􏼡􏼠 􏼡ns + 1􏼢 􏼣

− l1 − y2 +
h

2
K2,1􏼠 􏼡􏼠 􏼡 2 l1 − y2 +

h

2
K2,1􏼠 􏼡􏼠 􏼡ks + n1 − y4 +

h

2
K4,1􏼠 􏼡􏼠 􏼡ls􏼢 􏼣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

K2,2 �
h(kn)h(kn)

1 − f1 + h/2( 􏼁1
×
1
λ

×

− k1 − y1 +
h

2
K1,1􏼠 􏼡􏼠 􏼡 2 l1 − y2 +

h

2
K2,1􏼠 􏼡􏼠 􏼡ks + n1 − y4 +

h

2
K4,1􏼠 􏼡􏼠 􏼡ls􏼢 􏼣

+ l1 − y2 +
h

2
K2,1􏼠 􏼡􏼠 􏼡 2 k1 − y1 +

h

2
K1,1􏼠 􏼡􏼠 􏼡ks + q1 − y3 +

h

2
K3,1􏼠 􏼡􏼠 􏼡ls +

1
2

􏼢 􏼣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

K3,2 �
h(kn)h(kn)

1 − f1 + h/2( 􏼁1
×

1
2λ

×

q1 − y3 +
h

2
K3,1􏼠 􏼡􏼠 􏼡 2 l1 − y2 +

h

2
K2,1􏼠 􏼡􏼠 􏼡qs + n1 − y4 +

h

2
K4,1􏼠 􏼡􏼠 􏼡ns + 1􏼢 􏼣

− n1 − y4 +
h

2
K4,1􏼠 􏼡􏼠 􏼡 2 k1 − y1 +

h

2
K1,1􏼠 􏼡􏼠 􏼡qs + q1 − y3 +

h

2
K3,1􏼠 􏼡􏼠 􏼡ns􏼢 􏼣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

K4,2 �
h(kn)h(kn)

1 − f1 + h/2( 􏼁
×
1
λ

×

− q1 − y3 +
h

2
K3,1􏼠 􏼡􏼠 􏼡 2 l1 − y2 +

h

2
K2,1􏼠 􏼡􏼠 􏼡ks + n1 − y4 +

h

2
K4,1􏼠 􏼡􏼠 􏼡ls􏼢 􏼣

+ n1 − y4 +
h

2
K4,1􏼠 􏼡􏼠 􏼡 2 k1 − y1 +

h

2
K1,1􏼠 􏼡􏼠 􏼡ks + q1 − y3 +

h

2
K3,1􏼠 􏼡􏼠 􏼡ls +

1
2

􏼢 􏼣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

K5,2 �
h(kn)h(kn)

1 − f1 + h/2( 􏼁

m1 − y5 +(h/2)K5,1􏼐 􏼑􏼐 􏼑

4 m1 − y5 +(h/2)K5,1􏼐 􏼑􏼐 􏼑ms + 1
,

K6,2 �
h(kn)h(kn)

1 − f1 + h/2( 􏼁

p1 − y6 +(h/2)K6,1􏼐 􏼑􏼐 􏼑

4 p1 − y6 +(h/2)K6,1􏼐 􏼑􏼐 􏼑ps + 1
,

K7,2 �
h(kn)h(kn)

1 − f1 + h/2( 􏼁

ρ1 − y7 +(h/2)K7,1􏼐 􏼑􏼐 􏼑

1 + M1 ρ1 − y7 +(h/2)K7,1􏼐 􏼑􏼐 􏼑
,

K8,2 �
h(kn)h(kn)

1 − f1 + h/2( 􏼁

ρ3 − y8 +(h/2)K8,1􏼐 􏼑􏼐 􏼑

1 + M3 ρ3 − y8 +(h/2)K8,1􏼐 􏼑􏼐 􏼑
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B.30)
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K1,3 �
1
2

h(kn)h(kn)

