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Productivity and cost-e�ectiveness are essential components of any long-term manufacturing system. While quantity and quality
are linked to productivity, the economy focuses on energy-e�cient processes that produce a high output-to-input ratio. Hard-to-
cut materials have always been di�cult to machine because of more signi�cant tool wear and power losses. Inconel 625 is a hard
material used in aerospace and underwater applications and is milled using biolubricants with nanoparticles. Palm oil is
considered a biolubricant, and titanium dioxide (TiO2) and copper oxide (CuO) are selected as nanoparticles. When the
combination of biolubricants and nanoparticles is added to the workpiece’s surface, it enhanced some properties while machining.
Experiments involving four factors with four levels were carried out using the Taguchi design of experiments (DoE). �e feed,
depth of cut, speed, and coolant with nanoparticle additives were all factors. �e responses were surface roughness, spindle
vibration along X, Y, and Z axes, and material removal rate. Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) was used to alter the multiresponse optimization problem to a single-response optimization problem. �e S/N of
TOPSIS closeness coe�cients was calculated, and the optimal machining conditions were determined. Surface roughness,
material removal rate, and spindle vibration were reduced by 3.10%, 6.14%, 7.54% (Vx), and 6.78% (Vz), respectively, due to the
TOPSIS optimization.

1. Introduction

Inconel 625’s enhanced mechanical properties, outstanding
weldability, and high oxidation and corrosion resistance,
nickel-based aerospace alloys have gained popularity.
Inconel 625 is widely used in manufacturing, especially for
aircraft structures, springs, turbine blades, submarine bel-
lows, steam power plants, and oceanographic devices [1].
Due to its meager thermal conductivity, the formation of
built-up edges, and a greater sticking or welding propensity
to cutting edges, Inconel 625’s machinability is considered
poor [2] and classi�ed as a di�cult-to-machine material.
Furthermore, due to Inconel 625’s low heat transfer rate, a
large portion of the cutting energy is converted into heat
during machining, which remains in the tool-workpiece
interface for a longer time. High localized temperatures in

the machining region result from heat generation, causing
tool material softening and rapid tool wear, decreasing tool
life, and compromising machined surface integrity. �e use
of cutting ¥uids is required to solve these issues. Most
traditional machining ¥uids contain hazardous chemical
constituents that can pollute the environment, cause bio-
logical problems for workers, contaminate soil, and pollute
water during disposal [3, 4]. Furthermore, cutting ¥uids
account for roughly 17% of machining costs, while tooling
costs account for only 8% [5, 6]. Many attempts have been
made to reduce cutting ¥uids to make material removal
processes more environmentally friendly [7]. �e growing
interest in tracking all elements of the material removal
process has resulted from the metal-based industry’s main
challenge of increasing the quality and productivity of
machined parts [8].
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Dry cutting, or machining without the need for any
cutting fluid, is one of the best machining options for
achieving green manufacturing. However, when dry-ma-
chining Inconel, the work material bonds firmly to the tool
surface, resulting in early tool failure and poor surface
quality. Furthermore, Inconel’s high mechanical strength
and poor thermal conductivity result in unfavorable residual
stresses, surface irregularities, and burning/overheating in
the cutting zone when machining without coolant [9]. )e
surface roughness of the machined product can affect var-
ious areas of its operation, including gentle friction, heat
generation, the ability to distribute and hold a lubricant,
wear, and a material’s ability to withstand fatigue [10]. Dry
cutting also necessitates using unique cutting tool materials
such as ceramic, PCD, PCBN, and careful tool geometry and
specific coatings. )erefore, to facilitate heat transfer from
the tool–chip interface, these tacky alloys are typically
machined under wet cutting conditions, which results in
high manufacturing costs, worker health risks, and severe
environmental problems [11]. Due to the specific inherent
properties and their capacity to biodegrade, vegetable oils
are seen as alternatives to mineral oils in lubricant
formulations.

Vegetable oils have a high flash point, viscosity index,
lubricity, and lower evaporative loss than mineral oils [12].
Plant oils are extracted by applying pressure to the pertinent
part of a plant and squeezing the oil out [13]. Plant oils
(edible and nonedible) can also be extracted by dissolving
plant parts in water, distilling the oil, or infusing plant parts
with a base oil. Various studies have demonstrated the value
of edible vegetable oils such as coconut oil [14], palm oil [15],
soya bean oil [16], and canola oil [17] as an environmentally
friendly lubricant for machining. )e novelty was premised
on the fact that using cooling/lubrication circumstances and
depth of cut as input variables improved the manufacturing
system’s sustainability and efficiency. )is study is based on
the idea that productivity results from quality, utilization,
and efficiency working together.

