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Te reed structure is the key component in the foldable space deployment mechanism. In the aerospace industry, weight loss
occupies a pivotal position. Te use of lightweight structure can achieve signifcant savings in launch costs and improve load
efciency. Aiming at the lightweight requirements of the space deployment mechanism, this paper discusses the substitution efect
of the honeycomb topology on the reed structure in the space deployment structure. Firstly, the column structure of the
honeycomb is equivalent to an orthotropic cylindrical block-shell structure. According to the bending theory of an orthotropic
cylinder, the expanded honeycomb structure equivalent to an orthotropic cylindrical block-shell structure is deduced. Ten, the
exact expression of the reverse bending moment was obtained, and the bending moment-curvature curve during the folding
process was drawn. Te bending moment-curvature characteristics during the folding process are simulated by fnite element
numerical simulation. By proposing the index of unit mass for analysis and comparison, the results show that compared with the
common spring steel structure, the honeycomb structure has better mechanical properties per unit mass and has a certain
substitution efect on the reed structure.

1. Introduction

With the implementation of a series of major aerospace
science and technology projects such as deep space explo-
ration, manned spacefight, and large-scale launch vehicles,
space vehicles are prompted to use more space deployment
mechanism accessories to meet their envelope space re-
quirements. Limitations in the storage capacity of launch
vehicles have prompted the increasing use of deployable
structures for large space structures. Deployable structures
such as solar sails and refector antennas in large space
structures can be packaged into a small volume prior to
launch and deployed into a large confguration during space
operation [1–5]. Te reed-type space deployable structure is
a new lightweight and efcient structure in the space de-
ployment mechanism. Due to its excellent stifness and
strength, as well as the characteristics of ultra-light strength
and ultra-light weight, it is very important to improve the
space operation stability of spacecraft. It is of great

signifcance to improve its spatial adaptability and operation
ability. Te reed structure is similar to the steel tape measure
used in daily life, and the elastic strain energy accumulated
during folding can be used to realize the automatic unfolding
of the structure without other power devices. After de-
ployment, it can rely on its own rigidity to provide the
locking force required by the large-scale deployable struc-
ture without the need for additional locking devices. Tra-
ditional metal reeds are generally formed by beryllium-
copper alloy or austenitic stainless-steel strips and cooperate
with special heat treatment process to meet the fnal use
requirements. Tey have been widely used in various de-
ployment mechanisms of spacecraft [6–8].

Many solar panels for spacecrafts are deployed by tape
spring hinges (TSHs) which have changeable stifness. Te
stifness of TSH is small when panels are folded, and it
becomes large quickly in its deployed status. Figures 1–3
show its application in the solar panels. Sergio Pellegrino was
the frst to study the unfolding properties of reed structures
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in combination with experiments [11]. Walker and Aglietti
analyzed the bending properties of metal ribbon springs and
studied the bending moment changes of the ribbon springs
when they are buckling and torsionally deformed along their
lengths [12]. Soykasap studied the performance of four
diferent spring hinges. Te behavior of the ribbon spring
subjected to two-dimensional and three-dimensional folding
was studied by the nonlinear fnite element method, and the
variation of the bending moment of the ribbon spring hinge
with the rotation angle during the bending process was
obtained [13, 14]. Xuan Jican and Wang conducted a the-
oretical study on the pure bending yield control of the
ribbon spring and obtained the empirical formula that the
material yielding does not occur during the bending process
for the reduction of the unfolding performance caused by
the possible material yielding of a single spring during the
folding process [15]. Te geometrically nonlinear behavior
of ribbon springs was investigated experimentally and nu-
merically by Dewalque et al. showing the characteristics of
buckling, fold formation, and hysteresis [16–18]. Zuo et al.
designed a carbon fber ribbon spring through a theoretical
analysis example and studied its buckling characteristics by
combining fnite element simulation and experiments [19].

Light weighting is a goal pursued by all designers. By
reducing the weight, energy efciency increases due to the
decreasing energy consumption [20].Te aerospace industry
is constantly looking to integrate advanced materials and
manufacturing methods into their airframes to achieve new
breakthroughs in lightweight design [21]. Te principle of
light weighting is to use less material or a material of lower
density but ensure the same or enhanced technical per-
formance. Tis paper explores the substitution efect of
honeycomb topology on the reed structure in the folding and
unfolding mechanism and studies the substitution efect of
the traditional regular hexagonal honeycomb structure and
the concave negative Poisson’s ratio honeycomb structure in
the reed structure. Te mechanical properties of the sheet
structures were compared. Trough theoretical analysis, the
honeycomb topology is equivalent to an orthotropic thin
shell, and the calculation formula of the bending moment of
the band spring of the honeycomb topology is deduced by
using the orthotropic shell bending theory formula. Te
feasibility of negative Poisson’s ratio honeycomb topology
replacement is analyzed by theoretical and fnite element
simulations.

