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Smart expert systems line up with various applications to enhance the quality of lifestyle of human beings, such as major
applications for smart health monitoring systems. An intelligent assistive system is one such application to assist Alzheimer’s
patients in carrying out day-to-day activities and real-time monitoring by the caretakers. Fall detection is one of the tasks of an
assistive system; many existing methods primarily focus on either vision or sensor data. Vision-based methods suffer from false
positive results because of occlusion, and sensor-based methods yield false results because of the patient’s long-term lying posture.
We address this problem by proposing a multimodel fall detection system (MMFDS) with hybrid data, which includes both vision
and sensor data. Random forest and long-term recurrent convolution networks (LRCN) are the primary classification algorithms
for sensor data and vision data, respectively. MMFDS integrates sensor and vision data to enhance fall detection accuracy by
incorporating an ensemble approach named majority voting for the hybrid data. On evaluating the proposed work on the UP fall
detection dataset, accuracy was enhanced to 99.2%, with an improvement in precision, F1 score, and recall.

1. Introduction

According to the World Alzheimer’s Report-2021, more
than 55 million people live with dementia worldwide [1].
Almost 50% of people live in Asia. In India, more than 4.1
million people have dementia. )e most prevalent kind of
dementia that impairs memory, thinking, and behavior is
Alzheimer’s disease.)emajority of Alzheimer’s patients are
65 years old and older, and it affects one in nine adults aged
65 and older [2]. It is one of many different kinds of brain
diseases that drastically lowers mental function. Hence, these
patients depend more on caretakers. According to Bharucha
et al. [3], one such technological tool intended to lessen the
strain on Alzheimer’s patients and their caregivers is the
intelligent assistive technology (IAT). IAT has been

developed to help older people with Alzheimer’s disease
carry out their daily living activities and compensate for
memory loss and executive function. For the safety of the
patients, we proposed a multimodel fall detection system.

Falling is one of older people’s most common health-
related problems [4]. )e World Health Organization ranks
fall as the second most common global cause of unexpected
injuries and fatalities. Hence, the fall requires immediate
medical care. )e fall detection system warns the caregivers
when a fall occurs and reduces the consequences for the
patient. In real time, the fall detection system helps to de-
crease the harmful effects of falls while increasing the pa-
tient’s access to medical care [5]. Supposing falls are not
immediately detected, patients may frequently continue to
lie on the floor, leading to significant medical and
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psychological issues. Participants sometimes forget the de-
tails of a fall when observing people’s falls in real-world
situations at less frequent intervals. )is recall issue is more
severe among older or Alzheimer’s participants [6]. )ese
systems for detecting falls can assist identify elderly people’s
falls in real time.

Mubashir et al. [7] describe fall detection as accumu-
lating data in three ways based on wearables, environmental
sensors, or visual equipment. Most fall detection wearable
sensor devices are made of accelerometers, gyroscopes, and
other sensors. Recently, smartphones are also applicable as
wearable devices to detect falls. Floor, infrared, thermal,
pressure, and other environmental sensors are used by
ambient sensors, while cameras are used by vision devices.
)e objective of this research work is given as follows:

(1) Random forest classification method for computing
raw sensor signals

(2) LRCN method to handle picture video data from
cameras

(3) )e majority voting ensemble method takes aggre-
gation of the results of random forest and LRCN to
identify falls and human activity

Recent trends in fall detection systems make use of
wearable sensors such as accelerometers and Kinect,
according to a recent survey by Xu et al. [8]. )e biggest
problem of elderly individuals is that they find it uncom-
fortable to wear wearable sensor gadgets constantly. It could
be challenging to alert the fall if they forgot to wear a gadget.
Ambient fall detection using sensors also yields inaccurate
findings with the patient’s physical posture like lying for a
long period. On the other hand, reducing false positives is a
significant issue for all fall detection systems. However,
multimodal techniques are becoming more common to
increase precision and reliability. Hybrid models are giving a
quick response, the amount of damage is reduced, and the
quality of life can be improved significantly. According to
the research, machine learning techniques are increasingly
being adopted in place of more traditional algorithms for fall
detection. Perry et al. [9] predicted that combining accel-
erometers with other sensors would be more accurate and
efficient in their analysis of real-time fall detection methods.

