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In this present paper, the machine learning approach is used to optimize, model, and predict the factors during drilling Nimonic
C263 under dry mode. Nimonic C263 is tough to machine aero alloys, and it is required to �nd a predictive model and to optimize
the factors in drilling this alloy before the actual machining process. It helps to avoid the actual machining cost and material cost.
Experimental trails are planned based on Taguchi analysis, and L27 orthogonal array was chosen. Speed, feed, and approach angle
of drill were considered as controlling factors, and cutting force and surface roughness were considered as responses. �e feed
forward neural network (FFNN) was used to develop a predictive model. �e prediction capability was validated with a predictive
model developed by Taguchi analysis. Furthermore, ANOVA (analysis of variance) analysis was done to �nd out the most
in�uence factor on the responses.

1. Introduction

Nimonic C263 material is an aero material. It has great
mechanical properties, and it �nds usage in aeronautical
parts manufacturing sectors. However, it is tough to ma-
chine owing to low thermal conductivity [1]. �erefore,
suitable machining factors and cutting tools to machine this
alloy are to be found out to improve the product quality.
Modeling and optimization of the machining factors are an
important task in machining domain. Optimization of these
factors with suitable optimization tool would increase the
e�ciency of the machining performances and improve the
product quality [2]. In manufacturing sectors, machine
learning reduces cost, time, and wastages and increases the
quality of the parts. It also develops systems to manage

human behavior. Di�erent machine learning algorithms are
available, namely, genetic algorithm, nondominated sorting
genetic algorithm, particle swarm optimization, biogeog-
raphy-based optimization algorithm, �re�y algorithm, ar-
ti�cial bee colony, gray-based Taguchi analysis, and ant
colony algorithm [3, 4]. Furthermore, it also important that
the machined surface may get a�ected severely unless the
insert wear rate is controlled. �e cutting �uids majorly
in�uence to reduce the temperature in the cutting zone and
control the insert wear rate. �e lubrication of the machine
zone with the nano-MQL (minimum quantity lubrication)
lubricant system produces improved machined surface and
minimum insert wear rate [5]. It is also important to note
that, owing to friction in the cutting zone, temperature will
be increased, and this a�ects tool edge and other machining
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performances [6]. Data set was prepared by conducting
milling experiments on AA7075 alloy, and the recorded data
were used to develop the ANN model to predict the surface
roughness. +e predicted value by ANN (artificial neural
network) using the small data set was compared by the
Taguchi method, and the result has shown that the developed
ANN model has shown best results. In ANN, back propa-
gation and BR algorithm were used to train the data [7].

+e tool wear during machining is needed to monitor in
the modern machining system. Baig et al. [8] considered the
vibration sign during machining and proved it as best in-
dicators for the tool wear assessment. +e ANN tool was
used to predict the tool life in turning EN9 and EN24 steel
with help of recorded experimental data. +e ANN model
was found to be effective with a coefficient of 0.99 in pre-
dicting the tool wear.

Alajmi and Almeshal [9] said that the machining per-
formance data would be used for the prediction of the

responses. +ey have predicted the cutting force and opti-
mized the factors to get minimum of cutting force in turning
AISI 4340 alloy. +e prediction was done using Gaussian
process regression, support vector machines, and artificial
neural networks, and they have reported that the GPR tool
has produced best prediction compared to other two pre-
diction tools.

Uhlmann et al. [10] said that the machining process and
wear of the insert have a significant impact on surface in
milling process. Many approaches have been found to get
models to predict surface properties during machining.
However, those approaches are to be verified with a good
number of experimental trails. +ey have suggested that the
manual experimental parameterization would not be fea-
sible; hence, a highly automated approach for the relation
between tool wear and machining factors was developed
using the machine learning approach. Murua et al. [11] said
that the process controlling factors can be optimized with

Table 1: Process parameters and their levels.

Sl. no. Process parameters Unit Symbol
Levels

1 2 3
1 Spindle speed rpm N 1250 1500 1750
2 Feed rate mm/rev f 0.10 0.155 0.198
3 Point angle Degree 2ρ 120 140 145

Table 2: Experiment’s results.

