
Research Article
Prediction of Mg Alloy Corrosion Based on Machine
Learning Models

Zhenxin Lu,1 Shujing Si,1 Keying He,1 Yang Ren,1 Shuo Li,1 Shuman Zhang,1 Yi Fu,1

Qi Jia ,2 Heng Bo Jiang ,2 Haiying Song ,1 and Mailing Hao 1

1School of Stomatology, Shandong Liming Polytechnic Vocational College, Tai’an, Shandong 271000, China
2�e Conversationalist Club, School of Stomatology, Shandong First Medical University, Jinan, Shandong 250000, China

Correspondence should be addressed to Heng Bo Jiang; hengbojiang@foxmail.com, Haiying Song; songluzhe@foxmail.com, and
Mailing Hao; haoml1965@outlook.com

Received 4 May 2022; Accepted 25 May 2022; Published 8 June 2022

Academic Editor: Lan Huang

Copyright © 2022 Zhenxin Lu et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Magnesium alloy is a potential biodegradable metallic material characterized by bone-like elastic modulus, which has great
application prospects in medical, automotive, and aerospace industries owing to its bone-like elastic modulus, biocompatibility,
and lightweight properties. However, the rapid corrosion rates of magnesium alloys seriously limit their applications. �is study
collected magnesium alloys’ corrosion data and developed a model to predict the corrosion potential, based on the chemical
composition of magnesium alloys. We compared four machine learning algorithms: random forest (RF), multiple linear re-
gression (MLR), support vector machine regression (SVR), and extreme gradient boosting (XGBoost). �e RF algorithm o�ered
the most accurate predictions than the other threemachine learning algorithms.�e input e�ects on corrosion potential have been
investigated. Moreover, we used feature creation (transforming chemical component characteristics into atomic and physical
characteristics) so that the input characteristics were not limited to speci�c chemical compositions. From this result, the model’s
application range was widened, and machine learning was used to verify the accuracy and feasibility of predicting corrosion of
magnesium alloys.

1. Introduction

Magnesium alloys have excellent application prospects in the
medical, automotive, and aerospace industries owing to their
bone-like elastic modulus, biocompatibility, and lightweight
properties [1–4]. However, the rapid corrosion rates of
magnesium alloys seriously limit their broad application
[5, 6]. �erefore, developing corrosion-resistant magnesium
alloys is vital to increase their application potential.

Alloying is an e�cient way to improve the properties of
metals since various properties can be enhanced by intro-
ducing alloying elements into Mg [7, 8]. Moreover, studying
the chemical composition of a magnesium alloy is a vital
technique for controlling its corrosion rate. Many scholars
have added alloying elements (such as Ca [9, 10], Zn [11, 12],
Al [13], Mn [14, 15], Sr [16], and Sn [17, 18]) to increase
corrosion resistance of magnesium alloys. However, the

corrosion-resistant magnesium alloys depend on local op-
timization conducted through repeated experiments and
constant adjustment of the alloy concentration. �us, op-
timizing the alloy composition is vital by testing every
possibility. However, this process is costly and requires
many human and material resources. Most previous studies
have only focused on binary and ternary alloys and have not
examined the e�ects of various elements.

�e application of machine learning in studying the alloy
has increased in recent years [19, 20]. Machine learning uses
experimental data to develop a mathematical model and
establish the quantitative relationship between the target
attributes and features. �is model is used to predict the
target alloy properties with di�erent compositions. Machine
learning has been widely studied for predicting the corrosivity
of low-alloy steels [21–23]. Further, machine learning exhibits
excellent prediction accuracy, robust �tting, and analysis
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ability. However, the prediction of the corrosion rate of a
magnesium alloy by machine learning has not been reported.

1is study collected corrosion data from the published
literature and developed a prediction model for the chemical
composition, corrosion potential, and corrosion of mag-
nesium alloys using machine learning. Feature creation was
used to broaden the model’s applicability.

2. Datasets and Machine Learning

2.1. Corrosion Data and Pretreatment. 1is study collected
material data from the published literature. A total of 164
different alloy compositions were considered, consisting of a
primarytestenvironment(chloride ionconcentration)andtwo
target properties (corrosion potential and current density). In
Table 1, each row of corrosion data has nine material char-
acteristics, one environmental characteristic, and the associ-
ated corrosion potential. Table S1 presents the current density.

