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Organometallic perovskite is one of the potential materials in the various optoelectronic research fields. ,is study demonstrates
the synthesis of CH3NH3PbI3 : ZnS microrods via one-step spin coating for optoelectronic applications. Incorporation of ZnS in
the perovskite material caused bandgap variation in the visible wavelength range. Structural and chemical properties have been
observed using X-ray diffraction, scanning electron microscope, and Fourier transform infrared spectroscopy. ,e optical and
electrical properties were studied via UV-Vis spectroscopy and impedance analyzer. ,e addition of ZnS caused to increase the
optical absorption coefficient from ∼104 cm−1 to ∼105 cm−1.,e bandgaps of the thin films were calculated using the Tauc relation
and electrical method, obtained in the range 1.51 eV–1.64 eV, suitable for various optoelectronic applications.

1. Introduction

Organometallic perovskites (OMPs) are very multifunc-
tional materials with widespread applications such as
photodetectors, solar cells (SCs), field-effect transistors
(FET), light-emitting diode, laser, light-emitting electro-
chemical cells, and so on [1]. ,ey can offer a tunable
bandgap and a better visible light absorption property,
making them highly potential material for various opto-
electronic (OE) applications. ,ese plentiful applications led
scientists all over the world to study the different properties
of these materials. ,e material has also become very
popular because of the easy synthesis process and low cost.
,e general formula of OMPs is ABX3, where A, B, and X are
monovalent organic cations (e.g., methylammonium and
formamidinium), divalent metal cation (e.g., Pb2+ and Sn2+),
and halogen anion, respectively [2]. One of the greatest
successes of OMPs in SC technology is an efficient light
absorber with a maximum conversion efficiency of 25.5%,
which is reported by the national renewable energy labo-
ratory [3].

,e optical and electrical performances of a material
highly depend on its crystal structure and bandgap.
Depending on various crystal growth conditions, a material
can offer different crystal structures (one-, two-, or three-
dimensional). In the case of micro/nanorod structure, the
bandgap also depends on the diameters. Hence, changing
the diameters can cause an alteration in their bandgap,
which makes them potential materials for numerous ap-
plications. Perovskite microrods (MRs), nanorods (NRs), or
nanowires (NWs) can provide better performances in dif-
ferent OE applications because of their unique crystal
structure and tunable bandgap. One-dimensional (1D)
OMPs have become quite popular due to better photovoltaic
performance and other OE applications [4].

Im et al. have first synthesized the CH3NH3PbI3 (MAPI)
NWs in 2015 via a two-step spin-coating technique with a
variation of DMF content [5]. ,ey successfully demon-
strated that the formation of MAPI NWs is more probable
with a higher amount of DMF.,e prepared NWs showed a
fine absorption of visible wavelength, but the absorbance was
slightly lower in comparison with bulk MAPI. In 2016, Spina
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et al. also synthesized NWs of MAPI via slip-coating method
for photodetection application [6]. ,is was a unique and
one of the easiest methods for MAPI crystal growth. ,e
process can avoid random nucleation, hence, control the
crystal growth. ,ey have not demonstrated the visible light
absorption properties of this 1D MAPI. Wu et al. in 2018
have also studied the effect of DMF amount present inMAPI
on the formation of 1D MAPI [7]. ,ey successfully showed
that at 1D, MAPI could be obtained via increasing the DMF
contents. ,ey also demonstrated the higher absorption
properties of OMP NWs than 3D MAPI. ,is study dis-
proves the low absorption of 1D MAPI as reported by Im
et al. [5]. In 2019, Mishra et al. synthesized MAPI MRs by
cooling down MAPI precursor solution to room tempera-
ture [8]. ,ey reported that MAPI MRs could parallelly join,
forming a long wire. But the MR growth process is rather
slow, and no optical properties of the MRs had been ob-
served for OE applications. Zhang et al. reported
CH3NH3PbBr3 MR synthesis in 2019 through the dip-
coating technique for dynamically switchable microlaser [9].
However, fine absorption was obtained only in the wave-
length below 550 nm.