)e utilization of nanoparticles in various base fluids
has received a lot of interest in the last decade [18]. )e
nanoparticles dispersed in water, for instance, can improve
the thermal conductivity, and it is a suitable heat transfer
fluid, especially for solar collectors [19]. Nano coolants
(the dispersal of nanoparticles in water or ethylene glycol)
have been studied for real-world problems since the early
2000s [20]. Nanoparticles added to the lubricant are
thought to provide antifriction and antiwear properties.
On the other hand, the improved characteristics are en-
tirely determined by nanoparticle characteristics like
shape, size, and concentration. Moreover, it has been
reported that adding a suitable amount of nanoparticles to
lubricating oil improves antifriction and antiwear char-
acteristics [21]. )ese terms cover the manufacturing
process, including surface roughness, material removal
rate, and spindle vibration. )ese responses are optimized
by combining constructive process parameters like feed
speed and cutting depth. Taguchi design of experiment
(DoE) is used to optimize the input parameters collec-
tively, as they would alternatively behave differently in

different responses. )e goal is to optimize the input
parameters based on the responses that are both sus-
tainable and constructive at the same time.

Taguchi’s DoE is an excellent tool for optimization
because it is simple and efficient. Taguchi assists in
selecting a control variable combination that significantly
reduces the impact of noise. Minimizing tool costs is
necessary to be cost-effective in manufacturing [22].
Variations recommended that machining irregularity
could be reduced if appropriate values and requirements
were used [23]. Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) selects the alterna-
tive closest to the ideal solution and farthest from the ideal
negative alternative. It is helpful in cases where there are a
lot of requirements and substitutes [24]. It is based on the
theory of an optimum moving solution from which it tries
to negotiate the result that is the closest. )e smallest
distance from the positive ideal solution (PIS) and the
greatest distance from the negative ideal solution (NIS) are
used to rank the options. TOPSIS explores the ranges of
both PIS and NIS, ranking candidates based on their
relative proximity and combining the two distance mea-
surements [25]. Taguchi’s DoE was combined with the
TOPSIS to identify the processing parameters for milling
the Inconel 625 alloy. Surface roughness, spindle vibration,
and MRR were all taken into account. )ey discovered
that, after optimization, machining performance improved
[26]. )e novelty of this research lies in the combination of
biolubricants and nanoparticles that are used. Inconel 625
has not been machined with the current choice of bio-
lubricants and nanoparticles. )e responses such as sur-
face roughness (Ra), material removal rate (MRR), and
vibration have not been recorded for this particular
combination.

2. Materials and Method

2.1. Oils and Nanoparticles. After carefully considering the
literature review and availability of the materials, palm oil
has been chosen. )e nanoparticles chosen are TiO2 and
CuO. )e nanoparticles are biocompatible with oils and do
not cause adverse effects on the lubricant. )e properties of
palm oil are given in Table 1.

2.2. SEM Images. SEM image was used to examine the
surface morphology of the nanoparticles. SEM images of the
nanoparticles TiO2 and CuO have been observed and shown
in Figure 1. It ensures that the nanoparticles are in the
nanometer size range and that the size is marked on the
image. Figure 1(a) shows that CuO nanoparticles are in the
range of 124 to 215 nm. According to the SEM image, as

Table 1: Properties of palm oil.

Oils Color Density
(g/cm3)

Dynamic viscosity
(mPa·s)

Palm oil Light
yellow 0.89 77.19
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shown in Figure 1(b), the TiO2 nanoparticles are 60 to
100 nm in size, and the TiO2 nanoparticles have a homo-
geneous spherical morphology.

2.3.EDXofCuOandTiO2. �eenergy dispersive X-ray (EDX)
analysis is used to characterize the elemental composition and
chemical composition of a specimen with an atomic number.

Elemental mapping is a technique for obtaining high-resolu-
tion imaging by accumulating detailed elemental composition
data across a sample area. Every pixel in the image is examined
to preserve the rudimentary spectrum.