To overcome these problems, based on the UP fall de-
tection public dataset [10], we proposed a multimodal fall
detection approach. )e dataset is a collection of various
sensors like wearable and ambient sensors with vision data
generation devices. According to a recent survey of re-
searchers, machine learning and deep learning methods are
suitable for classifying human day-to-day activities and fall
detection. For this purpose, we used the decision tree
classification method for computing raw sensor signals and
the LRCN method to handle picture video data from
cameras. After that, we used the majority voting ensemble
method to identify falls and human activity.

)e paper is structured as follows. In Section 2, we look
into related fall detection systems, Section 3 discusses the UP
fall dataset. )e proposed multimodal fall detection ap-
proach is described in Section 4. Results are discussed in

Section 5. Finally, the concluding remarks of the work are
recorded.

2. Literature Survey

In fall detection systems, many preprocessing strategies or
procedures are employed. )ese strategies are based on the
data gathered from various sensors basd and vision based
systems. )ere are two main types of data preparation
techniques used in the majority of fall detection systems.
)at is, statistical techniques and machine learning.

Zhang et al. [11] developed a method integrating the
deep convolutional network and the collection of heuristic
visual features to detect falls. )e medical Internet of )ings
(IoT) video surveillance architecture incorporates this
technique as well. It provides real-time monitoring and
alarms for older people who require it. Finally, they eval-
uated accuracy with URFD Public dataset, and it achieved
96%. Still, it produces false alarms on account of similar
behaviors or occlusion problems.

Dementia patients in Jianan hospital have incorporated
an intelligent safety monitoring system for nursing. )e
system is implemented by Wang et al. [12] with a wearable
vest for fall detection with an accelerometer. CCTV systems
and RFID have been deployed in living spaces for real-time
detection based on body posture, and location services as-
sure enhanced accuracy. Integration of RFID with CCTV
results in a low false alert rate.

Makma et al. [13] have compared various machine
learning classification algorithm results for the three dif-
ferent groups of sensors. )e authors used various sensors,
viz., acceleration data sensors, body barometric pressure
sensor, and wall barometric pressure sensor. Compared to
all three machine learning algorithms, random forest gives a
good performance. Usually, the barometric pressure sensor
gives noisy signals because of atmospheric change. However,
in the group of sensors, they are taking reference barometric
pressure sensors of the wall, which improves the fall de-
tection performance.

Sengul et al. [14] implemented deep learning-based fall
detection using smartwatches. )is method differentiates
falls and other daily activities such as sitting, walking,
squatting, and running. )ey begin by utilizing a mobile app
to gather the accelerometer and gyroscope sensor data from
the smartwatch and then transform it into the cloud. In the
cloud, they adopted a bidirectional long short-term memory
deep learning approach to classify falls and other activities of
the person. It gives better accuracy but consumes more
energy in the smartwatch.

Butt et al. [15] used deep learning techniques and
evaluated their suitability for extracting characteristics from
sensor data, such as accelerometer and gyroscope data that
assess fall hazards. )ey used a senior citizen’s publicly
available dataset for training. Additionally, they compared
two deep learning architectures such as long short-term
memory and convolutional neural network (CNN)-based
transfer learning. CNN-based transfer learning produced the
best performance in terms of quantitative accuracy.
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Martinez-Villaseñor et al. [16] developed a multimodal
fall detection system for detecting falls based on various
sensor data and vision devices. Long short-term memory
networks (LSTM) are utilized for sensor data analysis and
feature extraction, whereas CNN \is employed for video
analysis. Both methods are excellent for real-time identifi-
cation and can extract characteristics from raw input. After
training and testing, the multimodal fall detection system is
getting 96.4% accuracy. However, they used deep learning
techniques for both data.