Exp. no.
Input Outputs

N (rev/min) f (mm/rev) 2ρ (degree) Fz (N) Ra (μm)
1 1250 0.10 120 1250 0.576
2 1250 0.10 140 1300 0.585
3 1250 0.10 145 1375 0.592
4 1250 0.155 120 1265 0.582
5 1250 0.155 140 1360 0.592
6 1250 0.155 145 1420 0.621
7 1250 0.198 120 1385 0.595
8 1250 0.198 140 1400 0.622
9 1250 0.198 145 1430 0.641
10 1500 0.10 120 950 0.656
11 1500 0.10 140 1100 0.598
12 1500 0.10 145 1150 0.635
13 1500 0.155 120 990 0.586
14 1500 0.155 140 1110 0.642
15 1500 0.155 145 1200 0.685
16 1500 0.198 120 1060 0.552
17 1500 0.198 140 1120 0.672
18 1500 0.198 145 1175 0.695
19 1750 0.10 120 900 0.585
20 1750 0.10 140 970 0.612
21 1750 0.10 145 1000 0.651
22 1750 0.155 120 925 0.535
23 1750 0.155 140 1010 0.546
24 1750 0.155 145 1050 0.564
25 1750 0.198 120 975 0.571
26 1750 0.198 140 990 0.589
27 1750 0.198 145 1030 0.635
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help of predictive models, and they have developed a re-
gression model by extracting values in face turning of
inconel 718.�e high-pressure coolant has reduced the wear
and improves the coolant purpose compared to the tradi-
tional lubrication system.

Fertig et al. [12] presented a novel approach to predict
the improvement of machined work piece during milling
processes. �e machine tool data were recorded, and these
values were used for the development of the machine
learning approach, and slicing algorithm was applied to
predict the quality of the machined surface. Dubey et al. [13]
have used the minimum quantity lubrication approach to
turn the AISI 304 steel to determine the surface �nish. Linear
regression (LR), random forest (RF), and support vector
machine (SVM) machine learning algorithm were used for
the prediction of roughness, and the predicted values were
compared with experimental results. It was �nally concluded
that particle size e�ect on surface �nish and machine
learning techniques were found to be far to predict
roughness with minimum error.

Seleznev et al. [14] have used ceramic-based composites
inserts that were used to machine nickel alloys, and they
have highlighted SiAlON as best one. Furthermore, they
have suggested that the new tool geometry, machining
methods, and tool materials would be useful to assess the
machining performance. Wei et al. [15] said that the ma-
chine learning methods are the best tool to predict the
performances or characteristics of thermal transport
properties. Dahbi et al. [16] have presented modeling of
machining performances in turning 2017A aluminum. �e
data obtained in machining were used to develop the neural
network, and network architecture was chosen based on R2,
MSE (mean squared error), and APE (average percentage
error). Nickel-based superalloys and titanium alloy are very
di�cult to cut by traditional machining process because of
extreme toughness and work-hardening characteristics
[17–19]. When turning to Nimonic C263 superalloy, a
predictive model based on DEFORM 3D was made to
predict machining properties such as cutting force and the
temperature of the insert cutting edge [20]. �e 2D wavelet
transform can break up an image of a machined surface into
pictures with di�erent levels of detail for many di�erent
surface properties, and it can be used to evaluate surfaces
[21].

From the literature, it is important to develop a pre-
dictive model, and there is need to optimize the process
controlling factors to achieve better machining performance.
�erefore, an attempt has been taken to develop a predictive
model based on the machine learning algorithm using
MATLAB, namely, ANN, and the model results were val-
idated with the help of regression.

2. Materials and Methods

�e work piece Nimonic C263 contains chemical compo-
sition such as 52.49 Ni, 0.19 Si, 0.46 Mn, 20 Cr, 6.29 Mo, 0.07
Cu, 1.0 Fe, 16.7 Co, 1.94 Ti, 0.48 Al, 0.04 Nb, 0.15 W, 0.02 V,
0.02 C, 0.001 S, and 0.007 Ta. �e cutting force and surface
roughness were considered as responses. �e cutting force
and surface roughness were measured using a piezo-electric

Table 3: Response table Fz.

Level Cutting speed Feed rate Point angle
(a) Response table for S/N ratio: Fz
1 −59.61 −57.81 −57.54
2 −57.76 −58.10 −58.14
3 −56.83 −58.29 −58.52
Delta 2.78 0.48 0.98
Rank 1 3 2
(b) Response table for means: Fz
1 677.2 555.6 539.92
2 547.8 574.2 575.9
3 492.0 587.3 602.0
Delta 185.3 31.7 62.8
Rank 1 3 2
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Figure 1: Main e�ects plot for means: cutting force.
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Figure 2: Interaction plot for means: cutting force.
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Figure 3: 3D plot for cutting force: (a) cutting speed vs. feed rate, (b) cutting speed vs. point angle, and (c) feed rate vs. point angle.

Table 4: ANOVA for cutting force.

