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.e Altemp HX is a nickel-based superalloy having many applications in chemical, nuclear, aerospace, and marine industries.
Machining such superalloys is challenging as it may cause both tool and surface damage. WEDM, a non-contact machining
technique, can be employed in the machining of such alloys. In the present study, different input parameters which include pulse
on time, wire span, and servo gap voltage were investigated. .e cutting velocity, surface roughness, recast layer, and micro-
hardness variations were examined on the WEDMed surface. .e genetic algorithm was used to optimize the cutting velocity and
surface roughness, thereby improving the overall quality of the product. .e highest recast layer values were recorded as 25.8 µm,
and the lowest microhardness was 170HV. Response surface methodology and artificial neural network were employed for the
prediction of cutting velocity and surface roughness. Artificial neural network prediction technique was the most efficient method
for the prediction of response parameters as it predicted an error percentage lesser than 6%.

1. Introduction

Altemp HX is a high-temperature and high-strength su-
peralloy having many applications. It can be used in spray
bars, flame holders, tailpipes, turbines, propellers, furnaces,
etc. WEDM technology is established as a feasible alternate
solution for the machining of such critical aerospace
components made of superalloys. Many researchers have
machined different nickel-based alloys using WEDM [1–3].
Majumder et al. [4] stated that in WEDM of Inconel 800,
there was a requirement of a tradeoff between cutting time
and surface roughness for obtaining good quality compo-
nents. Different researchers have tried different optimization
methods for increasing productivity [5–8]. Kumar et al. [9]
investigated surface crack density and recast layer thickness
using response surface methodology..e parameters such as
pulse on time, peak current, and pulse off time influenced
most on surface crack density, and recast layer thickness was

influenced by pulse on time. Singh and Pradhan [10] ex-
plored the parametric effects by using the Taguchi technique
and Response Surface Methodology (RSM) in WEDM of
AISI D2 Steel. .e parameters such as material removal rate
and the surface roughness were minimized in optimal set-
tings of machining parameters. Singh et al. [11] optimized
WEDM parameters such as MRR and Kerf width using the
multiresponse function of the RSM technique. It was found
that the peak current, gap voltage, and duty cycle are the
major parameters that affect material removal rate and kerf
width. Bose and Nandi [12] have investigated and optimized
material removal rate (MRR), surface roughness (SR), kerf
width, and overcut using RSM. Different parametric effects
on the output parameters were analyzed and optimized.
Varun and Venkaiah [13] have proposed grey relational
analysis with a genetic algorithm to simultaneously optimize
the response parameters such as material removal rate,
surface roughness, and cutting width (kerf). Altug et al. [14]
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have machined Ti6Al4V in WEDM with different heat
treatments, and the effect of machining parameters was
analyzed. It was observed that the optimization of output
parameters using a genetic algorithm yielded minimum kerf.
Kumar et al. [15] have employed response surface meth-
odology center composite second-order rotatable design for
designing the experiments, and a genetic algorithm has been
used for the optimization of the surface finish of the ma-
chined surface in Wire EDM. Sharma et al. [16] conducted
an RSM-based overcut model using a genetic algorithm for
finding optimal machining parameters. .is method was
also used for the prediction as the error between the pre-
dicted and experimental values lies in the range of ±10%.
Goyal et al. [17] have an investigated integrated approach of
nondominated sorting genetic algorithm-II for multi-
objective optimization of MRR and WWR, where errors
were less than 10%.

Soni et al. [18] used the response surface method and
ANN for the prediction of cutting speed in WEDM of shape
memory alloys. Manoj and Narendranath [19, 20] have used
ANN for the prediction of profile areas and profiling speed.
It was concluded that both machining parameters and taper
angle influence the accuracy and profiling speed. Phate and
Toney [21] have predicted the surface roughness and ma-
terial removal rate using ANN and dimensional analysis
models where the ANN model proved to be the most ac-
curate. Ming et al. [22] have reported ANN using BPNN
with the mean squared error that was suitable in the pre-
diction of surface roughness and material removal rate.
Chou et al. [23] have also reported the prediction of real-
time predict wire rupture, and the prediction accuracy of
wire rupture was reported above 85% using ANN.