Gjoreski et al. [17] developed a fall detection and activity
recognition method based on wearable sensor data merging
and machine learning methods. )is method classifies the
fall and human activity using five accelerometers and five
gyroscope sensors. )ey trained and tested the sensor data
using decision tree, random forest, and XGBoost machine
learning algorithms. Finally, they performed the hyper-
parameter optimization of all these three algorithms and
achieved the 98% of accuracy. However, older people find it
challenging to wear five sensor devices every time.

)e fatal fall that occurs in older people due to Alz-
heimer’s can be monitored and reduced to a certain extent,
but one major problem is the detection of false positives in
the scheme, which may slow down the process and make a
significant thrust on the system calls. )is issue is addressed
by Galvao et al. [18]who proposed different techniques of
multimodal convolutional neural networks, which detect the
fall on the trained RGB images and data collected from the
accelerometer. For training and evaluating the network, we
use the UP fall detection dataset. UP fall dataset is where
rigorous comparison is done; hence, the UP fall detection
dataset has achieved good accuracy.

Ha et al. [19] proposed different approaches to extract
the features from the sensors and cameras, then concatenate
all the features, and apply a new CNN model to extract the
final feature of the data. For this fall detection purpose, they
used the UP fall detection public dataset. It improves the
performance of the fall detection algorithm in the UP fall
detection dataset.

Table 1 gives the comparison of the different multimodal
fall detection datasets. )e University of Rzeszow fall de-
tection dataset collects data using one IMU sensor using
Bluetooth and two Kinect cameras via USB. Five participants
performed 70 falls and ADLs. )ey used a threshold-based
fall detection technique. Berkeley Multimodal Human Ac-
tion Database simultaneously collects the data of 11 actions
of 12 participants using six accelerometer sensors, one
motion capture system, four multiview cameras, and one
Kinect system. UP fall detection dataset presents 11 activities
over 17 participants. )e data recording of each activity is
performed on three trails using five IMU with an acceler-
ometer and gyroscope, one EEG headset, six infrared sen-
sors, and two cameras. Compared to all UP fall detection
datasets, it has extensive data to perform the multimodal
operations.

In this paper, to enhance the performance of the fall
detection system on the UP fall detection dataset, we pro-
pose the MMFDS, which uses random forest for sensor data

and LRCN for the vision data and then combines both
results to evaluate with a majority voting strategy.

3. Dataset

We employ the UP fall detection dataset to assess the
proposed method [10]. It includes time series representa-
tions of various sensor data and synchronized RGB pictures.
In the UP fall detection dataset, samples have been classified
as different falls and activities in daily living. It consists of 11
activities, each activity as three attempts for multimodal fall
detection. )is multimodal dataset collects data from 17
participants using wearable sensors, ambient sensors, and
two cameras.

Activities performed are majorly related to the fol-
lowing human falls: falling forward using hands and knees,
falling backward and sideward, falling while sitting in an
empty chair, and six human daily living activities such as
picking objects, standing, walking, jumping, sitting, and
laying. )e final dataset activity data distribution is shown
in Figure 1.

)e data were collected using the wearable sensor and
ambient sensor and cameras. )e wearable sensors collect
information from the ambient light level, 3-axis acceler-
ometer, and 3-axis gyroscope. )e wearable sensors are
located in five different places in the human body: the left
wrist, the center of the waist, under the neck, the left ankle,
and the right pocket of the pants. Also, one electroen-
cephalograph (EEG) sensor is located in the forehead and is
used to record the brain wave signals. )e six infrared
sensors are mounted above the room’s floor and track
changes in optical device interruption. Last but not least,
photographs taken with two cameras as the subjects par-
ticipated in the activities improved the dataset. )e sensors
used to collect the dataset have a sampling rate of 18Hz.
Figure 2 shows the position of the wearable sensors in the
human body and the environmental position of the ambient
sensors along with cameras.

)e UP fall detection dataset used five Mbientlab Meta
sensor wearable sensors and EEG to collect the data. )e
Mbientlab Meta sensor combines an accelerometer, gyro-
scope, temperature, light, pressure, and motion sensors. UP
fall detection dataset collects the 3-axis accelerometer and 3-
axis gyroscope sensor data. Figure 3 shows the Mbientab
Meta sensor.

