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Magnesium (AZ31) is an excellent choice for a bionic implant. To enhance biocompatibility, the hardest graphene nanoparticles
were reinforced with biocompatible materials. In this paper, biocompatibility composite material is produced by stir-casting
nanoshell particles reinforced with various weight percentages (0, 1, 2, 3, and 4 wt. percent) of AZ31 magnesium alloy. To
understand the mechanical properties of the composite material, results of which are compared to the base alloy (AZ31) are used.
*e study mentioned how AZ31 magnesium alloy, reinforced with reinforcing particles, may be used to create implant-related
human bone materials. Magnesium alloy reinforced with reinforcing particles is described in the study.

1. Introduction

Magnesium has excellent biocompatibility and modulus of
elasticity in line with the human bone. Inorganic-stage
calcium-containing crystals are embedded in the bone, in-
creasing the tissue’s sensitivity to normal stresses. Due to
pathology and desorption, bone tissue breaks. Metals uti-
lized for clinical purposes are found in the manufacturing
process of bone fixation devices [1]. Magnesium is in high
demand in every sector involved in the design and manu-
facture of automobiles, aircraft, and diverse engineering to
meet those industry’s needs. However, further advancement
will be necessary if this technological evolution is to con-
tinue. MMC is a possible solution. Fibres or particulate of a
ceramic material, i.e., silicon carbide or graphite, are usually

present in metal matrix composites to reinforce the low-
density material, i.e., aluminium or magnesium. Specifically,
higher stiffness, operating temperature, wear resistance, and
customizable properties can be found in these materials.
AZ31 magnesium alloys have the opportunity to explore as
light alloys for replacing some conventional structural
materials in cars and trucks, locomotives, and general avi-
ation. Using particulate magnesium matrix composites to
make isotropic materials with improved mechanical prop-
erties is a favourable fabrication process (MMCs). Each of
these variables is beneficial in increasing the mechanical
properties ofMMCs.Mg alloy in the AZ series has properties
of cost effectiveness, density friendliness, and good me-
chanical properties, as well as cast ability [2]. *e resulting
thermomechanical processed precipitates of Mg17Al12
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improve themechanical properties. In addition, AZMg alloy
incorporates particle reinforcements (which causes a higher
strengthening efficiency) and thus incorporates reinforce-
ments [3, 4]. *e AZ Mg alloy has a significant increase in
the amount of aluminium in its semisolid region, making it
appropriate for semisolid casting. Developing new light-
weight materials from recycled materials will be critical to
sustainable development [5–7]. When there are Ti and SS
alloys limiting the supply, magnesium can be a suitable
alternative. Magnesium is exceptional in having a high level
of strength, load-bearing capacity, biocompatibility, toxicity,
and wide abundance in the earth’s crust, water, and the
human body and a modulus of elasticity that matches the
bone [8, 9].*is is why the bone is more elastic than normal;
thus, it protects the implant and bone better.

Additionally, Mg-based materials reduce the trauma the
host patient experiences while also benefiting the host
[10–14]. *is is significant because even though it is possible
for Mg to be absorbed into the human body and excreted
without triggering an inflammatory response, this does not
occur if Mg is consumed or injected. Tomake magnesium an
attractive temporary implant, it is necessary to use con-
ventional materials with these two features [15–19]. *ere
are various requirements for materials that use Mg; they
must meet them all to function as an equivalent replacement
for the materials they replace. *e importance of having
important properties such as biocompatibility and low
toxicity and other undesirable side effects over the service life
cannot be stressed enough [20]. To obtain novel Mg-based
materials with enhanced mechanical and corrosion re-
sponses, biocompatible alloying elements/reinforcements
are required [21, 22]. Magnesium, in its original form, has
few disadvantages, such as flexibility and corrosion resis-
tance, in aqueous environments [23, 24]. Ball milling is a
mechanical method for grinding particles into small par-
ticulates. Conventionally, the particles are usually cracked
apart by solvent molecules; however, the reactants are
separated apart by mechanical stresses in ball milling.