.e literature shows the importance of machining pa-
rameters on the efficiency of machining. In the present
investigation, Altemp HX, a nickel-based superalloy, was
machined in WEDM. Different input parameters such as
pulse on time, wire span, and servo gap voltage on cutting
velocity, surface roughness, recast layer, and microhardness
were examined on the machined surface.

2. Materials

Altemp HX is a wrought nickel base alloy having excellent
oxidation resistance and superior high-temperature strength
of up to 1200°C (2200°F). .is alloy has high mechanical
properties such as high resistance to stress-corrosion
cracking, fabricability, low creep, and high-temperature
strength. .e received material was heat-treated at 1175°C
(2150°F)..e EDS of AltempHX is shown in Figure 1, which
shows the element’s composition.

3. Experimental Particulars and
Parametric Details

.e wire electric discharge machine of ‘ECOCUT ELPLUS
15’ by Electronica machine tools was used. .e zinc-coated
copper wire was used to cut the nickel-based alloy. .e
workpiece is fixed to the WEDM table. Both the workpiece
and electrode were maintained at high voltage. .e

dielectric fluid always engulfed by the electrode. .is leads
to ionization due to which the spark is generated. .e
sparks melt the material, and the dielectric fluid carries the
melted material as debris. Figure 2(a) shows the work
material placed on the WEDM table. Figure 2(b) shows the
specimens machined at different parameters. Table 1 shows
the machining parameters that have been fixed by primary
experiments. .ese parameters were selected based on
initial experiments and machine capabilities. .e input
parameters were pulse on time, wire span, and servo gap
voltage. Different effects of input parameters on output
characteristics were analyzed. L25 Taguchi’s orthogonal
experiment was employed for the examination. Table 2
shows the parameters and their levels used for machining.

4. Results and Discussions

.e cutting velocity and surface roughness were recorded at
different parameters, as shown in Table 3. It can be observed
that at the highest machining parameters, the cutting ve-
locity was 2.455mm/min and the surface roughness was
3.76 µm, whereas at the lowest machining parameters, the
cutting velocity was 0.504mm/min with 1.33 µm surface
roughness. .e surface roughness was calculated as an av-
erage of 5 values, and the cutting velocity was the average of
all the machining speeds recorded at every instant of ma-
chining the material.

4.1. ANOVA and Effect Plots for Different Parameters.
Table 4 and Figure 3 show the analysis of variance and effect
plots for cutting velocity and surface roughness, respectively.
It can be noted that among all the parameters, pulse on time
(Ton) was the most contributing and significant factor. From
the effect plots, as shown in Figures 3(a) and 3(b), it can be
observed that as Ton increases, both cutting velocity and
surface roughness increase. Ton influences the discharge
energy. As Ton increases, the ionization occurring at the
interface of the workpiece also increases. .is increases the
discharge energy, so the material melts faster. .is increases
the cutting velocity, as shown in Figure 3(a). In the case of
surface roughness, at higher Ton, the ionization is higher.
.is increase in ionization increases spark generation in-
tensity. With higher spark intensity, the craters formed on
the WEDMed surface become deeper and larger. .is in-
creases the surface roughness of the machined surface. At
lower Ton, the discharge energy decreases; this will reduce
the melting of the material. .is decreases the cutting ve-
locity due to lower spark intensity..e craters formed on the
WEDMed surface at lower spark intensity are smaller and
shallower, resulting in lower surface roughness [24, 25].

.e wire span (WS) is the distance of the wire between
the upper and lower guide during machining. As the WS
increases, the tension in the wire decreases which leads to an
increase in wire vibration [26, 27]. .is increase in wire
vibration causes lower cutting velocity due to variation in
spark gap [24, 28]. In the case of machining at lower WS, the
wire tension is higher. .is results in low wire vibration
which avoids variation in spark gap [29]. So, the cutting
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velocity is higher at lower WS, as shown in Figure 3(a). With
lower wire tension, the surface roughness decreases as there
is variation in the spark gap. .is variation decreases the

spark intensity which leads to shallower and small craters
[25]. .erefore, as the WS increases, the surface roughness
decreases, as in Figure 3(b).

In the case of Servo gap voltage (SGV), as SGV increases,
the spark gap between workpiece and wire also increases.
.is results in lower ionization which decreases the dis-
charge energy and spark intensity. .erefore material
melting time reduces leading to lower cutting velocity. .e
surface roughness decreases as the ionization is lower. .is
decreases spark intensity giving shallower and smaller
craters decreasing the surface roughness. In the case of lower
SGV, as the spark gap decreases the cutting velocity increases
because of the increase in the spark intensity and discharge.
Surface roughness also increases due to the formation of
larger and deeper craters [25].

