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In this work, wire cut electrical discharge machining (WEDM) is used for the material removing processes; it is utilized for
machining conductive parts where it is required to produce complicated shapes, new pro�les, new geometry, new product
development, and high-accuracy components.­is machining process is best suitable for high-end applications such as aerospace,
automations, automobile, and medical devices. At present, most of the industrial sectors choose the WEDM process because it is
used to develop products in a very short development cycle and at a better economic rate. In this paper, the selected complex
geometry of the metal sample was eroded away from the wire during the WEDM process, which eliminates mechanical tensions
during machining. ­e e�ect of di�erent WEDM operation variables set as wire speed, wire tension, discharge current, dielectric
�ow rate, and pulse on and o� time on the parameter, stainless steel 304 material removing rate (MRR) using RSM, has been
studied. ­e MRR will be maximized if the optimum sets of operational variations are used and also achieve a superior
surface �nish.

1. Introduction

WEDM, also called as “spark,” is a machining technique that
employs electrical output to obtain a variety of shapes.
WEDM is a unique variation of the traditional EDM
technique that starts the electrical sparking process using an
electrode. ­e thin continuous brass, copper, or tungsten
made wire electrode with a diameter of 0.05-0.3mm moves
constantly, which makes use of that may attain a better tiny

corner radius of WEDM. Using a series of rapidly recurring
current outputs among the two electrodes separated by a
dielectric solution and placed at an electric voltage, the
material is removed from the workpiece. ­e tool-electrode,
or simply the “tool” or “electrode,” is one of the electrodes,
whilst the workpiece-electrode [1, 2], or just the “work-
piece”, is the other electrode.

As the distance between the electrodes decreases, the
intensity of the electric �eld in the volume between them
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exceeds the strength of the [3–5] dielectric (at least at few
point(s), that breakup the allowed current to flow among the
two electrodes). *is is analogous to the breaking of the
capacitor. From this, the material is removed from the two
electrodes [6].

When the current flow slows (or stops—based on the
generator), fresh solution-based dielectric is frequently in-
troduced into the internal-electrode volume, allowing solid
elements to be removed and the dielectric’s insulating
characteristics to be recovered [7]. Flushing is the process of
replenishing the interelectrode volume with a new liquid
dielectric. Additionally, following a current flow, the po-
tential differentiation among the two electrodes [8] is re-
covered to its prebreakdown state, allowing for another
liquid dielectric breakdown. Wire EDM is used in various
manufacturing industrial applications: soft armors shaping,
hybrid composite, and mainly in the coating industries
(thermal spray processes) for cutting the base materials into
the desired shape [9–20].

*emechanism of wire EDM process parameters is most
similar to conventional EDM. *e conventional EDM
process will create an erosion effect on the sample surfaces to
remove the material. *e basic mechanism involved in the
electric discharge machining (EDM) process is that the tool
electrode is the cathode and the sample material is the anode.
*e developed voltage is passed between the two electrodes,
and dielectric medium is passed between them to create a
strong electrostatic effect. *is effect produces a spark gap
between the tool and sample. Huge thermal energy is cre-
ated, and it melts material and vaporizes the material from
the sample. *e modification of pulse energy and current
durations in the dielectric medium can determine the di-
mensional accuracy and quality of the machining samples
[21–25].

To improve the dimensional accuracy and quality of the
wire EDM process, it has many working parameters: surface
roughness, metal removal rate, wire feed rate, pulse on time,
pulse off time, peak current, pulse current, applied voltage,
etc.

*ese all parameters mostly influence the performance
of wire EDM machining processes. *e proper selection of
optimal parameters plays a very important role in the wire
EDM machining process; it leads to dimensional accuracy
and a quality surface finish. *e improper selection of
process parameters will lead to dimensional inaccuracy,
poor quality, and surface finish; it also leads to wire breakage
in the continued machining process; and it affects the
performance of the process [26–29].