)e 3-axis accelerometer sensor measures the proper
acceleration of people or objects. A piezoelectric crystal
material is used in accelerometers. It generates a tiny
electrical current in response to the motion. An acceler-
ometer’s acceleration is relative to free fall and the accel-
eration of people and objects. )e accelerometer is used to
measure the acceleration of various fields such as engi-
neering, biological, industry, and health monitoring. We use
an accelerometer to measure the motion of the people such
as walking, running, sitting, and sleeping.

)e 3-axis gyroscope sensor is a spinning disc. It is used
to measure the angular velocity of the materials. It is also
used as a motion sensor that tracks and measures an object’s
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angular motion. It is a 1-axis, 2-axis, and 3-axis to measure
the rate of rotation of the object.

Six infrared sensors are installed above the room’s
ground to collect the data. )e infrared sensor is shown in
Figure 4. )e infrared sensor is a radiation-sensitivity
optoelectric component. Infrared sensors are mainly used to
measure the interruption of motion. It measures the changes
in interruption of the optical device where 0 is interrupted,
and 1 means not interrupted.

4. Multimodal Fall Detection

We proposed a multimodal fall detection using the random
forest algorithm and LRCN method shown in Figure 5.
Multimodel fall detection contains 3 phases. Firstly, it de-
tects the fall using a machine learning algorithm of the
sensor data. Secondly, it detects the fall using the
CNN+LSTM technique of the video data. Both data were
trained independently using ML and LRCNmodules, and in
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Table 1: Different multimodal fall detection datasets.

Dataset Sensor type Camera type
University of Rzeszow fall
detection dataset [20] One IMU with an accelerometer Two Kinect cameras

Berkeley multimodal human
action database [21] Six accelerometers One motion capture system, four multiview

cameras, and one Kinect system

UP fall detection dataset [10] Five IMU with accelerometer and gyroscope, one EEG
headset, and six infrared sensors Front and back two cameras
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the end, we combined both modules with the majority
voting strategy. Figure 5 shows the proposedmulti model fall
detection described as follows.

4.1. Data Preprocessing. For data preprocessing related to
sensor data, we removed the missing data rows and dropped
the duplicate records in each activity. )en, we combine all
the activity files into one file. 28 attributes and one label data
were used in the present research work. Finally, we nor-
malized the sensor data with the min-max scalar into a range
of [0, 1].

All of the information was preprocessed for consoli-
dation purposes. We chose to homogenize the sampling
rate in the combined dataset because the devices operated
at various sampling rates. In that regard, using its time
stamps as a reference, we selected videos of the camera that
acquired the fewest frames (18 fps approximately). By
deleting duplicate images from both cameras, we could
guarantee that all images recovered from Cameras 1 and 2
would be the same size and arranged in the same order in
the camera data. We also carefully investigated the
timestamp of the sensor data as well as the image time-
stamp in order to determine the best mapping. Moreover,
the images are resized into 40 ∗ 40 pixels and converted
into grayscale. We scaled each image by dividing each
pixel’s value by 255 to make sure that every pixel is in the
range [0, 1].

4.2. Feature Extraction and Modeling. For sensor data, we
compared five machine learning (ML) classification algo-
rithms: logistic regression, decision tree, K-nearest neighbor,
support vector machine, and random forest. We examined
all five machine learning algorithms, and random forest
produced the model’s best performance. )erefore, the
proposed model classifies the sensor data using the random
forest method.

Logistic regression [22] is used when data flow in a linear
function, and it uses the sigmoid function.

g(z) �
1

1 + e− z . (1)

)is module assumes data flow in linear functions.
However, our module sensor data overlapped with each
other. Hence, we are unable to get good performance in
logistic regression.

A decision tree [23] has trained the module-like tree
structure, where the tree structure contains mainly three
things such as internal node, branches, and leaf node. )e
internal node tests the attributes, branches give the output of
the test, and finally, the leaf node holds the attribute label.
)e tree splits the dataset into smaller subsets based on the
attribute value test, and at the same time, decision tree starts
the incremental learning. )e Gini index function deter-
mines how well a decision tree was split. Finally, it gives
results of multiple branches. Each branch value represents
the feature test and leaf nodes represent the activity label. In
our case, features are numeric values. Hence, it takes more
time and generates a very large tree. )e attributes are se-
lected based on the Gini index.