�e EDX spectrum of CuO Nanoparticles is shown in
Figure 2. �e spectrum depicts the chemical components of
the sample.�e dissemination of Cu (red dots) and O (green
dots) components, which make up the whole body of the
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Figure 1: (a) SEM image of CuO. (b) SEM image of TiO2.
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Figure 2: EDX analysis and elemental mapping of CuO.
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processed sample, is homogeneous in Figure 2. For each
element, the corresponding �ndings are shown separately.
�e presence of oxygen and copper is demonstrated by the
change in the distribution of both elements. Figure 2 in-
dicates that 81.1% of Cu and 18.9% of O were presented in
the sample. �e elemental mapping shows that elements are
correctly dispersed in aggregated Cu and O nanoparticles
[27]. Figure 2 shows no CuO nanoparticle impurities, and
only Cu and O elements are present [28, 29].

Figure 3 shows EDX analysis of TiO2 nanoparticles.
Figure 3 reveals that 63.2% of Ti and 36.8% of O were
presented in the sample.�e distribution of Ti (red dots) and
O (green dots) elements, which make up the entire body of
the processed samples, is homogeneous [30, 31]. �e results
of EDS revealed that no other impurities were present in the
nanoparticles. From Figure 3, it was observed that there is no
impurity in the TiO2 nanoparticle, and only the elements Ti
and O were present [32, 33].

2.4.Methodology. �e ¥owchart of the methodology for this
research is given in Figure 4.

2.4.1. Experimental Setup. Milling operations were com-
pleted on a high-rigidity Computer Numerical Control
(CNC) BMV35 T12 with a machine with speci�cations:
maximum spindle rpm 8000, spindle power 5.5 kW, and

EDS Layered Image 1 Ti Lα1,2

1 µm 1 µm

O Kα1

1 µm

Figure 3: EDX analysis and elemental mapping of TiO2.
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Figure 4: Flowchart for methodology.
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maximum traverse distance in x-y-z axis are 450-350-
350mm, respectively. Commercially available Inconel 625
block (150× 50× 50mm) was used as the workpiece material
for machining. End milling operation was selected as the
machining process. )e cutting tool used for machining
Inconel 625 was PVD-coated carbide (Grade: VP15TF;
designated as SEMT13T3AGSN-JM).

2.4.2. DoE. Feed rate, spindle speed, cut depth, and palm oil
are process parameters. At the same time, the surface
roughness, spindle vibration, and material removal rate are
considered responses. An orthogonal array (OA) matrix
helps the machine operator decide the best parameters with

the fewest possible experiments. )e four-parameter system
has a total of 15 degrees of freedom. An OA’s Degree of
Freedom (DoF) should be equal to or larger than the total
DoF. As a result, L16 OA was used in this study because it has
a DoF of 15 and allows fewer experiments to identify the best
milling parameters. )e selected parameters and their levels
are shown in Table 2. )ere are sixteen experiments in total.
Experiments are carried out after the OA has been defined,
and the S/N for every experiment is calculated [34].

2.4.3. Preparation of Coolant. A beaker of 200ml was taken,
and 99.5ml of palm oil was poured into it. 0.5 g of nano-
particles was measured using a highly sensitive electronic

Table 2: Factors and their levels.

Levels Spindle speed (rpm) Feedrate (mm/min) Depth of cut(mm) Coolant
Level 1 1500 125 0.10 1 (palm oil)
Level 2 2000 150 0.15 2 (palm oil with 0.5 wt% of CuO)
Level 3 2500 175 0.20 3 (palm oil with 0.5 wt% of TiO2)
Level 4 3000 200 0.25 4 (palm oil with 0.25 wt% of CuO and 0.25wt% of TiO2)

(a) (b)

(c)

Figure 5: (a) 0.5wt% of CuO, (b) 0.5wt% of TiO2 nanoparticles, (c) hybrid (0.25 wt% of CuO+ 0.25wt% of TiO2).
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balance. )e electronic balance was air-tight to ensure
minimal error. )e nanoparticle was poured into the beaker,
and constant stirring was done for thirty seconds using a
spatula. )e stirring ensures that the oil has 0.5 wt% of
nanoparticles uniformly [35]. )e nanoparticles and prep-
aration of nanolubricant are shown in Figures 5 and 6.

2.4.4. Milling Procedure. )e CNC machine BMV35 T12
was used for all milling operations on Inconel 625, as shown
in Figure 7. )e vibration sensor MPU 6050 has been sol-
dered to the Arduino UNO board using jumper cables. )e
Arduino UNO board acts as an interface between the sensor
and the system and is connected to a laptop using a USB-A
cable.