4.2. Regression Equations by Response Surface Methodology.
For the parametric combinations in Table 3, the response
surface method was employed using MINITAB. .e
equations (1) and (2) show the regression equations obtained
by the response surface method used for optimization in the
genetic algorithm. .ese equations show a mathematical
relation of the parameters used in the investigation with the
response characteristics.
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Figure 2: (a) Altemp HX fixed in WEDM table. (b) Workpieces machined at different parameters.

Table 1: Machining parameters.

Parameter Specifications
Wire diameter (mm) 0.25
Wire material Zinc coated copper wire
Dielectric fluid Deionized water
Pulse on time (μs) 105, 110, 115, 120, 125
Servo gap voltage (V) 35, 40, 45, 50, 55
Wire span feed (m/min) 4
Servo feed (mm/min) 20
Pulse off time (μs) 33

Table 2: Experimental parameters used for investigation.

Parameter Level 1 Level 2 Level 3 Level 4 Level 5
Pulse on time
(μs) (Ton)

105 110 115 120 125

Wire span (mm)
(WS) 60 90 120 150 180

Servo gap voltage
(V) (SGV) 35 40 45 50 55
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cutting velocity � −32.14 + 0.582 Ton + 0.0748WS − 0.2683 SGV

− 0.002693 Ton ∗Ton − 0.000031WS∗WS − 0.001791 SGV∗ SGV − 0.000613Ton ∗WS + 0.003555Ton ∗ SGV,

(1)

surface roughness � −28.4 + 0.538 Ton + 0.0204WS − 0.234 SGV − 0.002264Ton ∗Ton

− 0.000026WS∗WS − 0.00020 SGV∗ SGV − 0.000145 Ton ∗WS + 0.00199 Ton ∗ SGV.
(2)

4.3. Genetic Algorithm. .e genetic algorithm (GA) method
is based on genetics and natural selection. It is employed to
find optimal or near-optimal solutions to difficult problems.
It works on three types of operators, namely, reproduction,
crossover, and mutation. .e strongest pair was chosen, and
mutation was introduced due to the different crossovers in
the gene pool. .e strongest and best among them is chosen

as solutions [14]. In the case of the above investigation, the
cutting velocity and surface roughness must be optimized by
making a tradeoff to maintain the quality of the product..e
optimization is carried out in the GA Toolbox of MATLAB
environment with parameters, as shown in Table 5. It was
seen that 105 (Ton), 81(WS), and 53(SGV) were the optimal
parameters. .e boundary conditions were fed to the

Table 3: Response at different machining parameters.

Test no. Ton (μs) WS (mm) SGV (V) CV (mm/min) SR Ra (µm)
1 105 60 35 1.293 2.34
2 105 90 40 1.287 1.99
3 105 120 45 1.164 2.00
4 105 150 50 0.835 1.59
5 105 180 55 0.504 1.33
6 110 60 40 1.570 2.62
7 110 90 45 1.477 2.35
8 110 120 50 1.281 2.10
9 110 150 55 0.949 1.94
10 110 180 35 1.609 2.32
11 115 60 45 1.921 2.86
12 115 90 50 2.068 3.16
13 115 120 55 1.420 2.72
14 115 150 35 1.891 3.44
15 115 180 40 1.775 3.02
16 120 60 50 2.200 3.53
17 120 90 55 2.201 3.35
18 120 120 35 1.693 3.26
19 120 150 40 1.790 3.19
20 120 180 45 1.651 3.10
21 125 60 55 2.455 3.76
22 125 90 35 2.155 3.66
23 125 120 40 2.040 3.74
24 125 150 45 1.789 3.50
25 125 180 50 1.409 3.22

Table 4: ANOVA for cutting velocity and surface roughness.