Most studies did not provide the content of trace alloying
components in the chemical composition analysis of mag-
nesium alloy, and these studies marked the components
lower than the detection threshold. We used the average
value of the original data to fill in the missing values and
enhance the accuracy of the machine learning. We selected
the logarithm of 10 as the target attribute of the current
density since the value of the current density was too small.
Finally, all the materials, environmental characteristics, and
target attributes were standardized.

2.2. Feature Creation. Predicting the corrosion of magne-
sium alloys with other materials is impossible because the
material characteristics of the model only contained nine
elements. 1erefore, we applied the feature creation method
proposed by Diao et al. [24] to the model’s generalization
ability and application range. 1e physical properties of
atoms were used to predict the material characteristics. We
selected 16 atomic and physical characteristics (Table 2) to
replace magnesium alloy’s chemical composition. 1e
physical attributes, corresponding to each element, were
obtained from the WebElements periodic table [25]. 1e
following equation defines the feature creation method:

X � fA1
X

A1 + fA2
X

A2 + . . . + fAn
X

An , (1)

where X represents one of the physical characteristics of an
atom; fAn

stands for the mass fraction of elements; and An

and XAn denote the corresponding feature.

2.3. Experimental Procedure. 1e acquired data were
grouped into a training set (70%) and a testing set (30%).1e
training set was used to optimize the parameters of the
prediction model. However, a testing set was used to identify
the model’s prediction accuracy. Random forest (RF),
support vector machine regression (SVR), multiple linear
regression (MLR), and extreme gradient boosting

Table 1: Chemical composite features, environment features, and target attributes.

Features Unit Descriptions Data range

Material Elements wt%

Al content 0.015–17.000
Zn content 0.001–30.000
Mn content 0.002–1.000
Si content 0.001–1.110
Fe content 0.001–0.040
Cu content 0–10.000
Ca content 0–4.000
Sr content 0–1.960
Sn content 0–9.140

Environmental Cl ion mol·L−1 Chloride ion concentration 0.087–1.026

Target property Icorr A·cm−2 Corrosion current 0–0.167
Ecorr V Corrosion potential −2.027–−1.117

Table 2: Atomic and physical characteristics used in feature
creation.

Physical property Descriptions
V Molar volume
K Bulk modulus
λ 1ermal conductivity
Mp Melting point
ΔHf Enthalpy of fusion
ΔHv Enthalpy of vaporization
ΔHa Enthalpy of atomization
Ra Atomic radius
Rm Covalent radius of a single molecule
Rv Van der Waals radii
Rc Covalent radius
ENp Pauling electronegativity
ENs Sanderson electronegativity
ENa Allred–Rochow electronegativity
E1 First ionization energy
E2 Second ionization energy

Table 3: Optimization parameters of each algorithm (other pa-
rameters are default).

Models Parameters
Ecorr Icorr

RF n_estimators� 150 n_estimators� 183

SVR
Kernel� rbf,
C� 100,

gramma� 0.1

Kernel� rbf,
C� 100,

gramma� 0.1

XGBoost
Booster� gbtree,
learning_rate� 0.2,
n_estimators� 10

Booster� gbtree,
learning_
rate� 0.3,

n_estimators� 10
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Figure 1: Prediction results for corrosion potential and current density corresponding to the four algorithms. (a–d) Prediction results for
corrosion potential by the RF, MLR, SVR, and XGBoost algorithms, respectively. (e–h) Prediction results for current corrosion by RF, MLR,
SVR, and XGBoost algorithms, respectively.

Advances in Materials Science and Engineering 3



(XGBoost) were used to train the collected data. �e opti-
mum parameters of the model were determined using the
grid search approach and k-fold cross-validation (k� 5).
Moreover, we compared the training results of each algo-
rithm and selected the algorithm with the highest accuracy
for prediction. �e above calculations were performed using
Python software and the scikit-learn toolkit for all algo-
rithms, except the XGBoost, which used the XGBoost library
[26].