Research on composite perovskites also got the attention
of scientists. Various materials such as composites have been
added with pure perovskite structure to get better perfor-
mance and stability. Among them, perovskite composite
with metal sulfide is a new direction of research to enhance
optical performance, which was started in 2017. Chen et al.
reported a MAPI : CdS film for SCs prepared via precursor
blending method, which showed a better photovoltaic
performance [10]. ,e absorbance was slightly increased
between 500 nm and 750 nm in presence of CdS suggesting
an increase in absorption coefficient. However, Cd is a highly
toxic material and should be avoided. In 2019, Wang et al.
synthesized PbS quantum dots embedded in MAPI NWs for
photodetection application [11]. ,e composite nanorods
showed better absorbance in a wide range of the visible
spectrum than pure MAPI rods. ,ese achievements un-
covered that incorporating metal sulfide in OMPs can offer
more enhanced optical performance, opening an alternative
route in perovskite research and motivating us to conduct
our research.

For deposition of thin film, numerous methods have
been established, e.g., sol-gel spin coating, chemical vapor
deposition (CVD), chemical bath, spray pyrolysis, and so on
[12]. ,e sol-gel method can provide better crystallization
with enhanced homogeneity at a relatively low temperature
[13]. ,ough thermal evaporation, sputtering, CVD can
provide better uniformity of the thin film, these methods are
costly compared to spray pyrolysis, chemical bath, spin-
coating, or doctor-blade methods. Among these economical
methods, spin coating can provide better homogeneity for a
small area of fabrication of thin film with minimal thickness
[14]. Due to the simplicity and cost-effectivity, the spin
coating is a favorable deposition method of perovskites.

Here, we report the synthesis of MAPI : ZnS MRs via a
one-step spin-coating method. ZnS is also a potential ma-
terial for OE applications with a high absorption coefficient
[15], which has been used as ETL in PSCs, showing better

photovoltaic performance with a PCE of 17.4% [16]. To our
best knowledge, various OE properties of MAPI : ZnS ma-
terial have never been studied before. Here, we demon-
strated the growth of MAPI : ZnS MRs in thin films and
reported various structural, morphological, and optical al-
terations due to the variation in ZnS stoichiometry.

2. Experimental Details

2.1. Materials. Methylamine (MA) solution 33wt% (Sigma-
Aldrich), hydroiodic acid (HI) 57% (Sigma-Aldrich), PbI2
99% (Sigma-Aldrich), diethyl ether, N, N-dimethylforma-
mide (DMF), zinc chloride (Merck), and thiourea (Merck)
were used in this research process.

2.2. Preparation of MAPI and MAPI : ZnS Crystals. ,e
synthesis process of CH3NH3I (MAI) was followed by
previous research [17]. MA and HI solution of (1 :1) molar
ratio was mixed and stirred in an ice bath for 1 hour and
further kept in the bath for 2 h. ,e solution was dried in an
oven at 60°C, and the MAI crystal was formed, which was
washed several times with diethyl ether to remove impu-
rities. PbI2 andMAI were completely dissolved in DMF at an
equimolar ratio and dried at 60°C to obtain MAPI crystals.
Figure 1 shows the prepared MAPI crystals. ,e precursor
blending solution method was used to prepare MAPI : ZnS
crystals [10]. ZnCl2 and thiourea were dissolved by a 1 :
1molar ratio in the MAPI-DMF solution and stirred for 30
minutes and evaporated in the oven at 60°C. MAPI : ZnS
with three different molar ratios (e.g., 1 : 0.025, 1 : 0.05, and
1 : 0.1) were prepared. ,e pH of the MAPI, MAPI : ZnS (1 :
0.025), MAPI : ZnS (1 : 0.025), and MAPI : ZnS (1 : 0.025)
solutions are, respectively, 6.11, 6.11, 6.12, and 6.13.