Methods used in the past have included the use of Al2O3,
Y2O3, SiC, and CNT nanoparticles in various Mg-based
composites (also known as carbon nanotubes). Also, recent
studies [25–29] show that increasing magnesium’s strength
and ductility at the nanoscale by using ceramic reinforce-
ments is possible. Because AZ31 alloy is so widely used in
engineering applications, it has been paid a lot of attention
[30]. From a survey of the relevant literature, the researchers
found that very little research has been conducted to study
the mechanical behaviour of nanometer-sized particulate or
fibre hybrid-reinforced metal matrix composites. Results
obtained from experiments with AZ31 magnesium matrix
composites reinforced with submicron-SiC particulates
showed that the mechanical properties were improved
significantly. Xiang et al. [4] proceeded with the stir casting
of AZ31 and discussion of mechanical characterization of the
SiC particles included. *e studies found that increasing the
reinforcing particle from titanium dioxide, also called
titanium(III) oxide, increases ultimate tensile strength, yield
strength, and elastic modulus, along with a decrease in grain
size [31]. Eggshell is a low-cost, abundant source of calcium,

one of the best reinforcement options, which can be derived
from chicken aviculture. Bone flours and oyster shells
contain toxic elements such as Cd, Al, and Hg, and these
toxins cause diseases in people, making bone flours and
oyster shells less useful for medical use. *e role of calcium
in promoting bone mineralization aids in bone remodelling
[32]. Eggshell having a lower density and greater stability has
been superior to calcium carbonate, industrially prepared. It
has recently been discovered that eggshells enhance the
refining and strengthening of grain size and strength in the
Al and Mg matrix. Magnesium alloy AZ31 was synthesized
by stirring in water, and this solution was applied to small
eggshell-sized nanoeggshell particles [32–34]. Researchers
are conducting a series of experiments in order to determine
the effect of nanoeggshell particles on the mechanical
properties of magnesium alloy AZ31 in which the particles
are also incorporated.

2. Materials and Methods

Magnesium is an important metal used in numerous in-
dustries, including electronics, automobiles, and aerospace.
*e composition of magnesium alloy AZ31 is listed in
Table 1. Ball milling was used to reduce the average size of
the eggshell powder (15–35 nm) to a finer nanosize that is
just above the sub-nanosize range. *e particle size of the
product dropped dramatically after ball milling. *e
powder was ball-milled for 15 hours and then refined for 20
hours, which refined the powder to an average particle size
of less than 75 nm and a range of 15–35 nm.*e overall size
of the ball mill did not change as the 40-hour ball milling
time remained constant. *is is why the synthesis of the
composite materials required a total of 20 hours of eggshell
powder that had been ball-milled. Powdered eggshells did
not have detectable peaks other than calcium carbonate
after the milling process. After ball milling, no impurities or
additional secondary phases were found. Magnesium’s
biocompatible feature is increased by utilizing nanoegg-
shell particles (15–35 nm size), which improve the mate-
rial’s mechanical properties. Magnesium alloy AZ31’s
distinct composition details are shown in Table 2.

*e density data from the samples that were developed
are documented in Table 3. To obtain theoretical density, the
rule of mixtures method was used.

*e experimental density of magnesium alloy AZ31 used
in the experiment is 2.231 g/cc. In order to measure ex-
perimental densities, the nanoeggshell particles (wt. per-
centages of 1, 2, 3, and 4) were added. *is increased the
measured densities to 2.568, 2.765, 2.963, and 3.123 g/cc,
respectively. A study following up on this led to a later
discovery of rising porosity levels in the samples. Near-dense
materials are acceptable under certain porosity limits, which
is what makes this trend in porosities acceptable. *e lower
porosity levels primarily attributed to our control of ex-
trusion parameters and avoidance of air entrapment in the
molten slurry during the stirring process occur because of
our advanced control techniques. Promotion of nanoegg-
shell particle reinforcement is made easier because the
molten slurry in the steel mould is rendered incapable of
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supporting itself before the slurry is applied, so the particles
are more uniformly distributed, and the occurrence of
porosity is avoided.

3. Experimental Procedure

Stir casting (Figure 1) was used to make the AZ31 mag-
nesium metal matrix composite. Once the furnace was hot
enough, the ingot of magnesium was put in. Because
magnesium is highly flammable, a gas that is both non-
flammable and safe to breathe was continuously supplied to
the furnace as an atmosphere. To prevent the egg white from
becoming sticky, the nanoeggshell particles are preheated to
350°C before the addition of magnesium alloys. Magnesium
must be heated to 750°C in the crucible before it is used to
raise the temperature of the heating element to 450°C. *e
procedure involves mixing the eggshell particles with molten
magnesium in the crucible furnace and then stirring the
mixture for 15 minutes using an electric stirrer. *e metal
has reached a solidified state when it is naturally heated by
convection and then poured into a fixed, large iron die,
150mm× 150mm× 25mm in size. Figure 2 reveals the
impact tester. *e impact sample prepared by the ASTM
standard is shown in Figure 3.