Gini(x) � 1 − 
n

m�1
P

m
t

 
2
, (2)

where n represents several classes and P represents a ratio of
the class at the mth node.

K-nearest neighbor [24] is classified based on the at-
tributes and training samples using Euclidean distance. We
calculated the K� 3 nearest learning data and classified the
class label to which data belong to the majority vote. KNN is

Figure 3: Mbientlab Meta sensor.

Figure 4: Infrared sensor.
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more efficient in training large datasets. However, it always
needs to identify the value of K, and also computation cost is
high because it calculates the distance between the data of
each training sample.

Support vector machine (SVM) [25] classification
technique can handle both linear and nonlinearly separable
data. )e SVMmodule produces a hyperplane that increases
the classification margin. )e hyperplane will be an N− 1
level subspace if N features are present. Super vectors are the
nodes that create a border in the feature space. )e maxi-
mummargin is calculated based on the relative position and
the ideal hyperplane is again drawn in the center. SVM takes
the maximum training time of the larger dataset. SVM gives
less accuracy to this dataset.

Figure 6 shows a group of decision tree classification
algorithms named random forest [26]. Each split of the
decision trees is trained using a bootstrapped sample of the
initial training data, and the random forest method only
searches a random subset of the input variables throughout
training. Every tree in the random forest estimates the ac-
tivity for classification, and the majority of decision trees
vote to decide the classifier’s final output. )is method will
determine the final action based on what most decision trees
predict. Table 2 gives the parameter setting for machine
learning models.

In video data, we proposed the fall detection system
based on the deep learning models. )e deep learning
methods give an outstanding image performance and
achieve better performance of state-of-the-art approaches in
different applications such as object recognition, object
detection, and segmentation. Donahue et al. [27] developed
the LRCN method for end-to-end training and it compares
state-of-the-art approaches to feature extraction and pro-
cessing. LRCN architecture takes advantage of the significate
process of CNN in video recognition and growing interest in
using these models with time-varying inputs and outputs.
)e CNN outputs are fed to the recurrent sequential model
of LSTM. Finally, it produces the variable length predictions.
We studied two deep learning methods CNN and LSTM.

Convolutional neural network (CNN): a deep learning
algorithm CNN takes the input as an image/video and learns
the kernels used to extract the feature map of the input data
using convolutional operations [28]. )e spatial and tem-
poral relationships in the images are captured by the CNN
convolutional filters. CNN has many applications for several
real-time problems.

For the same receptive field, each layer filter can extract
certain features, resulting in different outputs known as
feature maps. )e CNN pooling layer decreases the spatial

size of the feature map and passes to another layer of the
network layer. Pooling also reduces the computational
power of the processing data. Pooling is mainly of two
categories max pooling and average pooling. )e greatest
value from the region of the picture that the kernel has
covered is provided by max pooling. )e average value from
the picture region that the kernel has covered is provided by
average pooling. Max pooling conducts dimensionality re-
duction and denoising in addition to removing noisy ac-
tivity. Average pooling is performed only for dimensionality
reduction. Hence, we used max pooling in our approach.

Long short-term memory (LSTM): a recurrent neural
network (RNN) can be used to process temporal data. Be-
cause of the vanishing gradient issue, RNNs have short-term
memory problems. Hence, RNN is challenging to work with
longer data sequences. Standard recurrent neural networks
are often not highly effective at processing data in the real
world because they cannot handle long-time delays.

)e advanced version of RNN is that the LSTM [29]
network is appropriate for processing longer data sequences
for particular classification and prediction of time series
data. In order to efficiently process temporal information
and solve the issue of large time lags, the LSTM Network
presents a number of gating mechanisms that handle the
time delays in a time series. It is also relatively efficient in the
real-world processing of data.