2.3. -in-Film Preparation. MAPI and MAPI : ZnS pre-
cursor solutions of 0.5 gm/ml were prepared with DMF
solvent. ,e viscosities of the MAPI, MAPI : ZnS (1 : 0.025),
MAPI : ZnS (1 : 0.025), and MAPI : ZnS (1 : 0.025) solutions
are measured to be 6.2822mPa-s, 6.2782mPa-s, 6.2731mPa-
s, and 6.2694mPa-s, respectively. ,e glass substrates were
cleaned with deionized water, ethanol, and acetone via ul-
trasonic cleaner. Preheated substrates were spin coated with
a few drops of prepared solution at 1,500 rpm for 30 sec and
then annealed at 80°C for 30 minutes. Figure 2 shows the
prepared MAPI and MAPI : ZnS thin films.

2.4. Characterization. ,e X-ray diffraction (XRD) and
Fourier transform infrared (FTIR) spectroscopy analyses
were performed for all the prepared samples via Explorer
diffractometer and IRPrestige-21, respectively, at Wazed
Miah Science Research Centre (WMSRC), Jahangirnagar
University (JU), Savar, Dhaka 1342, Bangladesh. ,e thin-
film thickness was measured by the DektaXT-A surface
profilometer at the Bangladesh Council of Scientific and
Industrial Research (BCSIR), Dhanmondi, Dhaka 1205,
Bangladesh. UV-Vis spectroscopy and SEM were also per-
formed at BCSIR via UH4150 spectrophotometer and ZEISS
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EVO 18 SEM, respectively. Wayne Kerr 6500B Impedance
Analyzer was used to measure the electrical resistance.

3. Result and Discussion

3.1. XRD Analysis. Figure 3 shows the XRD patterns for the
samples MAPI and ZnS-doped MAPI. ,e diffraction peaks
for MAPI were observed at 2θ values of 14.09°, 19.88°, 24.46°,
28.32°, 31.8°, 34.9°, 40.50°, and 43.07° and correspond to
(100), (110), (111), (200), (102), (112), (202), and (212)
planes, respectively, which satisfy previous report [18]. ,e
addition of ZnS causes a structural deformation in theMAPI
crystals, which is observed from the spectra exhibiting a
slight shifting of the diffraction peaks toward higher 2θ
values and from the lattice parameters, as shown in Table 1.
,e slight shifting toward higher 2θ indicates the increase in
structural stress and decrease in interplanar spacing, which
can cause the shrinkage of lattice [19]. No clear peaks of ZnS
have been observed in the XRD spectra. However, an
overlapped peak with the perovskite peak at 28.15° and a new
peak at 32.68° in Figure 3 are analogous with ZnS’s

corresponding peaks according to the Crystallography Open
Database (COD ID - 1539414).

,e absence of ZnCl2 peaks can verify the formation of
ZnS in the perovskite sample since ZnS was formed through
the chemical reaction of ZnCl2 and thiourea
(ZnCl2 +CH4N2S�ZnS +CH4N2 +Cl2). ,e variation of
ZnS concentration in the sample causes deformation in the
perovskite’s unit cell structure, as shown in Table 1. ,e
overall cell volume of MAPI decreases with increasing ZnS
concentration. ,e XRD peaks slightly broadened after ZnS
incorporation, which represents a reduction in crystallite
size and an increase in lattice defects [19].

3.1.1. Crystallite Size and Lattice Strain. A crystallite is a
small region in a material made up of a single crystal, i.e.,
atomic regularity is exactly maintained in the region. On the
other hand, lattice strain measures the distribution of lattice
parameters resulting from imperfections and lattice dislo-
cation in a crystal. Both crystallite size and lattice strain affect
the Bragg peaks through broadening and shifting. ,e

(a) (b)

Figure 1: (a) MAPI solution in DMF and (b) MAPI dried crystals.