*e most accurate optimization technique is the re-
sponse surface methodology (RSM) based linear regres-
sion model is used in this work. *e popularity and
simplicity of this technique needed to control various
parameters in the wire EDM process. In the present work,
surface roughness, MRR, pulse on time, pulse off time, and
peak current values are chosen for performance mea-
surement. *e selected parameters are the most essential
things to get dimensional accuracy and quality finishing in
the WEDM process. Many researchers have proved that
using the RSM technique is most helpful in carrying out

experiments with this technique, which leads to minimal
experimental effort [30–33].

2. Experimentation

2.1. 304 Grade Stainless Steel. *emost popular stainless steel
is SAE 304, commonly known as A2 stainless steel (A2 steel
tool not to be confused) with or stainless steel (18/8), standard
1.4301. *e major noniron components of steel are chromium
(typically 18%) and nickel (usually 8%). Its steel is made of
austenite. It is nonmagnetic and not particularly electrically or
thermally conductive. It is extensively used because it is easy to
mold into different forms and has a better corrosion resistance
than ordinary steel. Screws, machinery components, textiles,
and other household and industrial items are made of stainless
steel 304. *ese SS 304 grade materials are also used in defense
applications like aircraft, armors, and shields as well. But the
machining operations performed with this material are very
difficult in traditional methods, and there are many proven
literature studies available [34–37]. *e experiment runs in the
WEDM process with various optimized parameter values fed
into the machine, and the machined sample design is shown in
Figure 1.

2.2. Stainless Steel: Grade 304 (Uns S30400). Standard
chemical formula: Fe, <0.08% C, 17.5-20% Cr, 8-11% Ni,
<2% Mn, <1% Si, <0.045% P, and <0.03% S. Detailed
chemical compositions are shown in Table 1.

2.3. Tool for Machining. *e experiment findings were
achieved using an Electronica Machine Tools Ltd wire-cut
EDM machine (ULTRACUT S2), as shown in Figure 2. *e
technical specifications of the ULTRACUT S2 WEDM are
shown in Table 2.

2.4. Performance Measures. WEDM performance is often
assessed using the following criteria, independent of the
electrode material and dielectric fluid used.

2.4.1. Material Removal Rate (MRR). Its greatest is a key
indicator of the WEDM process’ efficiency and cost-effective-
ness. However, increasing MRR is not necessarily desired for all
applications, since it may compromise the work piece’s surface
integrity. Fast removal rates result in a rough surface finish.

*e expression of material removal rate (MRR) can be
obtained from the WEDM. MRR� cutting velocity × wire
diameter × material thickness.

2.4.2. Roughness of the Surface (Ra). *e WEDM process
creates a huge number of craters on the surface, which are
created by the discharge energy. *e quality of the surface is
mostly determined by the amount of energy per spark.

2.5. Parts Programming in Machine. *e component pro-
gramming system receives the profile’s geometry and
the mobility of the wire electrode cutter along its
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keyboard, in terms of di�erent de�nitions of points, lines,
and circles as tool path elements, in a completely menu-
driven, conversational manner. Each path element’s
wire compensation and taper gradient may be customized

individually. After feeding the pro�le into the computer, all of
the path’s numerical information is automatically computed,
and a printout is produced. On the visual display panel, the
entered pro�le may be checked. ­e computer records the
successful pro�le de�nition, which is subsequently sent into
the generator for programmed execution. ­e machine input
data are detailed in Tables 3 and 4.

2.6. Surface Roughness Tester. ­e surface roughness value
for speci�ed experimental components is measured using

(a)
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Figure 1: (a) Component 3D model and (b) detail 2D drawing.

Table 1: Chemical composition.

C% 0.017
Si% 0.41
Mn% 1.80
Cr% 18.08
Mo% 0.57
Cu% 0.56
Ni% 8.02
Co% 0.113
P% 0.031
S% 0.026
N% 0.087

Figure 2: Wire-cut EDM machine ULTRACUT S2.

Table 2: Technical speci�cation of the ULTRACUT WEDM.

