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�e experimental research on heat transfer characteristics is an ever-ending scheme since the life of all thermoelectronic devices
relies on the e�ective management of thermal energy. In some cases, the gradient of temperature for heat transfer is to be
minimum to avoid energy loss, but also there are numerous applications where the requirement of heat transfer to be maximum
and could be achieved with a higher temperature di�erence between the heat transfer medium. In our current research, distilled
water-ethylene glycol heat transfer �uid (HTF) was tested with di�erent inlet mass �ow rates and temperature as the hot �uid.
Atmospheric air was chosen as the cold �uid. �e natural convection heat transfer rate between hot and cold �uid streams was
analyzed with and without the generation of micronanobubbles in the hot �uid. It was observed that compared to the base heat
transfer �uid, the nanobubbles heat transfer �uid resulted in a 10–12% increase in heat transfer rate at hot �uid inlet temperatures
of 28°C, 30°C, 32°C, 34°C, and 36°C. �e method of generation of nanobubbles in HTF and their behavior are also highlighted.

1. Introduction

�e demand for more e�ective and less complex techniques
for accurate heat transfer analysis is the need for waste heat
recovery in many process industries [1]. �e gas-¢lled en-
tities are called nanobubbles and their research was initiated
in the 1990s [2]. �ough it is a newer technology, due to its
scope in all science, engineering, and medical ¢elds, research
is still growing in nature [3]. Agriculture [4], aquaculture [5],
germination of seeds [6], drug delivery [7], heat transfer [8],
tissue engineering [9], and treatment of polluted water are
some of the noteworthy contributions of this unique
nanobubbles technology in the abovementioned ¢elds. �e
ion exchange, temperature change, pressure change, and
hydrodynamics are the commonly employed methods for
generating nanobubbles in any liquid medium [10]. As per
the YoungLaplace theory, the gas that forms the bubble
posed about 30×105 Pascal internal pressure which was in a
30 :1 ratio compared to any surrounding liquid which was at

ambient pressure of 1× 105 Pascal [11]. Due to this very
high-pressure gradient, the bursting of the bubble happens
in microseconds, resulting in the formation of still lower size
nanobubbles [12]. �e motion of nanobubbles in liquid is in
all x, y, and z directions, but till now no technology is
available to analyze these 3Dmotions [19, 20]. Nanoparticles
Tracking Analyzer (NTA) and dynamic light scattering
(DLS) are the presently used methods for analyzing the
nanobubble movement in 2D [13]. �e negligible buoyancy
of nanobubbles is attributed to the lateral movement rather
than movement towards the free surface. �e surface area
per unit volume, stability, zeta potential, pH, size, and
number density are the most important characteristics that
need to be understood prior to nanobubbles research in any
speci¢c application [14]. Based on the previous studies, it
was concluded that the nanobubbles research on heat
transfer is a wide area to be focused on to arrive at the most
signi¢cant conclusions considering the life of many ther-
moelectronic devices.
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2. Generation of Nanobubbles

.e hydrodynamic method works on the principle of cav-
itation; this causes the formation of bubbles as shown in
Figure 1. An orifice plate or a venturi tube is mostly used in
the method of generation. .e microbubbles (MBs) gen-
erator of the orifice type has an aperture in a flowing water
tube via which water is pressurized to enter the generator. A
little distance downstream of the orifice, the difference in
water velocity between the orifice and generator outlet
causes negative pressure..e air is sucked via a stainless steel
perforated pipe inserted in the running water tube, which,
because of intense shear force, splits the air into numerous
MB. .e venturi type generator mainly consists of three
main components, those are, a diverging part, a converging
part and a throat. According to F. Haung, simple structure,
durability, and more efficiency are the benefits of this
generator. Due to the shape of the venturi tube, it has more
impact on the local pressure and the cavitation and hence
thereby controlling the bubble size and efficiency.

3. Results and Discussion

Table 1 showed the variation in hot and cold fluid outlet
temperatures. Figure 2 indicates the difference in hot water-
ethylene glycol heat transfer fluid before and after the in-
fluence of nanobubbles generation. As compared with the
inlet temperature, the hot fluid outlet temperature with
nanobubbles generation was found to be higher. At higher
hot fluid inlet temperatures of 34°C and 36°C, the % variation

of hot fluid outlet temperature was very high and found to be
10–12% as compared with 28°C, 30°C, and 32°C.

Figure 3 indicates the difference in the cold air as heat
transfer fluid before and after the influence of nanobubbles
generation. As compared with the inlet temperature, the cold
fluid outlet temperature with nanobubbles generation was
found to be higher. At higher cold fluid inlet temperatures of

Figure 1: Equipment for nanobubble generation.

Table 1: Temperature difference between hot and cold fluids.

Parameters Hot fluid mass
flow rate (kg/s)

Hot fluid inlet
temperature (°C)

Hot fluid outlet
temperature (°C)

Cold fluid inlet
temperature (°C)

Cold fluid outlet
temperature (°C)

Before nanobubbles
generation 0.1

28 26.5 22 23.2
30 27.2 22 23.9
32 28.1 22 24.5
34 29.5 22 25.1
36 29.9 22 26.4

After nanobubbles
generation 0.1

28 26.8 22 23.4
30 27.9 22 24.2
32 28.7 22 25.3
34 30.5 22 26.4
36 32.6 22 27.4
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Figure 2: Influence of nanobubbles on hot fluid (water-ethylene
glycol) outlet temperature.
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34°C and 36°C, the % variation of hot fluid outlet temper-
ature was very high and found to be 9.5–11.4% as compared
with 28°C, 30°C, and 32°C.

4. Conclusion

.e experimental result outcome was that both the hot and
cold fluid outlet temperatures attained amarginal increase in
temperature when nanobubbles are produced in water-
ethylene glycol heat transfer fluid as compared to the same
fluid without nanobubbles generation. .e exponential
variation in both streams was found to be 10–12%. Hence, it
is suggested that for any heat transfer applications, the heat
transfer fluids can be used with nanobubbles to enhance the
convective heat transfer rate. In the future study, most of the
heat transfer fluids and phase change materials may be tested
with nanobubbles prior to specific applications.
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Figure 3: Influence of nanobubbles on cold fluid (air) temperature.
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