Figure 2:,in films of (a) MAPI, (b) MAPI : ZnS (1 : 0.025), (c) MAPI : ZnS (1 : 0.05), and (d)MAPI : ZnS (1 : 0.1) prepared by one-step spin-
coating method.
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crystallite sizes and lattice strains are calculated from
equations (1) and (2) [20–22] and are listed in Table 2.

D �
κλ
Γ cos θ

, (1)

ξ �
Γ

4 tan θ
. (2)

Here, D, ξ, Γ, κ, and λ are crystallite size, lattice strain,
full-width half maxima, Scherrer constant (�0.9), and
X-ray wavelength [20–22]. From the calculations, it was
observed that the average crystallite size decreased with
the increase in ZnS concentration (Figure 4). ,e pres-
ence of Zn or S atoms in the perovskites can cause ir-
regularities and defects during the MAPI crystal growth.
,is can cause a reduction in average crystallite size. ,e
lattice strain increases with increasing ZnS concentra-
tion. ,e increased strain represents higher stress due to
the incorporation of foreign atoms. ,ese stress and
strain can also rise due to lattice mismatch, i.e., dis-
similarity in the lattice structure of MAPI and the sub-
strate and due to the difference in thermal expansion
coefficients (αL) between the film and substrate (αL for
MAPI is 43.3–33.3 ×10−6 K−1 and for the soda-lime
substrate is 9 ×10−6 K−1) [23, 24].

3.1.2. Dislocation Density and Stacking Fault. ,e disloca-
tion density (ρd) represents the total dislocation length per
unit volume in a crystalline material, which denotes irreg-
ularities and material strength. Generally, a material with a
higher dislocation density offers increased strength [25]. On
the other hand, stacking faults (SF) are abnormalities in the
crystal plane stacking sequence that violate the ideal lattice’s
regularity [26]. ,e dislocation density and stacking fault
were calculated from equations (3) and (4) [27, 28].

ρd �
1

D
2, (3)

SF �
2π2Γ

45 (3tan θ)
1/2, (4)

where D and Γ are the crystallite size and full-width half
maxima, respectively. Both ρd and SF increase with ZnS con-
centration, which signifies that the presence of ZnS increases
defects in the MAPI crystal growth.,ese increased defects can
be identified as the cause of the reduction in average crystallite
size. ,e increased value of ρd represents lower crystallinity of
the material, i.e., the overall crystallinity decreased after ZnS
addition. ,is also signifies that MAPI :ZnS (1 : 0.1) possesses
higher strength compared to pure MAPI.
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Figure 3: XRD spectra of MAPI and MAPI : ZnS thin films.

Table 1: Lattice parameters of MAPI and MAPI : ZnS crystals.

Material
Lattice parameters (Å)

Phase (α� β� c � 90°) Cell volume (Å3)
a b C

MAPI 6.3095 6.3095 6.280 Tetragonal 250.01
MAPI: ZnS (1 : 0.025) 6.300 6.300 6.2590 Tetragonal 248.42
MAPI: ZnS (1 : 0.05) 6.2941 6.2941 4.4720 Tetragonal 177.16
MAPI: ZnS (1 : 0.1) 4.4568 4.4568 6.2811 Tetragonal 124.76
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3.2. FTIR Analysis. FTIR spectra were observed in the
wavenumber range 750 cm−1–4,000 cm−1 (Figure 5) for pure
perovskite and perovskite:ZnS crystals. ,e broad peak
between 3,455 cm−1 and 3687 cm−1 represents O-H
stretching due to the presence of moisture in the samples.
,e peaks of very less intensity at 3,187 cm−1 are of NH3

+

asymmetric stretching and at 3,130 cm−1 are of NH3
+

symmetric stretching. CH3 asymmetric stretching and
symmetric stretching were observed at 2,958 cm−1 and
2,918 cm−1, respectively [29]. ,e peaks at 1,585 cm−1,
1,460 cm−1, and 1,422 cm−1 are due to asymmetric NH3

+

bending, symmetric NH3
+ bending, and CH3 bending, re-

spectively [30]. ,e peak at 1,020 cm−1 represents C-N
stretching [31]. ,e peaks at 1,255 cm−1 and 944 cm−1

represent CH3-NH3
+ rocking [32]. Due to the transparency

of PbI2 to infrared wavelength, no peak for Pb-I was ob-
served in the spectrum [33].