<—!--Col Count:8-->Sl. no. Parameters DF Adj. SS Adj. MS F value P value Contribution (%) contribution
Cutting velocity
1 Pulse on time 4 3.328 0.832 14.4 0.001 63.45
2 Wire span 4 1.053 0.263 4.56 0.018 20.08
3 Servo gap voltage 4 0.170 0.042 0.74 0.584 3.25
4 Error 12 0.693 0.058 13.22
5 Total 24 5.245
Surface roughness
1 Pulse on time 4 10.392 2.598 70.07 0.001 87.49
2 Wire span 4 0.504 0.126 3.4 0.044 4.24
3 Servo gap voltage 4 0.537 0.134 3.62 0.037 4.52
4 Error 12 0.445 0.037 3.75
5 Total 24 11.878
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MATLAB software based on the parameters that were
chosen for the machining. .ese parameters were derived
from initial experiments. .e below conditions are given for
the genetic algorithm optimization with the help of equa-
tions (3)–(5):

110≤TON ≤ 125; (3)

60≤WS≤ 180; (4)

35≤ SGV≤ 55. (5)

4.4. Recast Layer 7ickness and Micro-Hardness. Figure 4
shows the recast layer formed on the WEDMed surface for
the highest and lowest machining parameters. During
machining, the temperature increases in the machining zone
due to the discharge energy. .is melts the material, and the
molten metal is cooled by the dielectric fluid. .is resoli-
difies, and a part of it is carried away as debris, and the other
part forms as the recast layer at the top of the machined
surface. At higher discharge energy, the melting of the
material increases. .is escalates the molten metal that was
formed on the WEDMed surface. .erefore, with the in-
crease in discharge energy, the recast layer thickness in-
creases. .e highest machining parameter generates the
maximum discharge energy with the highest recast layer
thickness, as shown in Figure 4. Figure 4(a) indicates the
highest average recast layer thickness, i.e., 25.8 µm was
measured at the highest cutting rate. .e lowest machining
parameters produced minimum average recast layer thick-
ness, i.e., 7.6 µm due to minimal discharge energy, as shown
in Figure 4(b). .is causes thermal degradation on the
WEDMed surface due to melting and cooling during ma-
chining. A comparable phenomenon was highlighted by
Sharma et al. [24] during the WEDM of Inconel 706. .is is
further validated by the microhardness of the machined
surface, as shown in Figure 5. It can be seen that the highest
machining parameters have the lowest hardness of 166HV,
and the lowest machining parameter has the highest

hardness of 176HV. .is phenomenon was witnessed be-
cause at the highest parameters, the heat generated is
maximum. .is results in a higher temperature at the
machining zone. .e material melts and resolidifies due to
the influence of cooling by dielectric fluid. .is leads to a
change in the properties of the hardness of the WEDMed
surface. Similar results have been observed by Soni et al. [30]
and Joy et al. [31].

4.5. Prediction of Response Parameters Using RSM and ANN
Methods. .e cutting velocity and surface roughness were
predicted for different parameters using response surface
methodology and an artificial neural network.

4.5.1. Response Surface Methodology. .e response surface
methodology is used for designing the experiments, fitting or
formulating a model, optimization, and prediction. .e
output response in response surface methodology is given by
the following equation [32]:

M � αo + 􏽘

k

x�1
αxpx + 􏽘

k

x�1
αxxp

2
x + 􏽘

k

x,y�1 x≠y

αxypxpy + ϑ, (6)

where ϑ is the noise or error that is observed in the response
M. px is the linear input variables, p2

x and pxpy are the
squares and interaction terms, respectively, of these input
variables..e unknown second-order regression coefficients
αo, αx, αxx, αxy, which should be determined in the second-
order model, are obtained by the least square method.

4.5.2. Artificial Neural Network. .e artificial neural net-
work was used for the prediction of cutting velocity and
surface roughness. .e ANNmimics some basic aspects of
brain functions. It works on neuron weights, inputs,
activation function, summation function, and output
[33, 34]. .e optimal model was trained in the MATLAB
platform by the ANN toolbox. Different iterations were
used having various parametric combinations for training
(15 experiments), validation (5 experiments), and testing
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Figure 3: Variation of (a) cutting velocity and (b) surface roughness.
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(5 experiments). .e network structure with 3-5-1-1 was
used for the prediction of both cutting velocity and surface
roughness. Log-sigmoid and pureline functions were
employed for the prediction using a feedforward neural
network. Table 6 shows different predictions for cutting

velocity and surface roughness using ANN and RSM
methods. It can be seen that ANN predictions have an
error percentage lesser than 6%, whereas the RSM pre-
dictions yielded an error percentage ranging from 0.58 to
13.95%.