Model ULTRACUT S2
Make Electrica, Pune
Generator El pulse 50 S
Travel range
Main table traverse (X, Y) X 600mm, Y 400mm
Auxiliary table traverse (Uv) U± 40mm, V± 40mm
Vertical Z 325mm
Max. table size 860× 580mm
Max. work piece size 1150× 810 x 300
Max. work piece weight 1000 kg
Feed
Main table feed rate 900mm/min
Resolution 0.001mm
Wire feed rate 0.15m/min
Max. taper cutting range ±15°/100mm
Dielectric supply unit
Dielectric �uid DM water
Dirty tank 900 ltr
Clean tank 300 ltr
Wire diameter 0.25mm
Program El cam V1.14 with hardware
Lock (USB-3049-2943)
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Taylor Hobson, Surtronic25 Roughness Testers. *e surface
roughness tester used is presented in Figure 3 and its
specifications are listed in Table 5.

2.7. Material Removal Rate: Calculations. *e MRR surface
finish has conducted 20 experiments with various param-
eters like cutting velocity, MRR, and surface roughness.
Various machining parameters were selected to perform this
work. *e obtained Ra value of all these experiments is
shown in Table 6.

Material Removal Rate(MPR)

� Vc xWireDia xMaterial Thickness

� 7.8 × 0.25 × 2.052.

� 3.933°
mm3

min
.

(1)

3. Results and Discussions

*ese experimental results were obtained using a specific
WEDM process. *e wire diameter is 0.25mm, the material
is brass, and the dielectric fluid is di-ionized water. *e
experimental design matrix results are displayed in
Tables 7–11. *e obtained results from experiments are
conducted with the specific input process parameters such as
pulse on time (T-on),µs; pulse off time (T-off), µs; and peak
current(IP), amps, with various levels of experiments shown
in Table 7.

From Table 8, it is evaluated that the coefficients of
estimated regression for surface roughness are very close to
the unity value of (R2 or R-Sq� 0.9860) and the adjusted
coefficient is (R2 or R-Sq Adj.� 0.9730). *is RSM model
indicates the estimators of acceptable values with the proper

Table 3: Input parameters and their levels.

Factor A B C

Input parameter Pulse ON,
(T-ON)

Pulse OFF,
(T-OFF)

Peak
current(IP)

Units µs µs Amps
Level 1 105 115 125
Level 2 43 53 63
Level 3 170 190 210

Table 4: Response surface methodology design.

Sl. no. X1 (T –ON) X2 (T- OFF) X3 (IP)
1 1 0 0
2 0 1 0
3 0 0 0
4 0 −1 0
5 −1 1 −1
6 0 0 1
7 1 −1 1
8 0 0 −1
9 0 0 0
10 0 0 0
11 0 0 0
12 −1 −1 −1
13 1 1 1
14 −1 0 0
15 1 −1 −1
16 −1 −1 1
17 0 0 0
18 0 0 0
19 1 1 −1
20 0 1 −1

Figure 3: Roughness tester.

Table 5: Taylor Hobson.

Model Surtronic25
Range 00-300 µm
Evaluation length 2.50mm–25.0mm
Cutoff 0.25mm–2.50mm

Table 6: Result of MRR and surface finish.

Wire diameter
(mm) 0.25 Material

thickness (mm) 2.052

Sl. no. Cutting velocity.
(mm/min) MRR (mm3/min) Ra,(µm)

1 7.8 3.933 2.711
2 8.2 4.303 2.939
3 8.9 4.557 2.92
4 9.2 4.507 2.802
5 8.6 4.214 2.919
6 9.4 4.474 3.012
7 8 4.325 2.807
8 9.8 4.716 2.946
9 9.6 4.523 2.922
10 8.3 4.572 2.968
11 8.4 4.567 2.926
12 7.6 4.104 2.848
13 7.9 3.807 3.021
14 8.8 4.209 2.784
15 7.4 3.687 2.352
16 9 4.565 2.894
17 9.1 4.557 2.92
18 8.9 4.572 2.938
19 7.8 4.326 2.915
20 7.2 3.736 2.707

4 Advances in Materials Science and Engineering



degree of freedom and ideal architecture for reactive ex-
traction process predictive simulations shown in Table 8.
*e ANOVA predicted results shown in Tables 9–11 give a
T-value of 0.324, −8.297; P-value of 0.753; and an F-value of
78.52, 36.46 in the RSM model outlined as significant.