For small stoichiometry of the ZnS mixture in the
sample, very slight changes in the peak position were ob-
served. But after reaching the molar ratio of MAPI and ZnS
to 1 : 0.1, all the peak positions significantly change due to the
structural deformation. NH3

+ stretching peaks were ob-
served at 3,193 cm−1 (asymmetric) and 3,139 cm−1 (sym-
metric). ,e peaks at 2,948 cm−1, 1,467 cm−1, and 1,010 cm−1

define CH3 stretching, CH3 bending, and C-N stretching.
Both peaks of CH3-NH3

+ rocking shifted to 1,250 cm−1 and
954 cm−1. A new peak at 1,099 cm−1 arises with ZnS in-
crement, which can be identified as the characteristic peak of

ZnS [34]. Again, a strong peak at 1,625 cm−1 was observed,
previously characterized as the absorption of inorganic
sulfide compounds [35].

3.3. Surface Morphology. Figure 6 shows the SEM images of
pure perovskite and perovskite: ZnS MRs in the thin films.
MAPI crystals generally grow through a dendrite structure;
this dendrite formation allows perovskite to uniformly ex-
tend in a particular direction, which finally takes the form of
wires or rods [36]. MAPI MR formation is observed in the
thin film with an average rod diameter of about 612 nm.

After the addition of ZnS, porosity was observed in the
perovskite structures. ,e rod structure started to break
down and transformed into the smaller irregular-sized grain
with ZnS increment. Some of the ZnS may have formed in
the path of MAPI crystal growth, which opposed the further
crystal growth. Hence, the grain size decreased and porosity
increased. In Figures 6(c)–6(d), the change in grain structure
with the increments of ZnS constituent in the samples is
clearly observed. ,e average diameter of the irregular
grains, finally observed, is 508 nm.

3.4. Elemental Analysis. Figure 7 shows the energy-dis-
persive X-ray (EDX) spectra of the prepared thin films.
,e EDX analysis reveals the presence of C, N, Pb, I, Zn,
and S atoms in the samples. In the targeted area of MAPI
and MAPI : ZnS thin films, the atomic ratios of Pb/I are
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Figure 4: (a) Average crystallite size and lattice strain, and (b) dislocation density, stacking fault of MAPI, and MAPI : ZnS.

Table 2: Average crystallite size, lattice strain, dislocation density, and stacking fault of MAPI and MAPI : ZnS.

Material Average crystallite size (nm) Average lattice strain
(⨯10−3)

Dislocation density
(⨯10−4 nm−2) Stacking fault (⨯10−3)

MAPI 83.02 1.10 2.50 1.13
MAPI: ZnS (1 : 0.025) 73.80 1.18 2.54 1.15
MAPI: ZnS (1 : 0.05) 37.13 1.23 2.76 1.22
MAPI: ZnS (1 : 0.1) 52.50 1.36 4.17 1.44
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(a) (b)

(c) (d)

Figure 6: SEM images of (a) MAPI, (b) MAPI: ZnS (1 : 0.025), (c) MAPI: ZnS (1 : 0.05), and (d) MAPI: ZnS (1 : 0.1) thin films.
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Figure 5: FTIR spectra of MAPI and MAPI: ZnS MRs.
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0.42, 0.35, 0.32, and 0.30, which are close to previous
reports [37, 38]. According to a previous report, MAPI is
very sensitive toward high-energy electron beams and
easily decomposes through the EDX analysis process,
which causes variations in the Pb/I ratio [39].