)e first process information of the forget gate is

f t � σ Wf . ht − 1, xt  + bf( , (3)

where Wf represents the weight of the layers, ht and xt are
the input stimulants, t is the time of the network context, and
bf is the bias layer. Once training got over the gate decide
that the input stimulants should be retained or omitted, to
deal with the time delays.

Network information gate:

it � σ Wi. ht − 1, xt  + bi( , (4)

where Wi is the weights of layers. )en, we update the
context layer:

Ct′ � tanh Wc. ht − 1, xt  + bC( , (5)

Ct � f t ∗Ct−1 + it ∗Ct,′ (6)

where Wc represents the weights of the layer. Finally, based
on the current cell state, the processed output (ht) is
obtained:

ot � σ Wo ht − 1, xt  + b0( . (7)

Sensor Data
Collection

Sensor Data
Preprocessing

Feature
Extraction

ML Algorithm-
Random Forest

LRCNFeature
Extraction

Video Data
Preprocessing

Video Data
Collection

Aggregation
and

Classification

Figure 5: Proposed multimodel fall detection architecture.
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)en, input for the tanh function is the cell state, range
values between −1 and 1, and the obtained result is mul-
tiplied by the sigmoid gate:

ht � ot ∗ tanh Ct( . (8)

Using input data, we extracted a high-dimension ab-
straction having low dimension representation by reading
the LSTM’s output.

Long-term recurrent convolutional networks (LRCN):
we adopted the LRCN approach for the proposed model for
our video data.)e proposed LRCN combines convolutional

layers and LSTMLayers into onemodel. It receives input as a
frame from the video and extracts the spatial feature maps
using a convolutional layer. )en, the extracted feature map
feeds to LSTM layers at each time stamp. Finally, it estimates
falls or other activities performed by the present subject.

)e LRCNmodel’s architecture is shown in Figure 7.)e
LRCN considers the following layer: a time-distributed
Conv2D layer is embedded with the rectified linear unit
(ReLU) to eliminate the vanishing gradient problem.
Conv2D also has 16 filters of size 3× 3 which is followed by
MaxPooling2D of size 4× 4 layers and dropout layer; then,
time-distributed Conv2D layer with 32 filters of size 3× 3 is
with a ReLUwhich will be followed byMaxPooling2D of size
4× 4 layers and dropout layer; then, time-distributed
Conv2D layer with 64 filters of size 3× 3 with ReLU will be
followed by MaxPooling2D of size 2× 2 layers and dropout
layer; then, time-distributed Conv2D layer is with 64 filters
of size 3× 3 with a ReLU and a MaxPooling2D of size 2× 2
layers. LSTM (32) accepts only the flatten layer of features
extracted fromConv2D.)e dense layer will then predict the
activities of the frame using the output from the LSTM layer
with softmax activation. With a maximum of 70 epochs, we
trained the LRCN with an initial learning rate of 0.001.

4.3. Aggregation and Classification. We compute an esti-
mation of the fall or other activity conducted using the
random forest and LRCN method. We get estimates from
both methods over a given temporal window size and
combine these results to produce the final fall/activity de-
tection. )e majority vote significantly strengthens the
classifier’s robustness. Hence, we used the majority voting
ensemble approach to produce the most frequent class

Table 2: Parameter setting for ML models.

ML model Parameters

Logistic regression
Penalty� l2

Intercept_scal� 1
Max_iteration� 100

Decision tree
Criterion�Gini

Min_samples_split� 2
Min_samples_leaf� 1

K-nearest neighbors
Neigh� 3

Leaf_size� 30
Metric�Minkowski

SVM

C� 1.0 kernel� rbf
Deg-3

Gamma� auto
Tolerance� 0.001

Random forest

Estimators� 50
Min_samples_split� 2
Min_samples_leaf� 1

Bootstrap� true

Instance

Random Forest

Tree-1 Tree-2 Tree-N

Class 0 Class 1 Class N-1

Majority Voting

Final Class

.....

Figure 6: Ensemble of decision tree classifiers in random forest.
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within the window [30]. Each model generates a prediction
for each instance, and the output prediction is the one that
obtains more than half of the votes. )e activity label with
the majority of votes is projected after the predictions for
each activity label have been added together.