)e vibration sensor MPU 6050 has been attached to the
spindle using double-sided tape. Using the Arduino IDE,
vibration in the spindle’s x-, y-, and z-axes during the milling
process has been recorded. )e workpiece is cleaned with a
neat cloth before fitting inside the CNC machine. Facing the
workpiece has been done to 0.1mm. After facing the ma-
terial, the tool holder is removed and replaced with milling
inserts. )e mixture of oils and nanoparticles has been
poured uniformly over the material using a dropper (10ml).
)e end milling operation has been carried out according to
the DoE design matrix. After machining, the surface
roughness was measured using a surface roughness testing
instrument (Make- Carl Zeiss. Model- E-35B). )ree surface
roughness values were recorded, and the average surface
roughness was noted. )e material removal rate (MRR) was

Palm oil

Palm oil+TiO2 (0.5 wt.%)

Palm oil+CuO (0.5 wt.%)

Palm oil +TiO2 (0.25 wt.%)
+CuO (0.25 wt.%)

Post stirring

Post stirring

Post stirring

Figure 6: Preparation of nano lubricant.
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computed using the weight-loss method, and the weight of
the material was recorded before and after each pass. �e
formula for the weight-loss method has been given as
follows:

Loss of material weight(g) � original weight

−measuredweight,

Volume ofworkpiece �
mass(Loss of material)

density
,

MRR �
Volume ofworkpiece

machining time
.

(1)

�e density of Inconel 625 is 8.4 g/cc. �e same pro-
cedure is repeated for all experiments.

2.5. Process Parameter Optimization

2.5.1. Taguchi’s S/N. Using Taguchi signal-to-noise (S/N),
the optimal factors were analyzed. Larger is better (LB) and
Smaller is better (SB) are the two characteristics available for
optimization. LR characteristics were applied for MRR and
SR characteristics for Ra and Vx, Vy, and Vz. Using the
formula, S/N values for di�erent responses were recorded
[36–38].

SB: η � −10log
1
n
∑
n

i�1
y2i ,

LB � −10log
1
n
∑
n

i�1
y2i .

(2)

�e S/N ratio was used to determine the best conditions
for each response.�e ideal situation is the level at which the
maximum S/N is reached.

2.6. TOPSIS. To turn a multiresponse optimization problem
into a single-response optimization problem, TOPSIS is
used. �e steps involved in the TOPSIS approach are
depicted below. A normalized matrix is utilized in TOPSIS.
Calculate the PIS and NIS using normalized weighted values
and Euclidean distance using formulae [39, 40]. �e S/N for
closeness coe�cient was computed from that the optimal
parameter for multiresponse was identi�ed.

(1) Normalization matrix rij is calculated out using

rij �
xij�������
∑  mi�1x

2
ij

√ , (3)

where i� 1, 2, 3, . . ., m, j� 1, 2, 3, . . ., n and aij
represent the ith value of the jth experimental run. rij
represents the normalized data for the correspond-
ing test.

(2) Compute the weight wij of each response.
(3) �e weighted normalized data is computed by

multiplying the normalized data with its equivalent
weight. �e weighted normalized data Vij is com-
puted using

Vij � wi ∗ rij, (4)

where i� 1, 2, . . .,m, j� 1, 2, . . ., n and wj represents
the weight of the jth criterion

∑
n

j�1
wj � 1. (5)

(4) �e PIS (V+) and NIS (V−) are estimated from the
weighted normalized data:

V+ � V+1 , V
+
2 , . . . , V

+
n( )max values, (6)

V− � V−1 , V
−
2 , . . . , V

−
n( )max values. (7)

(5) �e separation value of the PIS and NIS is computed
from (6) and (7):

S+i �

������������

∑
n

j�1
Vij − V

+
j( )

2

√√
,

S−i �

������������

∑
n

j�1
Vij − V

−
j( )

2

√√
,

(8)

where i� 1, 2, . . ., m.
(6) �e closeness coe�cient to the ideal solution is es-

timated using equation (11):

Inconel 625

Machine vice

Tool holder

Milling inserts

Arduino UNO

MPU 6050
sensor 

Figure 7: Machining process.
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Table 3: Surface roughness, spindle vibration, and MRR for palm oil.