,e increment of Zn and S atoms in the films is observed
with the sequential order maintaining the atomic ratio of
Zn/S between 0.83 and 0.97. ,e atomic % and weight % of
the different elements observed in the EDX spectra are listed
in Table 3.

3.5.OpticalCharacteristics. ,e UV-visible absorption was
analyzed in the wavelength range of 400 nm–900 nm for
each thin film. Figure 8 shows the absorption spectrum of
the prepared thin films. As observed in earlier reports, the
MAPI film showed a fine absorption in the visible and
near-infrared wavelength range [40, 41]. ,e absorption
onset for pure MAPI thin film is about 800 nm, consistent
with the report of Tombe et al. [41]. ,e absorbance edge
shifted to short-wavelength values as the ZnS concen-
tration increased, suggesting that the bandgap energy of
the produced perovskite thin films increased. ,e ab-
sorption spectrum follows blue shifting with further
increasing ZnS concentration in the sample. ,e reason is
that ZnS shows strong absorption in the short-wave-
length region [42, 43].

,e absorption coefficients (α) shown in Figure 9 of the
thin films are calculated using the following equation [44]:

α �
2.303A

t
, (5)

where A is the absorbance and t is the film thickness
measured by the surface profilometer.,eMAPI film had an
absorption coefficient above 104 cm−1, making it a potential
candidate for numerous OE applications, especially for the
SC absorber layer [45]. ,e absorption coefficient increased
with the increase in ZnS concentration and reached up to the
order of 105 cm−1. ,e absorption coefficient edge is blue
shifted with the rise of ZnS concentration in MAPI thin film.
,is phenomenon occurred because ZnS has a high ab-
sorption coefficient in the low wavelength range [15, 46].,e
values of α for pure MAPI at 400 nm and 750 nm are
7.7×104 cm−1 and 6.9×104 cm−1, respectively. ,e electro-
magnetic waves of 400 nm and 750 nm have a penetration
depth (δ) of 0.13 μm and 0.14 μm, respectively, which means
37% of the incidents at 400 nm and 750 nm wavelengths are
absorbed after traversing 0.13 μm and 0.14 μm thickness of
the film, respectively. On the other hand, for MAPI : ZnS (1 :
0.1) thin film, α is 1.08×105 cm−1 and 4.1× 104 cm−1 for
400 nm and 750 nm wavelengths, respectively. ,e corre-
sponding penetration depths are 0.1 μm and 0.25 μm, i.e.,
only a few micron thick films are sufficient to absorb most of
the visible spectrum.

,e reflectance spectra of the thin films are shown in
Figure 10. ,e reflectance is very low (<7.5%) for all the
samples and slightly varies very in the visible wavelength
range. ,is less reflectance corresponds to minor energy loss
due to reflection. ,e overall reflectance of the thin films
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Figure 7: EDX spectra of the MAPI and MAPI : ZnS thin films.
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increased with increasing ZnS concentration. ,is obser-
vation represents the reduction in crystallite size and the
increase in imperfection since crystal imperfection can in-
crease the scattering of photons [47]. Overall low reflectance
indicates that the loss of incident energy due to reflection is
very less, which is preferable to OE applications. ,ese
materials with low reflectivity are suitable for various an-
tireflection coating in optical devices.

,e refractive index (η) is an essential optical property
for the solar cell absorber layer. A higher refractive index
corresponds to higher reflectivity and lesser PCE for solar
cells. Materials with a low value of η are very suitable for SC
absorber material and an antireflection layer. ,e refractive
index of the thin films was calculated from the following
equation [48],

η �
1 + R

1 − R
+

���������������

4R

(1 − R)
2 −

αλ
4π

 

2




, (6)

where R, λ, and α are the reflectance, incident wavelength,
and absorption coefficient, respectively. Figure 11 shows the
variation of η with increasing wavelength. ,e value of η is
very low (1.48–1.67) for all the thin films. ,e refractive
index of MAPI is comparatively low in the visible region and
decreased after ZnS incorporation, reducing the energy loss
due to reflection and improving the optical performance. For
each thin film, the refractive index decreases with increasing
wavelength in the visible region and then increases with
increasing wavelength in the longer wavelength region. ,is
suggests that longer wavelengths are reflected more from the
materials in comparison to the visible wavelength. At higher
wavelengths, η slightly increases with the increase in ZnS
stoichiometry.