5. Results

)e proposed model has three steps. Firstly, we train the
sensor data; in the next step, we train video data; in step 3, we
carry out the majority voting strategy in the estimation of
both stage 1 and stage 2.

For the sensor data training, we compared different
Machine Learning (ML)-based classification algorithms
based on accuracy, F1 score, precision, and recall. For ML
algorithms, we have taken 70% of the data samples and 30%
of the data samples for training and testing, respectively.
Samples are collected from 1-second windows of unedited
sensor signals without any overlapping and labeled with the
most common fall or other activity that occurred during that

window. After evaluating, we discovered that random forest
is giving better performance. Hence, we use a random forest
algorithm in the proposed model for training sensor data.
)e evaluating metrics are calculated as follows.

Accuracy �
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
, (9)

Precision �
True Positive

True Positive + True Negative
, (10)

Recall �
True Positive

True Positive + False Negative
, (11)

F1 score �
True Positive

True Positive + 1/2(False Positive + False Negative)
. (12)

)e evaluation of different machine learning classifica-
tion algorithms is shown in Figure 8 which shows an ac-
curacy comparison of the logistic regression (LR), decision
tree (DT), random forest (RF), K-nearest neighbor (KNN),
and support vector machine (SVM) machine learning
classification methods. Compared to all ML methods, ran-
dom forest gives better accuracy. Figure 9 shows a precision
comparison of the LR, DT, RF, KNN, and SVM machine
learning classification methods. Compared to all ML
methods, random forest gives high precision. Figure 10
shows a Recall comparison of the LR, DT, RF, KNN, and

SVMmachine learning classification methods. Compared to
all ML methods, random forest gives better recall. Figure 11
shows an F1 sore comparison of the LR, DT, RF, KNN, and
SVM Machine learning Classification methods. Compared
to all ML methods, random forest gives a better F1 score.
Hence, we used random forest for sensor data training for
the proposed method.

For video data training, we use a single model called
LRCN (CNN+LSTM). Out of 100%, 30% is testing samples
and 70% is training samples in LRCN. Time-distributed
Conv2D layers will be used, followed by MaxPooling2D
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Figure 7: Architecture of the LRCN model.
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and Dropout layers. )e feature that was taken from the
Conv2D layers and flattened using the Flatten layer will
then be added to an LSTM layer. )e output from the
LSTM layer with softmax activation will then be used by the
dense layer to forecast the action done over the training
data. After that, we validate our LRCN performing 99.8%
accuracy and 0.15% of loss of the testing data, as shown in
Figure 12.

Finally, majority voting is performed in the estimation of
random forest and LRCN model with the window of 1-

second size over the testing data. )e overall result of the
proposed model (random forest + LRCN+majority voting)
achieved 99.2% accuracy. Compared to the single random
forest or LRCN approaches, it enhances the classification
performance of each activity. Table 3 gives the comparison of
the UP fall detection dataset results with the other state-of-
the-art methods. )e proposed method performs better in
accuracy, F1 score, and precision and recall metrics. Hence,
we can say that our multimodal method improves fall de-
tection performance.
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6. Conclusion

)is paper implements MMFDS for an intelligent assistive
system for Alzheimer’s patients with hybrid data to over-
come the issues, particularly with vision-based and sensor-
based methods. MMFDS is a three-step algorithm, step 1
implements random forest as the classification Algorithm
for sensor data, and in step 2, long-term recurrent convo-
lution network [LRCN] algorithm applies for the classifi-
cation of vision data. Finally, step 3 incorporates an
ensemble approach named majority voting for the result
obtained from sensor and vision data classification algo-
rithms to improve fall detection accuracy. )e performance
of the MMFDS on the UP fall detection dataset records a
significant change in the precision, recall, and F1 score with
an accuracy of 99.2%.MMFDS extends to themore extensive
and real-time data set with hybrid data.

After being trained with data from a sensor device and a
primary RGB camera positioned in a room corner, the
model can be used for real-world applications. Future work
on using the proposed model with real-world scenarios is to
assess its generalizability to Alzheimer’s patients.
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