Speed Feed DoC Coolant Ra MRR ax ay az
1500 125 0.1 1 0.103 1.191198 0.173359 0.417925 0.396441
1500 150 0.15 2 0.149 1.435532 0.166886 0.406583 0.358339
1500 175 0.2 3 0.159 3.361345 0.176182 0.442583 0.396144
1500 200 0.25 4 0.229 3.494976 0.213174 0.406836 0.375259
2000 125 0.15 3 0.076 2.021427 0.164513 0.422058 0.393962
2000 150 0.1 4 0.163 2.436054 0.178955 0.414779 0.391988
2000 175 0.25 1 0.161 7.510504 0.114595 0.42088 0.377286
2000 200 0.2 2 0.35 7.809087 0.180548 0.435534 0.406443
2500 125 0.2 4 0.103 1.155101 0.220654 0.432775 0.409345
2500 150 0.25 3 0.081 1.392031 0.200459 0.429581 0.381369
2500 175 0.1 2 0.12 3.571429 0.166229 0.425354 0.386759
2500 200 0.15 1 0.111 3.713412 0.184046 0.427508 0.39247
3000 125 0.25 2 0.108 1.010714 0.179596 0.416428 0.36319
3000 150 0.2 1 0.11 1.218027 0.178492 0.43709 0.393807
3000 175 0.15 4 0.07 2.258403 0.148024 0.422805 0.367047
3000 200 0.1 3 0.107 2.348187 0.191256 0.437669 0.384296

Table 4: S/N values for individual responses.

Level Speed Feed DoC Coolant
Smaller is better

Ra

1 16.26 20.3 18.33 18.47
2 15.78 18.32 20.28 15.85
3 19.77 18.34 16 19.9
4 20.25 15.11 17.46 17.85

Delta 4.47 5.19 4.28 4.05
Rank 2 1 3 4

Vx

1 14.82 14.73 15.03 15.93
2 16.08 14.86 15.63 15.23
3 14.34 16.52 14.51 14.77
4 15.21 14.34 15.28 14.52

Delta 1.73 2.18 1.12 1.4
Rank 2 1 4 3

Vy

1 7.572 7.489 7.456 7.416
2 7.468 7.497 7.542 7.518
3 7.355 7.375 7.191 7.272
4 7.363 7.397 7.569 7.552

Delta 0.217 0.122 0.378 0.28
Rank 3 4 1 2

Vz

1 8.376 8.16 8.182 8.193
2 8.146 8.42 8.448 8.446
3 8.184 8.396 7.912 8.25
4 8.459 8.19 8.623 8.277

Delta 0.314 0.261 0.711 0.253
Rank 2 3 1 4

Larger is better

MRR

1 6.515 2.244 6.931 8.035
2 12.303 3.865 6.931 8.020
3 6.644 11.544 7.837 6.733
4 4.074 11.883 7.834 6.733

Delta 8.229 9.638 0.906 1.303
Rank 2 1 4 3
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CC
+
i �

S
−
i

S
+
i + S

−
i

. (9)

3. Results and Discussion

3.1. Single Response Optimization Using Taguchi’s S/N.
)e surface roughness, MRR, and spindle vibrations are
tabulated in Table 3.

Taguchi’s S/N values were used to find the best pa-
rameters for individual responses. )e SB characteristics
were used for surface roughness and vibration signals.
Maximizing the MRR is a critical criterion in metal removal

processes [41]. )e MRR must be determined to attain
excellent machinability. As a result, for MRR, the LB
characteristic was used. From Table 4, it can be seen that the
highest S/N value produces the best results. For palm oil, the
minimum surface roughness can be obtained when the
spindle speed is 3000 rpm, feed rate of 125mm/min, depth of
cut (DoC) of 0.15mm, and palm oil, with CuO nanoparticles
being used as a coolant. Minimal vibration on the x-axis
during the machining operation was obtained with the
spindle speed of 2000 rpm, feed rate of 175mm/min, DoC of
0.15mm, and palm oil without nanoparticles. Similarly, for
the y-axis and z-axis speeds of 1500 rpm and 3000 rpm, a
feed rate of 150mm/min for both DoC of 0.25mm for both

Table 5: Analysis of variance.