Source SOS df MS F value P value
Model 7.462E+ 05 9 82907.42 113.34 <0.0001
N 5.787E+ 05 1 5.787E+ 05 791.17 <0.0001
F 20931.63 1 20931.63 28.62 <0.0001
2ρ 72323.10 1 72323.10 98.87 <0.0001
N∗f 2087.67 1 2087.67 2.85 0.1094
N∗ 2ρ 76.19 1 76.19 0.1042 0.7508
f∗ 2ρ 3747.33 1 3747.33 5.12 0.0370
N2 32511.57 1 32511.57 44.45 <0.0001
f2 16.81 1 16.81 0.0230 0.8813
2ρ2 3937.57 1 3937.57 5.38 0.0330
Residual 12435.11 17 731.48
Cot. total 7.586E+ 05 26

R-square: 98% and adj. R-square: 97%
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dynamometer and Surfcom 1500 roughness tester. Taguchi
analysis is implemented to design the experiments, and L27
orthogonal array was used to conduct the experiment.
AlCrN-coated carbide drill is used to drill the work. �e
drilling factors and their levels are given in Table 1. �e
results of the experiment are shown in Table 2.

2.1. Development of the Predictive Model Using Regression
Analysis. �e regression equation was developed for the
experimental values based on the following equation.

Y � β0 +∑
k

i�1
βixi +∑

k

i�1
βiix

2
i +∑

i

∑
j

βijxixj + ε, (1)

where the corresponding response is “Y,” xi is the values for
the ith machining process parameters, and “k” is the no. of
parameters to be modeled. �e terms β and π are the re-
gression coe�cient and the residual of the experimental
error of results, respectively. β coe�cients utilised in the
calculation can be determined using the least squaremethod.
ANOVA was calculated to estimate signi�cant contribution
of factors on each response. �e R-squared value is used to
identify the model’s signi�cance at 95% con�dence interval.

�e response table (S/N ratio and for means) for cutting
force is given in Table 3, and it is observed that the cutting
speed was found to be dominant on cutting force followed by
point angle and feed rate.

Figures 1 and 2 show the main e�ects plot for force and
interaction plot for means of cutting force response.
Figures 3(a)–3(c) shows the three-dimensional plot for
cutting force. From Figures 1–3, the cutting force magnitude
is increased at lower level of cutting speed and reduced as the
level of cutting speed increases. It would be owing to that the
higher temperature generation at the machining zone.
Further, the cutting force magnitude is increased as the level
of feed rate and point angle are increased, and it could be
owing to rubbing action at the cutting zone as well as at
higher level of point angle and the contact surface of the drill
cutting edge is more.

Furthermore, the regression analysis was done using
Design–Expert software for cutting force and surface
roughness. Table 4 shows ANOVA for cutting force, in
which it is observed that the cutting speed has more
dominant factor followed by point angle, square of cutting
speed, and feed rate. Since the model developed has F value
equal to 113.34 for cutting force, it is adequate to predict the
cutting force. �e model e�ciency is con�rmed by its R-
squared value of 98%. As compared to point angle and feed
rate, the F value is high for cutting speed (791.17), meaning
that it has signi�cant impact for force. Equation (1) is an
empirical equation to predict the force.

Fz � 1048 − 184∗N + 35∗f + 63.46∗ 2ρ

− 13.16∗N∗ f − 2.38∗N∗ 2ρ − 16.66∗f∗ 2ρ

+ 73.16∗N2 − 1.70∗f2 + 42.36∗ 2ρ2.
(2)

Table 5: Response table for Ra.

Level Cutting speed Feed rate Point angle
Response (a) for S/N ratio: Ra
1 4.450 4.447 4.861
2 4.102 4.556 4.360
3 4.677 4.226 4.008
Delta 0.574 0.330 0.854
Rank 2 3 1
Response (b) for means: Ra
1 0.5994 0.5999 0.5717
2 0.6256 0.5934 0.6063
3 0.5847 0.6163 0.6317
Delta 0.0409 0.0229 0.600
Rank 2 3 1
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Figure 4: Main e�ects plot for means: cutting force.
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Figure 5: Interaction plot for means: cutting force.
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+e response table (S/N ratio and for means) for cutting
surface roughness in given in Table 5, and it is observed that
the cutting speed was found to be dominant on the cutting
force followed by point angle and feed rate. Figures 4 and 5
show the main effects plot for surface roughness and in-
teraction plot for means of surface roughness response,
respectively. Figures 6(a)–6(c) show the three-dimensional
plot for surface roughness. From Figures 4–6, the surface
roughness increases as the level of point angle and feed rate
increases. However, the surface roughness is reduced at a

high level of speed, low level of point angle, and at themiddle
level of feed. Furthermore, regression analysis was done
using Design–Expert software for cutting force and surface
roughness. Table 6 shows ANOVA for surface roughness, in
which it is observed that the point angle has more dominant
factor followed by cutting speed and feed rate.