2. Theoretical Analysis of Mechanical
Properties of Ribbon Springs with
Honeycomb Topology

2.1. Equivalent Parameters of Cellular Topology. When its
strength is accessed, honeycombmaterial has conventionally
been assumed to be a homogeneous plate due to its periodic
cellular structure and can be efciently analyzed by its
equivalent elastic moduli. To date, extensive research into
honeycombs consisting of regular hexagonal cells or sym-
metrical hexagonal cells has been carried out [22–25].

Te earliest in-plane equivalent model for honeycomb
cores was an “anti-plane” assumption proposed by Allen
[26], which neglected the in-plane and bending stifness of
the core layer and considered only its lateral shear capacity.
Allen’s model greatly simplifed the analysis and was
therefore widely used in engineering in the early days.
However, although the honeycomb core layer is soft, it has a
large thickness compared to the skin, so its in-plane and
bending stifness should not be completely ignored. Gibson
[24] and Burton and Noor [27] used the Bernoulli–Euler
beam theory for honeycomb wall panels and gave equivalent
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elastic parameter formulations for equal-wall-thickness
honeycomb and double-wall-thickness honeycomb, re-
spectively, under small deformation conditions.

In recent years, the research on the modeling methods of
honeycomb sandwich structure has been continuously
deepening. Tanimoto and co-workers proposed a new
modeling method for honeycomb sandwich structure, in
which orthogonal anisotropic shell elements and two kinds
of beam elements were used to represent the panel, bonding
layer, and honeycomb core, respectively [28]. It was pointed
out that the vibration characteristics of honeycomb sand-
wich structure are closely related to the stifness of the panel
and the geometrical shape of the honeycomb core. Guj and
Sestieri established an orthogonal anisotropic equivalent
model of honeycomb using the multi-scale asymptotic
technique, and themodel was verifed by themethod of fnite
element numerical simulation [29].

In this paper, the application of the two honeycomb
structures shown in Figure 1 in the ribbon spring is analyzed,
and it is equivalent to an orthotropic structure with refer-
ence to Gibson. In the linear elastic range, the thin-walled
honeycomb structure can be assumed to be an
Euler–Bernoulli beam, and the tensile and compressive
deformation of the thin-walled honeycomb can be regarded
as nonnegligible compression deformation. Te cell sizes of
the two honeycomb structures are shown in Figure 4. For A-
type honeycomb, t is the thickness of the inner wall of the
honeycomb, l is the length of the vertical inner wall, his the
length of the inclined inner wall, and θ is the angle between
the inclined inner wall and the horizontal direction. For
B-type honeycomb, t is the thickness of the inner wall of the
honeycomb, l is the length of the vertical inner wall, h is the
length of the inclined inner wall, and θ is the angle between
the inclined inner wall and the vertical direction.

Equivalent parameters of regular hexagonal honeycomb
[30]:
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. (1)

Among them, β � h/l, and other parameters are shown
in Figure 4(a).

For Model b, compared with Model a, its Poisson’s ratio is
negative, and the structure can also produce large deformation
in a specifc direction and has sufcient strength and stifness in
the direction that does not require deformation. Compared with
the positive Poisson’s ratio honeycomb core structure, the
structure produces tensile deformation in one direction. Te
tensile deformation produced in the other direction is also a
negative Poisson’s ratio, and its in-plane equivalent parameter
formula is [31]
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2.2. Teoretical Analysis of Folding Moment. For the
unfolding mechanism, the main attention is on the value of the
bending moment that produces folding. To obtain an accurate
expression of the bending moment that produces folding and
compare the unfolding bending moment of the isotropic ribbon
spring and the weight-reduced negative Poisson’s ratio hon-
eycomb structure, the folding bending moments of the isotropic
ribbon spring and the negative Poisson’s ratio honeycomb
structure are, respectively, derived below.