Source DF Adj SS Adj MS F-Value P-Value % Contribution
Surface roughness
Speed 3 0.02259 0.007529 21.92 0.015 31.02
Feed 3 0.02261 0.007535 21.94 0.015 31.04
DoC 3 0.0136 0.004534 13.2 0.031 18.68
Coolant 3 0.01298 0.004326 12.59 0.033 17.82
Error 3 0.00103 0.000344
Total 15 0.0728
S R-sq R-sq(adj) R-sq(pred)
0.018534 98.58% 92.92% 89.74%
MRR
Speed 3 24.28 8.0932 21.08 0.016 37.06
Feed 3 31.03 10.3433 26.94 0.011 47.36
DoC 3 3.98 1.3267 3.46 0.168 6.07
Coolant 3 5.065 1.6883 4.4 0.128 7.73
Error 3 1.152 0.384
Total 15 65.506
S R-sq R-sq(adj) R-sq(pred)
0.61964 98.24% 91.21% 49.98%
Vx
Speed 3 0.00235 0.000784 16.72 0.022 25.66
Feed 3 0.00388 0.001292 27.57 0.011 42.31
DoC 3 0.00107 0.000356 7.6 0.065 11.65
Coolant 3 0.00173 0.000575 12.27 0.034 18.83
Error 3 0.00014 0.000047
Total 15 0.00916
S R-sq R-sq(adj) R-sq(pred)
0.006846 98.47% 92.33% 86.35%
Vy
Speed 3 0.00029 0.000096 10.26 0.044 16.48
Feed 3 0.00011 0.000037 4.01 0.142 6.43
DoC 3 0.00086 0.000288 30.81 0.009 49.56
Coolant 3 0.00045 0.00015 16.12 0.024 25.90
Error 3 2.8E-05 0.000009
Total 15 0.00174
S R-sq R-sq(adj) R-sq(pred)
0.0030549 98.39% 91.96% 84.27%
Vz
Speed 3 0.00073 0.000243 9.64 0.048 22.54
Feed 3 0.0003 0.000099 3.93 0.145 9.20
DoC 3 0.00182 0.000607 24.04 0.013 56.23
Coolant 3 0.00031 0.000104 4.13 0.137 9.66
Error 3 7.6E-05 0.000025
Total 15 0.00324
S R-sq R-sq(adj) R-sq(pred)
0.0063477 96.66% 85.31% 83.06%
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and y-axis palm oil with both nanoparticles and z-axis palm
oil, with TiO2 being used as the coolant. For MRR, the
optimal parameters are a speed of 2000 rpm, 200mm/min
feed, 0.20mm DoC, and palm oil without nanoparticles.

3.2.ANOVA. Analysis of Variance (ANOVA) is used to find
the most significant parameter influencing the response.
When using ANOVA, the method is quite beneficial for
determining the level of risk and the effect of milling pa-
rameters on a specific response. It is utilized to determine
each control factor’s relative influence in the response
evaluation to ensure that the quality of the most critical
aspects of the product should be carefully monitored
[22, 42].

3.2.1. Surface Roughness. From Table 5, both speed and feed
rate have the same level of contribution of 31% to surface
roughness, followed by DoC of 18.68% and coolant of
17.82%, respectively. From the P-value (P< 0.05), it was
found that all parameters have significantly impacted ma-
chining. )e average surface roughness for the speed of
1500 rpm is 0.16 μm, and when the speed increases to
2500 rpm, the surface roughness is reduced by 18.75%.
Similarly, for the speed of 3000 rpm, there is a 38.75% de-
crease in surface roughness. As the spindle speed increases,
the built-up edge advancement slows down, and heat in the
shear zone rises, making it more straightforward for ma-
chining and improving surface quality [43].With an increase
in feed, the surface roughness steadily increased, generating
force on the machined surface that causes vibration, which
raises the roughness. An identical pattern was observed in
the literature [21, 44].

It is observed that when CuO and TiO2 (hybrid mode)
nanoparticles are mixed with palm oil, the lowest surface
roughness is obtained when compared to all other combi-
nations [45]. )e mechanism could involve rolling CuO
nanoparticles rather than forming a layer or repairing
surfaces [46]. CuO nanoparticles act as a third body between
the two mating parts, preventing metal-metal contact and
thus reducing surface roughness, as evidenced by the lower
coefficient of friction and roughness values observed [47].

3.2.2. MRR. From Table 5, it was observed that feed has a
significant impact on the MRR, contributing 47.36%.
Moreover, the speed gives 37.06% of the contribution to the
machining process. DoC and coolant have an insignificant
impact of 6.07% and 7.73%. )e feed has more impact than
speed and as the feed increases, machining the material to
the desired length takes less time, increasing the MRR [48].
When palm oil is mixed with the hybrid combination of
nanoparticles at a speed of 2000 rpm, a feed of 175mm/min,
and 0.15mm DoC, the optimal results are obtained. )e
hybrid mode of nanoparticles formulates a third layer be-
tween the workpiece and the tool.)e surface is slippery, will
be long-lasting, and is ideal for machining for extended
periods [49].