1 − f1 + h/2( 􏼁
×
1
λ

×

k1 − y1 +
h

2
K1,2􏼠 􏼡􏼠 􏼡 2 l1 − y2 +

h

2
K2,2􏼠 􏼡􏼠 􏼡qs + n1 − y4 +

h

2
K4,2􏼠 􏼡􏼠 􏼡ns + 1􏼢 􏼣

− l1 − y2 +
h

2
K2,2􏼠 􏼡􏼠 􏼡 2 l1 − y2 +

h

2
K2,2􏼠 􏼡􏼠 􏼡ks + n1 − y4 +

h

2
K4,2􏼠 􏼡􏼠 􏼡ls􏼢 􏼣
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where yp(p � 1, 2, 3, . . . , 8) are initial conditions and equal
to yp,0(p � 1, 2, 3, . . . , 8).

According to equation (B.26), we obtain
yp,1(p � 1, 2, 3, . . . , 8), then, let f1 � h, f1 � 2h,. . ., and by
repeating the steps of equations (B.29)∼(B.32), we obtain
yp,2, yp,3, . . ., if the inclusion volume fraction f1 equals to
the value required, then, we obtain the results we need.
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“Dynamic homogenization for composites with embedded
multioriented ellipsoidal inclusions,” International Journal of
Solids and Structures, vol. 69-70, pp. 121–130, 2015.

[26] P. G. J. Bussink, P. L. Iske, J. Oortwijn, and
G. L. M. M. Verbist, “Self-consistent analysis of elastic wave
propagation in two-dimensional matrix-inclusion compos-
ites,” Journal of the Mechanics and Physics of Solids, vol. 43,
no. 10, pp. 1673–1690, 1995.

[27] R. W. Zimmerman, “Elastic moduli of a solid containing
spherical inclusions,” Mechanics of Materials, vol. 12, no. 1,
pp. 17–24, 1991.

[28] N. Ramakrishnan and V. S. Arunachalam, “Effective elastic
moduli of porous ceramic materials,” Journal of the American
Ceramic Society, vol. 76, no. 11, pp. 2745–2752, 1993.

[29] A. D. Drozdov and J. Claville Christiansen, “*e effect of
porosity on elastic moduli of polymer foams,” Journal of

20 Advances in Materials Science and Engineering



Applied Polymer Science, vol. 137, no. 10, Article ID 48449,
2020.

[30] J. Willis, “Polarization approach to the scattering of elastic
waves—I. Scattering by a single inclusion,” Journal of the
Mechanics and Physics of Solids, vol. 28, no. 5-6, pp. 287–305,
1980.

[31] A. N. Norris, A. J. Callegari, and P. Sheng, “A generalized
differential effective medium theory,” Journal of the Me-
chanics and Physics of Solids, vol. 33, no. 6, pp. 525–543, 1985.

[32] A. N. Norris, “A differential scheme for the effective moduli of
composites,” Mechanics of Materials, vol. 4, no. 1, pp. 1–16,
1985.

[33] S. Biwa, Y. Watanabe, S. Motogi, and N. Ohno, “Analysis of
ultrasonic attenuation in particle-reinforced plastics by a
differential scheme,”Ultrasonics, vol. 43, no. 1, pp. 5–12, 2004.

[34] A. I. Beltzer and N. Brauner, “Acoustic waves in random
discrete media via a differential scheme,” Journal of Applied
Physics, vol. 60, no. 2, pp. 538–540, 1986.

[35] K. G. Tay, S. L. Kek, and R. Abdul-Kahar, “A spreadsheet
solution of a system of ordinary differential equations using
the fourth-order Runge-Kutta method,” Spreadsheets in Ed-
ucation, vol. 5, no. 2, pp. 1–10, 2012.

[36] R. McLaughlin, “A study of the differential scheme for
composite materials,” International Journal of Engineering
Science, vol. 15, no. 4, pp. 237–244, 1977.

Advances in Materials Science and Engineering 21