Ra � 0.5939 − 0.0067∗N + 0.0012∗f + 0.0260∗ 2ρ

− 0.0142∗N∗f + 0.0037∗N∗ 2ρ + 0.0170∗f∗ 2ρ

− 0.0416∗N
2

+ 0.0206∗f
2

+ 0.0286∗ 2ρ2.
(3)
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Figure 6: 3D plot for surface roughness: (a) cutting speed vs feed rate, (b) cutting speed vs point angle, and (c) feed rate vs point angle.

Table 6: ANOVA for surface roughness.

Source SOS df MS F value P value
Model 0.0333 9 0.0037 5.00 0.0022
N 0.0008 1 0.0008 1.04 0.3215
F 0.0000 1 0.0000 0.0312 0.8619
2ρ 0.0122 1 0.0122 16.46 0.0008
N∗f 0.0024 1 0.0024 3.30 0.0869
N∗2ρ 0.0002 1 0.0002 0.2556 0.6196
f∗2ρ 0.0039 1 0.0039 5.26 0.0348
N2 0.0104 1 0.0104 14.01 0.0016
f2 0.0025 1 0.0025 3.34 0.0853
2ρ2 0.0018 1 0.0018 2.43 0.1375
Residual 0.0126 17 0.0007
Cot. total 0.0458 26

R-square: 75% and adj. R-square: 60%

Experimental trials

Split the
experimental data 

Test set

Levenberg-
Marquardt 
Algorithm

Training set

Model Validation

Figure 7: FFNN model flow diagram.
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Since the model developed has F value equal to 5 for
surface roughness, it is adequate to predict the surface
roughness. +e model efficiency is confirmed by its R-
squared value of 75%. As compared to point angle and feed
rate, the F value is high for cutting speed (791.17), meaning
that it has significant impact for force. Equation (3) is an
empirical equation to predict the force.

2.2. Implementation of the FFNN Model for the Prediction of
Responses. Analysis of gradient, the individual and inter-
acting impacts of drilling process parameters on cutting
force, and surface roughness are investigated, and a qua-
dratic regression model is built. In training a feed forward
neural network, unlike Näıve computation where gradient is
computed with each weight separately, in back propagation,

Table 7: Training dataset for LM algorithm.

Exp. no.
Inputs Target

N (rev/min) f (mm/rev) 2ρ (degree) Fz (N) Ra (μm)
1 1250 0.10 120 1250 0.576
2 1250 0.10 140 1300 0.585
3 1250 0.10 145 1375 0.592
4 1250 0.155 120 1265 0.582
5 1250 0.155 140 1360 0.592
6 1250 0.155 145 1420 0.61
10 1500 0.10 120 950 0.565
11 1500 0.10 140 1100 0.598
12 1500 0.10 145 1150 0.635
13 1500 0.155 120 990 0.586
14 1500 0.155 140 1110 0.642
15 1500 0.155 145 1200 0.685
19 1750 0.10 120 900 0.585
20 1750 0.10 140 970 0.612
21 1750 0.10 145 1000 0.651
22 1750 0.155 120 925 0.535
23 1750 0.155 140 1010 0.545
24 1750 0.155 145 1050 0.564

Table 8: FFNN model results for test dataset using the LM algorithm.

Exp. no.
Inputs Predicted output

N (rev/min) f (mm/rev) 2ρ (degree) Fz (N) Ra (μm)
7 1250 0.198 120 787.1942 0.600289
8 1250 0.198 140 1086.899 0.681932
9 1250 0.198 145 1153.774 0.651407
16 1500 0.198 120 737.7439 0.597503
17 1500 0.198 140 1090.856 0.649399
18 1500 0.198 145 1106.866 0.681351
25 1750 0.198 120 738.4216 0.596766
26 1750 0.198 140 1135.186 0.555578
27 1750 0.198 145 1159.582 0.582648

Table 9: Percentage prediction errors for test dataset.