3.2.3. Spindle Vibration. From Table 5, it can see that x-axis
feed can have a significant impact of 42.31%, followed by a
speed of 25.66%, and coolant of 18.83%. DoC also has a
minimal impact of 11.65%. All parameters will have a sig-
nificant impact on the machining process. For the y-axis, the
DoC had a significant contribution of 49.56%, followed by
coolant with 25.9% and speed with 16.48%, and feed had an
insignificant impact of 6.43% [50]. For the z-axis, DoC had a
significant impact of 56.23%, followed by a speed of 22.54%,
and both the coolant and depth of cut had an insignificant
impact of 9.6% and 9.2%, respectively. )e spindle moves in
the same direction as the z-axis. As a result, the contribution
of the DoC is more on the z-axis [34, 51].

It is observed that when using vibration on the x-axis, the
values are lower when TiO2 is mixed with palm oil [52].
Similarly, for the z-axis, the values are lower when TiO2 is
mixed with palm oil [53]. Similar research discovered that
adding nanoparticles to the lubricant can decrease friction and
wear, increase allowable bearing capacity, and remove heat
under higher temperatures and high load conditions, reducing
bearing wear and achieving vibration suppression [54].

4. Multiresponse Optimization Using TOPSIS

TOPSIS can be used to conduct multiresponse optimization.
Table 6 displays the normalized data. (3) can be used to
conduct data normalization. Table 7 shows the weighted
normalization and separation measures. (4) is used to cal-
culate the weighted normalization. Equations (8), (9), and (11)
calculate the separationmeasures and the closeness coefficient
CCi. Table 8 shows the S/N values of CCi. From Table 8, it can
see that the optimal parameter can be identified. )e optimal
parameters are the speed of 2000 rpm, feed of 175mm/min
feed, DoC of 0.15mm, and palm oil with 0.25 wt% of CuO and
0.25wt% of TiO2 nanoparticles. From Table 9, it can be seen
that the feed had a contribution of 43.93%, followed by a
speed of 25.10%, the coolant of 23.3%, and DoC of 6.08%.
Speed, feed, and coolant significantly impacted the machining
process. From this, it can be observed that the multiresponse
characteristics are impacted by feed speed and coolant.

Table 6: Normalization table.

S. No. Ra MRR Vx Vy Vz

1 0.168131 0.084796 0.242232 0.245895 0.256665
2 0.243218 0.102189 0.233188 0.239221 0.231997
3 0.259541 0.23928 0.246177 0.260403 0.256473
4 0.373805 0.248793 0.297865 0.23937 0.242951
5 0.124058 0.143897 0.229872 0.248327 0.25506
6 0.266071 0.173412 0.250051 0.244044 0.253782
7 0.262806 0.534641 0.160123 0.247633 0.244264
8 0.571318 0.555896 0.252278 0.256255 0.26314
9 0.168131 0.082227 0.308317 0.254632 0.26502
10 0.132219 0.099093 0.280098 0.252753 0.246907
11 0.19588 0.254235 0.232269 0.250266 0.250397
12 0.181189 0.264342 0.257165 0.251533 0.254094
13 0.176292 0.071948 0.250947 0.245014 0.235137
14 0.179557 0.086706 0.249405 0.257171 0.25496
15 0.114264 0.160766 0.206832 0.248766 0.237635
16 0.17466 0.167158 0.267239 0.257512 0.248802
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4.1. Confirmation Test. A calculation test was used to verify
the significance of the solution parameters. )e experiments
were repeated three times, with the average result used for
the analysis. For further investigation, the value was used.
Table 10 showed the confirmation test results and discovered
that the surface roughness decreased by 3.10%.)eMRRwas
increased by 6.14%. )e spindle vibration in the x & z-axis

decreased by 7.54% and 6.78%. On the other hand, vibration
in the y-axis increased by 5.44%.

)e consumption of nanoparticles (0.25 to 0.5 wt%)
along with palm oil is significantly less, and the overall cost is
also reasonably minimum. Further, it enhances the surface
roughness, MRR, and vibration features. )is will signifi-
cantly enhance the life span of the machine.

Table 7: Weighted normalization. Measures of separation and closeness coefficient values.