4. Results and Discussion

4.1. Tensile Strength. In order to investigate the elasticity and
ultimate strength of the material, the tensile test was per-
formed according to ASTM-E32 standards. Every time the
materials were reinforced, a specified amount was cut and
machined at three different locations according to ASTM
standards. *e reinforced composite was built to an ap-
proximate 34% construction, and the calculated and graphed
averages were compared to the testing on a UTM machine.
As reinforcement was added, tensile strength increased
gradually, as illustrated in Figure 4. Strength increases

gradually with the increasing base magnesium alloy content
to 80.73 percent. A pie chart displaying the percentage
elongation of the composite is shown in Figure 5. *e
elongation increased at a much higher rate than the AZ31
alloy.

4.2. Young’s Modulus. Figure 6 shows the variation in
Young’s modulus for all composite specimens. With
nanoeggshell particles’ content, Young’s modulus of the
MG0 composite sample is around 71GPa, but it slightly
increased to 83GPa for MG4 composite specimens (4 wt.
percent nanoeggshell particles).

Young’s modulus depends on the orientation of nano-
eggshell particles when being loaded. When nanoeggshell
particles are positioned parallel to the loading direction,
Young’s modulus variation will be high. Conversely, when
they are positioned perpendicular to the loading direction,
the variation will be low. To get a medium value, roll a
random number to find the orientation. As reported by this
study, the milling and stir-casting techniques used in the
current investigation could have caused nanoeggshell

Table 1: Various chemical elements available in magnesium alloy AZ31.

Elements Aluminium Zinc Manganese Silicon Ferrous Calcium Magnesium
Contribution (%) 3.3 0.83 0.31 0.03 0.002 0.0023 Ball

Table 2: Composition details of the composite specimens.

Specimen identification Wt. % of magnesium alloy AZ31 Wt. % of nanoeggshell particles
MG0 100 0
MG1 99 1
MG2 98 2
MG3 97 3
MG4 96 4

Table 3: Density and porosity values of the samples.

Composition *eoretical density (g/cc) Measured density (g/cc) Porosity
MG0 2.231 2.228 0.1346
MG1 2.568 2.561 0.2733
MG2 2.765 2.757 0.2902
MG3 2.963 2.951 0.4066
MG4 3.123 3.101 0.7094

Electrical Motor

Stirrer Screw

Reinforcement

Furnace

Rotor

Crucible

Figure 1: Experimental setup of the stir-casting technique.
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particles to align in a random orientation, which did not
change in response to the applied tensile loads. Additional
investigation is required to better understand the variation
in Young’s modulus in the peak loading condition with
nanoeggshell particles’ content. Since there is a greater
amount of nanoeggshell particles in the composition, the
ductility of the Mg alloy/nanoeggshell particle composite is
drastically increased, and it still fits within the elongation
limits for many applications. Ductility may have improved
because there are more void nucleation sites due to the
inclusion of nanoeggshell particles, resulting in a lower
fracture strain.

4.3. Yield Strength. Figure 7 shows how variations in yield
tensile strengths are affected by Mg alloy and nanoeggshell
particles’ content. *e MG1, MG2, MG3, and MG4 samples
that contain nanoeggshell particle-reinforced composite
specimens have the highest yield strength (MG0).

*is boost from 93MPa (with no nanoeggshell particles)
to 131MPa represents a boost in tensile strength (Mg alloy
with 4 wt. percent of nanoeggshell particles). While im-
provements in yield strength (29% better) were due to the
reinforcement effect of nanoeggshell particles, the
strengthening of strengths (yield) was caused by the rein-
forcement effect of eggshell particles. Based on the findings
of the present study, it can be inferred that the mechanical
strength of Mg alloy, reinforced with nanoeggshell particles,
gets stronger when compared to the studies conducted by
other researchers. Concerning the yield strength of the
magnesium alloy AZ31, the contributions of different re-
inforcements are considered, which include the addition of
the nanoeggshell particle-reinforced composites.