S. no.
Measured output Predicted output % prediction error

Fz (N) Ra (μm) Fz (N) Ra (μm) Fz (N) Ra (μm)
1 1385 0.595 1387.194 0.600289 0.158178 0.881158
2 1400 0.622 1386.899 0.681932 0.944626 8.788583
3 1430 0.641 1453.774 0.651407 1.635319 1.597572
4 1060 0.552 997.7439 0.597503 6.239689 7.615499
5 1120 0.672 1090.856 0.649399 2.671686 3.480324
6 1175 0.695 1106.866 0.681351 6.155621 2.003201
7 975 0.569 938.4216 0.596766 3.897863 4.652757
8 990 0.589 987.186 0.555578 0.285049 6.015688
9 1030 0.612 1159.582 0.582648 11.1749 5.037642

Average prediction error 4.453% 3.685%
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the gradient is approximated with appropriate weights of the
network for a multivariate dataset. Because of this e�ciency,
gradient algorithms can be used to train multilayered net-
works, adjusting weights to minimise loss. �e back prop-
agation algorithm works by using the chain rule to compute
the gradient of the loss function with respect to each weight,
one layer at a time, iterating backwards from the �nal layer
to eliminate unnecessary calculations of intermediary terms
in the chain rule, allowing it to be dynamically programmed.

�e experimental trial dataset is split into two parts:
testing and training. �e dataset for training is utilised to
adjust weights of associated neurons until the desired error
level is achieved. As shown in Figure 7, training is conducted
by providing a number of training vectors each with a
corresponding target output vector.

Tables 7 and 8 detail the experimental conditions and
�ndings that were utilised to train and evaluate the network.
�e experimental �ndings were utilised to train the FFNN
model, with 18 experimental trials being used for training
and 9 trials being used for testing. In this investigation, the

feed forward back propagation algorithm with Lev-
enberg–Marquardt approximation is utilised to train the
network. In MATLAB, the neural network toolbox (nntool)
was utilised to model the FFNN model. �e average pre-
diction error of the predicted output and the target output is
calculated using the percentage error formula and is
depicted in Table 9.

percentage error � |M − P|
|P| × 100

, (4)

where M is the measured value and P is the predicted value.
It can be inferred from Table 9 that the average pre-

diction error for Fz is 4.453%, and surface roughness (Ra) is
3.685%. �e neuron in the input layer corresponds to the
depth of cut (d), feed rate (f ), and point angle. On the other
hand, the surface roughness correlates to the output layer
(Ra). �e outputs are linked to the hidden layer neurons,
while the hidden neurons are linked to the inputs. �e
architecture is shown in Figure 8, with three neurons in the
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Figure 8: Feed forward neural network architecture.
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input layer, ten neurons in the hidden layer, and two
neurons in the output layer.

Model Speci�cation. Data division: random; training:
(trainlm); Levenberg–Marquardt; performance: mean
squared error (MSE) calculations: MEXEpoch: 534

iterations; gradient: 1.41e−11; Mu: 1.00e−09; validation checks:
4; and linear transfer function: purelin.

(i) One hidden layer with ten neurons
(ii) �ree neurons in the input layer representing the

input variables for FFNN models
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Figure 10: Regression plots of trained network w.r.t. target for (a) training, (b) validation, (c) test, and (d) all.
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(iii) Two neurons in the output layer representing the
output variables independently for each of the
FFNN models

Figure 9 shows the performance plot for training work
initially, and for neurons in hidden layers, the purelin
transfer function yielded the best results. +e maximum
number of training epochs was easily determined empiri-
cally using the plot network performance function plot
perform. While looking at the graph of network training, it
was observed that, after 534 epochs, the network training
practically comes to a standstill (Figure 8).

During the training process, learning algorithms adapted
the generated neural networks to the dataset.+e accuracy of
the fits was validated using MATLAB regression graphs
(Figure 10) that showed the network outputs in relation to
the objectives for testing, validation, and training sets, with
values above 0.99 for all data sets.+e FFNN predictive value
and experiment values are compared and found to be within
less than 5% error. When comparing the analytical model
with the neural network model in terms of measured values
obtained during experimental trials, the regression coeffi-
cient R provides a high correlation.+e generated FFNNs for
setting up black box models can be utilised to create a
decision support system for selecting optimal parameters in
drilling of superalloy Nimonic C263.

3. Conclusions

+e following important conclusions were arrived in drilling
of Nimonic C263 using carbide drill.

(i) +e developed model by FFNN is found to be ef-
fective to predict cutting force and surface roughness
compared to the regression method. As indicated by
the comparatively high correlation coefficient R, the
modeled neural network is well matched to the
experimental data. +e use of FFNN allows us to
forecast surface roughness performance prediction
with an accuracy of 0.9–2.9%, which is the same as
the measurement values obtained during the ex-
perimental trials.

(ii) In drilling Nimonic C263, the maximum cutting
force and surface roughness are observed to be
1430N and 0.65 µm respectively. +e cutting speed
was found to be a major factor in effecting cutting
force followed by point angle and feed rate.+e point
angle was found to be a significant factor on surface
roughness followed by cutting speed and feed rate.

Data Availability

+e data used to support the findings of this study are in-
cluded within the article.
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