Te geometric parameters of the ribbon spring are shown in
Figure 5(a).Te length of the ribbon spring is L, the radius of the
circular section is R, the central angle is φ, the thickness of the
circular section is t0, and the arc length of the circular section is s.
Te bending and folding form is shown in Figure 5(b). Te
bending and folding rotation angle is φ, and the curvature radius
is r.

Te deformation after bending and folding is shown in
Figure 6(a), and microelements are taken for analysis. Te
coordinate system shown in Figure 7 is established.

Te cylindrical coordinate system shown in Figure 3 is used.
Suppose the membrane force per unit width of the shell is
N(Nx, Ny, Nxy), the bending internal force per unit width is
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M(Mx, My, Mxy), the strain of the mid-plane is ε0, and the
defection of the mid-plane is κ(κx, κy, κxy).

Constitutive equation:
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For a special single-layer orthotropic laminate, the fol-
lowing results are obtained:
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Ten, the relationship between the bending moment per
unit length and the curvature κx, κy (where κxy � 0) of the
equivalent orthotropic shell honeycomb topology during the
reverse bending process is
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Among them, κx, κy are the curvature changes of the
honeycomb topology along the x and y directions during the
bending process. Assuming that the shell changes from 0 to
1/r along the x direction after bending, then
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Among them, w is the defection of the honeycomb
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tained by the energy method:

r
dQy

dy
+ Nx � 0,

dMy

dy
− Qy � 0.

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (9)

Eliminate Qy; then,

d2My

dy2
+

Nx

r
� 0. (10)

2

1

l

t

h
θ

(a)

2

2

1

l

l

t

h θ

(b)

Figure 4: Structures of honeycomb. (a) Hexagon honeycomb. (b) Auxetic re-entrant honeycomb.
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Nx is the normal force per unit length of the honeycomb
topology:

Nx � A11εx + A12εy. (11)
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Among them, y � ± s/2, s � 2R sin (θ/2) is the width of
the cellular topology.

On the border, y � ± s/2.
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Figure 5: Geometrical parameters of tape springs and its folding types. (a). (b).
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Table 1: Model geometry.

Parameters Data
Length L/mm 350
Radius of central corner R/mm 35
Central angle of cross section α (rad) 1.57
Depth t/mm 0.2
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Figure 7: Tape spring with honeycomb structure. (a) Honeycomb structure. (b) Orthotropic structure.
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Assuming that the bending moment required for driving
in the bending process of the honeycomb topology isM, then
M can be calculated by integrating:
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3

12 1 − μ12μ21( 􏼁
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Figure 10: FEM for diferent structures.
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Figure 11: Te fold deformation process of the tape spring.

Advances in Materials Science and Engineering 7



Among them,Mx andNx represent the bending moment
and membrane force per unit length in the x direction, w is
the out-of-plane defection, y is the longitudinal length of the
honeycomb topology, and F1, F2 are

F1 �
2
λ

cosh λ − cos λ
λ sinh λ + sin λ

,

F2 �
1
2λ

cosh λ − cos λ
λ sinh λ + sin λ

−
sinh λ sin λ

(sinh λ + sin λ)
2 .

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (22)

Among them, λ � ns/r. Mmax
+ is the maximum value of

(21), and it is refected as the critical bending moment of the
honeycomb topology. Te larger the value, the stronger the
anti-interference ability of the honeycomb topology. It can
be seen from the expression that M is related to material
parameters and geometric parameters.

In order to explore the substitution efect of the honeycomb
topology on the reed structure in the folding and unfolding
mechanism, this paper established a common ribbon spring
model with L=350mm, R=35mm, ψ =π/2, and t0=2mm.
Te geometric parameters of A-type honeycomb model are
L=350mm, R=35mm, ψ =π/2, θ=π/6, t=2mm, t0=2mm,
l=10mm, h=10mm. Te geometric parameters of B-type
honeycomb are L=350mm, R=35mm, ψ =π/2, θ=π/6,
t=2mm,t0=2mm, l=10mm, h=8.88mm. Young’s Modulus
E is 200GPa, and Poisson’s ratio v is 0.3.

Te curve shown in Figure 8 can be obtained by theo-
retical settlement of the model parameters.

It can be seen from the fgure that when the ribbon
spring is afected by the reverse bending moment, the re-
quired driving bending moment increases sharply to a
certain value Mmax

+ in the initial stage, which is called the
critical bending moment. After this stage, the stifness de-
creases rapidly, and the bending moment fnally stabilizes to
a certain value M∗+, which is called the steady-state bending
moment.