4.4. Compressive Strength. A compression test was carried
out using ASTM standards to understand the material’s
compressive properties. Every time the materials were
reinforced, a specified amount was cut and machined at
three different locations according to ASTM standards.
Compression test results were recorded and plotted against
the composite’s reinforcement percentage. It can be con-
cluded from Figure 8 that the compressive strength of the
composite material increases with reinforcement and
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Figure 6: Variation on Young’s modulus of composite specimens.
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Figure 3: Schematic image of the impact sample.
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increases quickly for a moderate amount of reinforcement.
Using base magnesium alloy as a baseline, the strength of the
composites gradually improves to 24.36%.

4.5. Microhardness. AZ31 magnesium alloy and composite
materials were both tested in the hardness test, ASTM E384-
99, to understand the effect of nanoeggshell particles in the
magnesiummatrix. Micro Vickers hardness test results show
that the composite material was impacted by a 400 g load for
50 seconds with an 8mm steel ball indenter. Five locations
on the material were tested, and the results were plotted and
represented as the composite’s overall hardness. *e
hardness of the composite, which is shown in Figure 9,
increases to 29.63 as opposed to the magnesium matrix.

*e microhardness test results are shown in Figure 9. A
pure AZ31 alloy composite specimen (MG0) was found to
have a microhardness of 76HV. Monolithic magnesium
traditionally has microhardness in the range of 35–55HV.
Significant improvement in the properties of the magnesium
alloy can be attributed to the solid solution strengthening of
zinc in the melt in the presence of zinc as an alloying ele-
ment. A monotonically increasing effect was observed after
the addition of nanoeggshell particles. While all four
composites show 88, 96, 108, and 114HV in microhardness,
MG1 has 1 wt.% nanoeggshell percentage, MG2 has 2 wt.%
nanoeggshell percentage, MG3 has 3 wt.% nanoeggshell
percentage, and MG4 has 4 wt.% nanoeggshell percentage.
Using this enhancement, you can now see the difference
between soft nanoeggshell particles and hard nanoeggshell
particles, which results in improved grain size and resistance
to localized deformation. Tribo measurements should not be

confused with materials’ hardness as an indicator of tri-
bological response.

4.6. Flexural Strength. *e three-point bend test was de-
veloped to study the material’s bending behaviour according
to ASTM standards. With each reinforcment, the prescribed
amount was divided into three portions, which were then
milled andmachined at three separate locations according to
ASTM standards. Flexural test arrangement is shown in
Figure 10. After the value was plotted versus the percentage
of reinforcement from the three-point flexural testing ma-
chine, the values were recorded. *e composite’s flexural
strength will increase when the reinforcement intensity
increases, as shown in Figure 11. Composites’ strength was
found to improve gradually to 30.89%when compared to the
base magnesium alloy.
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Figure 8: Variation on compressive strength of composite
specimens.
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Figure 11: Variation on flexural strength of composite specimens.
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4.7. Impact Strength. To comply with ASTM standards,
Charpy impact testing was required. *e size we used for the
test was 55×10×10mm, with a 2mm depth and the standard
angle.*e composites were divided into three groups, and the
impact toughness of each was then investigated. In Figure 12,
it was discovered that impact strength increases steadily with
the percentage of nanoeggshell particles, then plateaus, and
declines at levels of 1 to 3 percent of composite oxidation.

5. Conclusions

Based on the experimental studies, the following findings were
drawn: the puremagnesium alloy AZ31 (0, 1, 2, 3, and 4wt.% of
nanoeggshell particle-reinforced composite specimens) was
found to have the following properties: after developing an
AZ31 magnesium alloy with nanoeggshell particle-reinforced
composites, the particles were dispersed evenly throughout the
alloy. When compared to AZ31 magnesium alloy, which was
interesting, reinforced material had better results. A few early
findings of the experimental phase indicated that the metal
matrix composite did not include any intermetallic phase. AZ31
alloy was changed by the addition of nanoeggshell particles.*e
composite is typically stronger because of the more intricate
texture.*ere is a positive correlation between the nanoeggshell
particle hybrid ratio and overall strengthening (96 : 04). Hybrid
ratios that are large produce themost robust hybrid composites.
*e new model agrees with the experimental data very well.
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