,e bandgap of the films was calculated via Tauc relation
[49] involving absorption coefficient (α) and photon energy
given by the following equation:

αh] � A h] − Eg 
n
, (7)

Table 3: Elemental atomic % and weight % measure via EDX spectroscopy.

Elements Materials
MAPI MAPI : ZnS (1 : 0.025) MAPI : ZnS (1 : 0.05) MAPI : ZnS (1 : 0.1)

C Weight % 23.56 9.18 7.38 19.02
Atomic % 64.64 46.02 40.81 65.01

N Weight % 8.74 4.08 3.51 4.05
Atomic % 20.56 17.53 16.64 11.87

Pb Weight % 27.55 31.21 28.53 25.64
Atomic % 4.38 9.07 9.15 5.08

I Weight % 40.15 54.24 58.58 48.5
Atomic % 10.43 25.73 30.66 15.69

Zn Weight % — 0.81 1.33 1.87
Atomic % — 0.75 1.35 1.17

S Weight % — 0.48 0.67 0.92
Atomic % — 0.9 1.39 1.18

400 500 600 700 800 900

0.2

0.4

0.6

0.8

1.0

Wavelength (nm)

A
bs

or
ba

nc
e (

a.u
.)

MAPI
 MAPI:ZnS (1:0.025)

 MAPI:ZnS (1:0.05)
 MAPI:ZnS (1:0.1)

Figure 8: Absorbance spectra of the prepared thin films.
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where A, h, ], and Eg are constant called band-tail pa-
rameter, Planck’s constant, frequency of the photon, and
bandgap, respectively. Tauc plot is plotted in Figure 12,
which revealed the bandgap MAPI thin film about 1.55 eV,
satisfying the previous report [41]. ,e incorporation of ZnS
caused to increase in the bandgap energy from 1.55 eV to
1.64 eV with increasing ZnS concentration. Obtained optical
bandgaps are shown in Table 4.

,e XRD result shows that the lattice parameters and
unit cell volume decreased with the increasing ZnS ratio in
theMAPI samples. Due to the decrease in lattice parameters,

molecules become more closely packed in the presence of
ZnS; hence, the electrons are more strongly bound in the
lattice. Consequently, more energy will be required to free
the electrons from the valance band (VB) due to the increase
in the electron’s binding energy with parent atoms, meaning
the bandgap increases. ,e decrease in lattice parameter also
represents the decrease in bond length. As a result, the
energy gap between bonding orbital and antibonding orbital
increases, which also indicates the increase in the bandgap. It
is also observed that the average crystallite size decreased
from 83.02 nm to 53.5 nm, which can also be a reason for
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Figure 10: Reflectance spectra of the prepared thin films.
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Figure 9: Absorption coefficients of the prepared thin films.
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bandgap increment due to quantum confinement [50]. ,e
obtained bandgaps are highly preferable for absorbing the
visible light spectrum.

Figure 13 shows the optical conductivity (OC) variation
with respect to incident photon energies for all prepared
samples. ,e OC was calculated using the following equation
[44]:

σ �
αηc

4π
, (8)

where σ, η, c, and α are optical conductivity, refractive index,
speed of light, and thin-film absorption coefficient,

respectively. Optical conductivity represents the rise of
conductive property in the presence of light. Electron-hole
pairs can be generated through the absorption of photon
energy, which increases the electrons in CB and holes in VB.
Hence, the conductivity increases. In MAPI thin film, OC
increased with the incident photon energy.