According to the theory, the bending-curvature diagrams of
the three structures are shown in Figure 8. Te critical bending
moment values of the three structures (Mmax

+ ) are 6664.5Nmm,
568.6Nmm, 2068.2Nmm, respectively. Te steady-state bend-
ing moments are 956.5Nmm, 121.3Nmm, and 229.3Nmm,
respectively. Compared with the traditional structure, the
support stifness of the B-type honeycomb is higher than that of
the A-type honeycomb. Te three structural change processes
are approximated to a locked state before reaching the critical
bending, and buckling deformation occurs after reaching the
critical bending; the stifness decreases rapidly and fnally rea-
ches its steady-state bending moment value, which is benefcial
to the dynamic characteristics required in the space deployment
mechanism.

3. Numerical Argument Analysis

After determining the material properties and size param-
eters of the ribbon spring, a fnite element model was
established using ABAQUS software and the reverse
bending process was simulated.

Te whole model adopts the shell element S4R5, which is
a 4-node reduced integral element with 5 degrees of freedom
at each node on the element, which is suitable for analyzing
small strain and large deformation problems. Te fnite
element model is shown in Figure 9.

In order to facilitate the application of loads and constraints,
the centroid nodes on both ends of the ribbon spring are
connected by MPC constraints, respectively. Te RBE2 rigid
element is selected as the MPC type, and the shell restricts the 6
degrees of freedom of the nodes. Apply the displacement
constraint 1.57 rad in the centroid of the section in the x-axis.
Te model dimensions are shown in Table 1.

Te fnite element models of A-type and B-type hon-
eycomb belt springs were established with reference to the
ordinary belt spring steel fnite element model as shown in
Figure 10.
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Figure 12: Te moment-rotation angle relationships for diferent structures.
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It can be seen from Figure 11 that in the reverse bending
process, before loading, the stress everywhere is 0, and the shell is
not deformed. During the loading process, the stress in the
middle of the shell gradually increases and expands to the width
of the shell. As the rotation angle gradually increases, the stress
value also increases. Finally, the model is stable, and the stress
concentration area resembles a rectangle.

Te reverse bending process is analyzed, and the corner
bendingmoment curve is obtained as shown in Figure 12. From
Figure 13, the moment variations of diferent model have the
similar trend for FEM simulations and theoretical prediction.
Overall, it is a good match between the two results.

Considering its application in engineering, we have
added the frame in the honeycomb structures to improve its
stability as shown in Figure 14.

It can be seen from Figure 15 that the common spring
steel band spring reaches the maximum critical bending
moment of 8909.3Nmm at a turning angle of 0.079 ra-
dian, and the steady-state bending moment is
950.3 Nmm; Model a reaches the maximum critical
bending moment of 1952.6 Nmm at a turning angle of
0.081 radian, and the error steady-state bending moment
is 305.7 Nmm; Model b reaches the maximum critical
bending moment of 3264.2 Nmm at a turning angle of
0.045 radian, and the steady-state bending moment is
305.7 Nmm. Te critical bending moment of the fnite
element is larger than the theoretical calculation because
(19) assumes an infnitely long open cylindrical shell,
thus ignoring the efect of the boundary conditions

imposed on the end of the cylindrical shell, whereas the
fnite element model assumes a cylindrical shell of fnite
length and requires the use of some rigid constraints at
the ends to apply moments. Te bending trends of the
three structures are consistent throughout the reverse
buckling process.

From Table 2, it can be obtained that Model a reaches
21.9% of the critical bending moment and 14.7% of the
steady-state bending moment performance of the ordinary
spring steel cylindrical shell with 12.8% of the mass. Model b
has better mechanical properties than Model a, reaching
36.6% of the critical bending moment performance and
32.2% of the steady-state bending moment performance of
the ordinary spring steel cylindrical shell with 22.5% of the
mass. An index unit mass “bending moment/mass” is
proposed to measure this, and the mechanical properties of
the honeycomb structure per unit mass are more excellent
and have a better substitution efect. Table 3 shows the
mechanical properties of diferent models per unit mass.
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Figure 15: Te moment-rotation angle relationships for diferent structures.

Table 2: Comparison of mass, critical bending moment, and steady-state bending moment of diferent structures.

Mass (g) Maximum moment (Nmm) Steady moment (Nmm)
Tape spring 53.625 8909.3 950.3
Model a 7.537 1952.6 140
Model b 12.086 3264.2 305.7

Table 3: Comparison of critical bending moment and steady-state
bending moment under unit mass of diferent structures.