Table 5: Genetic algorithm optimization parameters.

Sl. no. Pulse on time (Ton) Wire span (WS) Servo gap voltage (SGV)
Cutting velocity (mm/

min) Surface roughness (µm)

Experimental Optimum Experimental Optimum

1 105 81 53 0.54 0.501 1.52 1.566

(a) (b)

Figure 4: SEM images of WEDMed surface. (a) Lowest machining parameter. (b) Highest machining parameter.
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5. Conclusions

From the above study, Altemp HX, a nickel superalloy, was
machined at different levels, and the effect of machining
parameters was analyzed. It was noticed that WS and SGV
decrease both response parameters, but an escalation in

pulse on time increased both cutting velocity and surface
roughness. Ton was the most influential and contributing
factors on response parameters. .e genetic algorithm was
used for the optimization of cutting velocity and surface
roughness. It was observed that the experimental values were
in coordination with optimized responses, and the

Table 6: Prediction of cutting velocity and surface roughness by RSM and ANN.

Sl. no Experimental value RSM prediction Error (%) ANN prediction Error (%)
CV (mm/min)
1 1.293 1.24 4.28 1.28 0.94
2 1.287 1.26 2.15 1.30 1.34
3 1.164 1.14 1.99 1.15 1.39
4 0.835 0.88 4.76 0.87 4.08
5 0.504 0.47 8.15 0.50 0.17
6 1.57 1.63 3.43 1.62 3.31
7 1.477 1.56 5.36 1.48 0.08
8 1.281 1.35 5.07 1.28 0.08
9 0.949 0.99 4.35 0.94 0.43
10 1.609 1.68 4.01 1.64 1.82
11 1.921 1.97 2.61 1.92 0.03
12 2.068 1.81 13.95 1.99 3.77
13 1.42 1.51 6.02 1.46 2.78
14 1.891 1.80 4.82 1.89 0.07
15 1.775 1.66 7.17 1.82 2.32
16 2.2 2.27 3.20 2.20 0.02
17 2.201 2.02 8.83 2.21 0.42
18 1.693 1.92 12.04 1.72 1.67
19 1.79 1.83 2.20 1.77 0.91
20 1.651 1.59 3.86 1.64 0.48
21 2.455 2.53 2.84 2.45 0.15
22 2.155 2.04 5.74 2.17 0.93
23 2.04 2.00 2.16 1.99 2.23
24 1.789 1.81 1.15 1.81 1.38
25 1.409 1.48 4.58 1.41 0.24
SR (µm)
1 2.34 2.23 4.84 2.45 4.70
2 1.99 2.07 3.90 1.99 0.06
3 2.00 1.85 7.38 2.11 5.50
4 1.59 1.58 0.58 1.61 1.26
5 1.33 1.25 5.83 1.35 1.50
6 2.62 2.64 0.71 2.68 2.29
7 2.35 2.50 6.29 2.44 3.83
8 2.1 2.30 9.55 2.20 4.76
9 1.94 2.05 5.52 1.96 1.03
10 2.32 2.58 11.09 2.36 1.72
11 2.86 3.03 5.83 2.90 1.40
12 3.16 2.90 8.09 3.19 0.95
13 2.72 2.73 0.19 2.78 2.10
14 3.44 3.08 10.42 3.45 0.29
15 3.02 2.84 6.00 3.11 2.98
16 3.53 3.39 3.92 3.60 1.98
17 3.35 3.29 1.88 3.40 1.49
18 3.26 3.47 6.42 3.28 0.61
19 3.19 3.30 3.49 3.17 0.63
20 3.1 3.08 0.75 3.11 0.32
21 3.66 3.73 1.99 3.72 1.64
22 3.76 3.74 0.52 3.76 0.00
23 3.74 3.65 2.48 3.71 0.80
24 3.5 3.56 1.71 3.49 0.29
25 3.22 3.29 2.21 3.22 0.07
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percentage deviation was less than 3%. RSM and ANN were
used for prediction, and it was observed that the ANN was
most accurate, and it predicted a percentage error ranging
between 0–6 percent.

Data Availability

.e data used to support the findings of this study are
available from the corresponding author or within the article
upon request.
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zation of surface roughness in grinding of cryogenically
treated AISI 5140 steel,” Materials Testing, vol. 62, no. 10,
pp. 1041–1047, 2020.
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