*e significance to look at the obtained values in the
model is that they correspond to peak current, pulse on
time, and pulse off time. *e surface roughness values are
controlled with pulse on time and pulse off-time set input
mean values shown in Tables 8 and 9. *e material removal
rate will be controlled with peak current modifications
shown in Tables 10 and 11. *e optimized output responses
are shown in Figures 4 to 8.

3.1. Regression Analysis for Material Removal Rate. *e
findings of the experiments were used to create a mathe-
matical model that expressed the connection between
process parameters and MRR. Multiple regressions are used
to calculate the coefficients of mathematical models, as
shown in Figure 4.

MRR � −53.3033 + 0.986 × Ton + 0.2197 × Toff

− 0.042 × IP − 0.0046 × Ton2 − 0.0009 × Toff2

+ 0.0003 × IP2
+ 0.001 × TonxToff + 0.0001

× Ton x IP − 0.0013 × Toff x IP.

(2)

Table 7: Results obtained from experiment.

Exp. no.

Input process parameter

Pulse on
time(T-on),µs

Pulse off time
(T- off),µs

Peak
current(IP),

amps
Coded Actual Coded Actual Coded Actual

1 1 125 0 53 0 190
2 0 115 1 63 0 190
3 0 115 0 53 0 190
4 0 115 −1 43 0 190
5 −1 105 1 63 −1 170
6 0 115 0 53 1 210
7 1 125 −1 43 1 210
8 0 115 0 53 −1 170
9 0 115 0 53 0 190
10 0 115 0 53 0 190
11 0 115 0 53 0 190
12 −1 105 −1 43 −1 170
13 1 125 1 63 1 210
14 −1 105 0 43 0 190
15 1 125 −1 43 −1 170
16 −1 105 −1 43 1 210
17 0 115 0 53 0 190
18 0 115 0 53 0 190
19 1 125 1 63 −1 170
20 −1 105 1 63 1 210

Table 8: Coefficients of estimated regression for surface roughness,
Ra.

Term Coef SE coef T P
Constant 0.682524 2.10589 0.324 0.753
A 0.201951 0.03963 5.096 0.000
B −0.00411 0.02071 −0.198 0.847
C −0.099919 0.01431 −6.982 0.000
A ∗ A −0.001524 0.00017 −9.011 0.000
B ∗ B −0.000403 0.00016 −2.553 0.029
C ∗ C 0.000184 0.00003 5.286 0.000
A ∗ B 0.001104 0.00008 13.35 0.000
A ∗ C 0.000455 0.00004 10.638 0.000
B ∗ C −0.00379 0.00004 −8.86 0.000
S R-Sq R-Sq (Adj)
0.02419 98.60% 97.30%

Table 9: Variance analysis for surface roughness, Ra.

Source DF Seq-SS Adj-SS Adj-MS F P
Regression 9 0.413512 0.413512 0.04592 78.52 0.000
Linear 3 0.109886 0.03622 0.012134 20.63 0.000
Square 3 0.087207 0.10881 0.036395 61.99 0.000
Interactions 3 0.21642 0.21642 0.072064 123.29 0.000
Residual
error 10 0.005851 0.005851 0.000573 - -

Lack of fit 5 0.004096 0.004096 0.000807 2.33 0.187
Pure error 5 0.001755 0.001755 0.00034 - -
Total 19 0.419363 - - - -

Table 10: Coefficients of estimated regression for material removal
rate (MRR).