Maximum moment/mass Steady moment/mass
Tape spring 166.1408 17.72121
Model a 259.0686 18.57503
Model b 270.0811 25.29373
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4. Conclusion

In this paper, according to the orthotropic shell bending
theory, the calculation formula of the bending moment of
the ribbon spring with honeycomb topology under ortho-
tropic material is deduced. Te sensitive parameters af-
fecting the mechanical properties of the honeycomb
topology ribbon spring can be obtained by the formula, and
its bending moment variation trend and critical bending
moment value during the reverse buckling process can be
estimated; then, fnite element analysis was carried out.

Te fnal results show that the honeycomb structure has
better mechanical properties per unit mass by proposing the
unit mass index for analysis and comparison. Compared
with the ordinary honeycomb structure of Model a, the
negative Poisson’s ratio honeycomb structure of Model b
can achieve certain mechanical properties of the original
ribbon spring with a lighter mass. Trough the correctness
and consistency of theoretical analysis and fnite element
modeling, the honeycomb topology has a good substitute
value in the ribbon spring of the space deployment
mechanism.
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B. Forthomme, and O. Bruls, “Experimental and numerical
investigation of the nonlinear dynamics of compliant
mechanisms for deployable structures,” Mechanical Systems
and Signal Processing, vol. 101, pp. 1–25, 2018.

[19] Y. D. Zuo, Z. X. Li, X. G. Xie, G. Jin, and P. Xie, “Characteristic
calculation and experiment of CFRP lenticular tape spring,”
Optics and Precision Engineering, vol. 25, no. 2, pp. 385–393,
2017.

[20] C. Ensarioglu, A. Bakirci, H. Koluk, and M. C. Cakir, “Metal
foams and their applications in aerospace components,”
Materials, Structures and Manufacturing for Aircraft,
pp. 27–63, Springer, Berlin, Germany, 2022.

[21] S. W. K. Roper, H. Lee, M. Huh, and I. Y. Kim, “Simultaneous
isotropic and anisotropic multi-material topology optimiza-
tion for conceptual-level design of aerospace components,”
Structural and Multidisciplinary Optimization, vol. 64, no. 1,
pp. 441–456, 2021.

[22] I. Masters and K. Evans, “Models for the elastic deformation
of honeycombs,” Composite Structures, vol. 35, no. 4,
pp. 403–422, 1996.

[23] D. Chen and S. Ozaki, “Analysis of in-plane elastic modulus
for a hexagonal honeycomb core: efect of core height and
proposed analytical method,” Composite Structures, vol. 88,
no. 1, pp. 17–25, 2009.

[24] L. J. Gibson, M. F. Ashby, G. Schajer, and C. I. Robertson,
“Te mechanics of two-dimensional cellular materials,”
Proceedings of the Royal Society of London A Mathematical
and Physical Sciences, vol. 382, no. 1782, pp. 25–42, 1982.

[25] W. Warren and A. Kraynik, “Foam mechanics: the linear
elastic response of two-dimensional spatially periodic cellular
materials,” Mechanics of Materials, vol. 6, no. 1, pp. 27–37,
1987.

Advances in Materials Science and Engineering 11



[26] H. G. Allen, Analysis and Design of Structural sandwich
Panels: Te Commonwealth and International Library:
Structures and Solid Body Mechanics Division, Elsevier,
Netherlands, 2013.

[27] W. Burton and A. Noor, “Assessment of continuum models
for sandwich panel honeycomb cores,” Computer Methods in
Applied Mechanics and Engineering, vol. 145, no. 3-4,
pp. 341–360, 1997.

[28] Y. Tanimoto, T. Nishiwaki, T. Shiomi, and Z. Maekawa, “A
numerical modeling for eigenvibration analysis of honeycomb
sandwich panels,” Composite Interfaces, vol. 8, no. 6,
pp. 393–402, 2001.

[29] L. Guj and A. Sestieri, “Dynamic modeling of honeycomb
sandwich panel,”Archive of AppliedMechanics, vol. 77, no. 11,
pp. 779–793, 2007.

[30] F. Minghui, “Equivalent elastic parameters of the honeycomb
core,” Acta Mechanica Sinica, vol. 1, pp. 113–118, 1999.

[31] L. Mingjin, Study of mechanics characteristics of negative
Poisson’s ratio honeycomb core structure, University of Science
and Technology of China, Hefei, China, 2012.

12 Advances in Materials Science and Engineering