,e incorporation of ZnS increased the absorption co-
efficient resulting in a boost of free carriers. ,e increase in
free carriers can lead to the increase in OC of the thin films
[51]. ,e variation of σ with photon energy showed an al-
most similar nature with a blue shifting of spectrum edge
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Figure 11: Refractive index of the thin films.
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with the increase in ZnS stoichiometry. ,e OC blue shifted
due to the decrease in cell volume and crystallite size, which
increase the bandgap. As a result, more photon energy is
required for electron transition from VB to CB. All the films
showed higher OC of the order of 1014 s−1. ,e increased σ
suggests that the material MAPI : ZnS is much potential
material for various OE (e.g., SCs and photodetector)
applications.

3.6. TemperatureVariation of Resistance. Figure 14 shows the
variation of the film’s electrical resistance (R) with respect to
operating temperatures (T). Due to the negative temperature
coefficient of resistivity (TCR), the resistance of the thin films
decreased with increasing temperature, that is, with increasing
temperature, more valance electrons gain energies to overcome
the bandgap and become conduction electrons.,is means that
with the increase in temperature, the carrier concentration also
increases; hence, the resistance decreases. ,e resistance in-
creased with the ZnS molar concentration since the grain
boundary resistance (Rgb) per unit length increased, reducing
the cross transport of carriers [52].

,e bandgap of a semiconductor can be measured from
the temperature dependence of resistance. According to the
band theory of solids, the relation between resistance and
temperature is given by

RT � RPe
εg/2kT

, (9)

where εg, k, T, and RT represent the energy gap between the
top of VB and the bottom of CB, Boltzmann constant, Kelvin
temperature, and electric resistance at temperature T. Rp is a
temperature-independent resistance (constant). ,e above
equation can be modified as follows:

εg � 2k
Δln(R)

ΔT−1 . (10)

From the graph of ln(R) vs. T−1 as shown in Figure 14,
the slope was determined, and finally, from equation (10),
the bandgaps are calculated and listed in Table 4. It can be
observed that the calculated values of bandgaps via electrical
means are quite analogous with the ones obtained by Tauc
relation containing slight deviations. In both cases, the
bandgap energies increased via ZnS incorporation.

Table 4: Bandgap variation in the optical and electrical methods.

Materials Slope (β) εg (eV) Eg (eV)
MAPI 8757.99 1.511 1.55
MAPI : ZnS (1 : 0.025) 8959.49 1.546 1.57
MAPI : ZnS (1 : 0.05) 9091.51 1.569 1.595
MAPI : ZnS (1 : 0.1) 9380.72 1.619 1.64

1.5 2.0 2.5 3.0

1

2

3

4

5

O
pt

ic
al

 C
on

du
ct

iv
ity

 (×
10

14
 s-

1 )

E (eV)

MAPI
 MAPI:ZnS (1:0.025)

 MAPI:ZnS (1:0.05)
 MAPI:ZnS (1:0.1)

Figure 13: Optical conductivity of the thin films.
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4. Conclusions

,is study has demonstrated the successful synthesis of MAPI
and MAPI :ZnS MRs with different molar ratios via the spin-
coatingmethod. Variation of ZnSmolar ratio caused changes in
morphological and optical properties of MAPI. ,e XRD and
FTIR graphs show fine crystallinity and appropriate molecular
vibrations present in the prepared samples. High absorption in
the visible wavelength region with a tunable bandgap between
1.55 eV and 1.64 eV through varying ZnS stoichiometry in the
MAPI was perceived.,e bandgaps were obtained via the Tauc
method and an electrical method, which showed similar results.
,is tunability of the bandgap can improve performance in
various applications like solar cells, laser, and LEDs. All the
observed properties, including very low reflectance between
1.48 and 1.64 and high absorption coefficient over 104 cm−1 in
the visible and near-visible wavelength range proving that
MAPI :ZnS MRs are potential candidates for different opto-
electronics applications.
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