Term Coef SE coef T P
Constant −53.3003 6.42397 −8.297 0.000
A 0.986 0.1209 8.155 0.000
B 0.2197 0.06317 3.477 0.006
C −0.0424 0.04366 −0.971 0.354
A∗A −0.0046 0.00052 −8.963 0.000
B ∗ B −0.0009 0.00048 −1.901 0.087
C ∗ C 0.0003 0.00011 2.509 0.031
A ∗ B 0.001 0.00025 4.082 0.002
A ∗ C 0.0001 0.00013 0.652 0.529
B ∗ C −0.0013 0.00013 −10.043 0.000
S R-Sq R-Sq(Adj)
0.07379 97.00% 94.40%

Table 11: Variance analysis of material removal rate (MRR).

Source DF Seq SS Adj SS Adj MS F P
Regression 9 1.78682 1.78682 0.198536 36.46 0.000
Linear 3 0.09402 0.76464 0.254879 46.81 0.000
Square 3 1.0506 1.09863 0.366211 67.26 0.000
Interactions 3 0.6422 0.6422 0.214067 39.32 0.000
Residual error 10 0.05445 0.05445 0.005445 - -
Lack of fit 5 0.05275 0.05275 0.010549 31.03 0.001
Pure error 5 0.0017 0.0017 0.00034 - -
Total 19 1.84127 - - - -
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3.2. Regression Analysis for Surface Roughness. ­e �ndings
of the experiments were utilized to create a mathematical
model that expressed the connection between process pa-
rameters and surface roughness, as shown in Figure 5.
Multiple regressions are used to calculate the coe°cients of
mathematical models.

SR � 0.682524 + 0.201951xTon − 0. 00411xToff

− 0.099919x IP − 0.001524xTon20.000403xToff2

+ 0.000184x IP2 + 0.001104xTon xToff

+ 0.0004551xTon x IP − 0.000379xToff x IP.
(3)
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Figure 4: Normal probability plot of the residuals of the MRR.
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Figure 5: Normal probability plot of the residuals of surface roughness. ­e wire EDM process completed the given input process
parameter. Shapes of component pro�le are shown in Figure 6.
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­e response optimization plot for MRR and Ra is
shown in Figures 7 and 8.­e ultimate goal of our research is
to increase MRR while reducing surface roughness.

Figure 7 shows the 2D contour response surface of MRR,
and Figure 8 shows the 3D response surface of Ra. ­e MRR
values vary with the changes in the discharge voltage and peak
current. ­e Ra value leads to an electrode spark energy gap
between the tool and the sample material. ­ere are many

combinations selected with MRR and Ra parameters, to opt
with the graphs. ­is graph shows the increasing MRR value
has a tendency to decrease surface roughness (Ra) [38–42].

In order to evaluate whether the maximum value of MRR
and Ra is minimum, the desirability method was utilized to
determine the optimal value of variables (Ra).­e greatest values
of MRR=4.3198 and Ra=2.7117 are achieved for the following
combination of variables, as shown in the graph [43–45].

Figure 6: Wire EDM component pro�le.
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TOn � 121.2902(μs),

TOff � 43(μs),

IP � 196.182(amp).

(4)

4. Conclusion

(i) As a consequence, the tests were performed on a
WEDM machine, and the experimental research
findings were derived from the work completed.

(ii) *e pulse on time increases with respect to the
surface roughness.

(iii) To achieve a superior surface finish for the specified
test range in a 304 stainless steel material, utilize a
high pulse on time of 121.2902 (s), a low pulse off
time of 43.00 (s), and a peak current of 196.182
(amps) in the WEDM Process. *e surface
roughness optimal value is 2.7117, while the ma-
terial removal rate is 4.3198.

(iv) *e stainless steel 304 material has better corrosion
resistance, high strength in mechanical properties,
and is best suited for many chemical industries,
automobiles, and customized machine spare
manufacturing applications. *e hardened stainless
steel 304 work materials during re-machining is a
major problem in mechanical industries. *e wire-
cut electric discharge machining process will solve
that problem easily.
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