Ra MRR Vx Vy Vz S+ S− CCi

0.033626 0.016959 0.048446 0.049179 0.051333 0.096381 0.081822 0.459152
0.048644 0.020438 0.046638 0.047844 0.046399 0.09546 0.068043 0.416158
0.051908 0.047856 0.049235 0.052081 0.051295 0.072057 0.071872 0.499357
0.074761 0.049759 0.059573 0.047874 0.04859 0.085033 0.053413 0.385803
0.024812 0.028779 0.045974 0.049665 0.051012 0.083742 0.092004 0.523504
0.053214 0.034682 0.05001 0.048809 0.050756 0.084362 0.065501 0.437072
0.052561 0.106928 0.032025 0.049527 0.048853 0.030158 0.115207 0.792536
0.114264 0.111179 0.050456 0.051251 0.052628 0.09352 0.097441 0.510264
0.033626 0.016445 0.061663 0.050926 0.053004 0.100111 0.080672 0.446237
0.026444 0.019819 0.05602 0.050551 0.049381 0.094613 0.088256 0.482618
0.039176 0.050847 0.046454 0.050053 0.050079 0.064289 0.084919 0.569133
0.036238 0.052868 0.051433 0.050307 0.050819 0.0631 0.087642 0.581406
0.035258 0.01439 0.050189 0.049003 0.047027 0.099266 0.080116 0.446623
0.035911 0.017341 0.049881 0.051434 0.050992 0.096586 0.079316 0.45091
0.022853 0.032153 0.041366 0.049753 0.047527 0.079607 0.095493 0.545362
0.034932 0.033432 0.053448 0.051502 0.04976 0.081696 0.082064 0.501122

Table 8: S/N for TOPSIS.

Level Speed Feed DoC Coolant
1 −7.17 −6.749 −6.392 −5.215
2 −5.281 −7.012 −5.803 −6.339
3 −5.887 −4.666 −6.602 −6.176
4 −6.477 −6.388 −6.018 −5.085
Delta 1.889 2.347 0.799 1.871
Rank 2 1 4 3

Table 9: ANOVA for CCi.

Source DF Adj SS Adj MS F-value P-value % contribution
Speed 3 0.02949 0.009828 15.94 0.024 25.10
Feed 3 0.05159 0.017197 27.89 0.011 43.93
DoC 3 0.00715 0.002382 3.86 0.148 6.08
Coolant 3 0.02737 0.009122 14.8 0.027 23.30
Error 3 0.00185 0.000617
Total 15 0.11744

Table 10: Confirmation test results.

Responses Optimal parameters Measured values TOPSIS Measured values Variation % improvement
Ra A4-B1-C2- D3 0.170975

A2-B3-C2-D4

0.16567 0.00530 3.10
MRR A2-B4-C3-D1 3.58 3.80 0.22 6.14
Vx A2-B3-C2-D1 0.176825 0.16348 0.0133 7.54
Vy A1-B2-C4-D4 0.42075 0.44364 −0.02289 −5.44
Vz A4-B2-C4-D2 0.38335 0.35735 0.026 6.78
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5. Conclusion

Inconel 625 was machined with SEMT-13T3AGSN-JM
VP15TF with palm oil and CuO and TiO2 nanoparticles as
additives. Taguchi’s DoE was applied to design the experi-
ments. Taguchi’s DoE coupled with TOPSIS was used to
optimize the process parameters. )e following conclusions
have been drawn from the experimentation:

(i) Surface roughness was measured as a feed and
speed function and depended on it.

(ii) Both the speed and feed significantly impact MRR.
(iii) )e spindle speed vibration in the x-axis depends

on the speed and feed. Similarly, the y-axis depends
on the DoC and coolant, and the z-axis depends on
the depth of cut and speed.

(iv) Taguchi’s S/N analysis was used to find the best
parameters for individual responses.

(v) TOPSIS was used to perform the multiresponse
optimization, with the best parameters being
2000 rpm, 175mm/min feed, 0.15mm depth, and
coolant of palm oil with 0.25 wt% of CuO and
0.25wt% of TiO2 nanoparticles.

(vi) According to ANOVA for the closeness coefficient,
speed and feed have physical significance, with
25.10% and 43.93%, respectively.

(vii) Surface roughness, material removal rate, and
spindle speed vibration were reduced by 3.10%, 6.14
percent, 7.54% (Vx), and 6.78%(Vz) due to TOPSIS
optimization. )is will significantly improve the
machining performance.

Data Availability

)e data used to support the findings of this study are in-
cluded within the article.
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