2.4. Evaluation of Model Performance. �e ratio of the
information, captured by the model, to the information in
the actual label was measured. �e closer the model is to
1.00, the better the model �t is. �e mean absolute error
(MAE), which was the average of the absolute error be-
tween the predicted value and the actual value, was used to
measure the model accuracy. �ese models are calculated
as follows:

R2 � 1 − ∑
n
i�1 yi − ŷi( )2

∑ni�1 yi − yi( )2
,

MAE �
1
n
∑
n

i�1
yi − ŷi( )2
∣∣∣∣∣

∣∣∣∣∣,

(2)

where yi represents the measured value; ŷi stands for the
predicted value; and yi is the average value of the measured
value.

3. Results and Discussion

3.1. Modeling and Application of Forecasting Models. �e
optimal parameters corresponding to the prediction models
of the four algorithms are listed in Table 3.

Figure 1 shows the prediction results for the corrosion
potential and current density, which correspond to the four
algorithms. �e prediction results were drawn as functions
of the measured data, which are equal to the measured data
for a perfect prediction model. All the data points fall on the
diagonal lines; the closer the data points to the diagonal
lines, the more accurate the prediction results. �e MLR
model had a poor �tting e�ect on the corrosion potential and
current density. �e model indicates that the in¦uences of
the di�erent elements on the corrosion potential and current
density in magnesium alloys are complex, and no super�cial
linear relationships are established. Moreover, the �tting
e�ect for the SVM on the two target attributes was poor.
Both RF and XGBoost models are two integrated techniques
that combine two decision trees to improve the model ability
and o�er excellent �tting e�ects. Table 4 lists the R2 and
MAE calculation results for each optimized model in the
training and testing sets. Both the MLR and SVM models
had small R2 and large MAE values in the testing set and
training set, respectively, showing that the �tting e�ects of
MLR and SVM were poor. Although the XGBoost model
�tted the training dataset well, it performed poorly on the
testing set, which might be due to over�tting. �erefore, the
RF model was used in the subsequent analysis.

Table 4: Prediction accuracy of each algorithm (the R2 and MAE calculation results for each optimized model in the training set and testing
set).

Models
Ecorr Icorr

R2 MAE R2 MAE
Training set Testing set Training set Testing set Training set Testing set Training set Testing set

RF 0.900 0.790 0.025 0.042 0.850 0.730 0.029 0.041
MLR 0.430 0.140 0.079 0.093 0.160 0.040 0.092 0.043
SVR 0.590 0.500 0.067 0.078 0.600 0.400 0.068 0.090
XGBoost 0.970 0.740 0.013 0.049 0.950 0.690 0.020 0.053
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Figure 2: Importance of the input characteristics corresponding to (a) corrosion potential and (b) corrosion current prediction models.
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�eRFmodel evaluates the importance of each feature by
measuring the in¦uence of the feature value on the target
attribute. Based on the excellent goodness of �t of the model,
the predictionmodelmastered the law of the in¦uence of each
input on the corrosion potential and corrosion current.�us,
the model with the feature importance is considered reliable.
�eAl content is an important factor that a�ects the corrosion
potential. �e Mg-Al alloy had a higher corrosion potential
than the pure Mg alloy [27]. Mg17Al12 (β-phase) and Al8Mn5
in Mg-Al alloys act as cathodes [28–30]. Moreover, iron is an
impurity inmagnesiumalloys. Iron forms a secondpuremetal
phase owing to its lack of solubility in magnesium alloys.

Microcurrent coupling between theMgmatrix (α-phase) and
this second phase leads to corrosion [31–33]. Zn andMn have
signi�cant e�ects on the corrosion potential and corrosion
current. Zn forms MgxZny phases and acts as a local cathode
for the Mg matrix. With this process, the cathode reaction
speed is accelerated, resulting in a higher corrosion rate
[34, 35].�e addition of manganese can e�ectively reduce the
Fe content in aluminum-magnesium alloys to a speci�c limit
because the iron is isolated in AlMnFe intermetallic com-
pounds, which signi�cantly reduces the degree of micro-
galvanic coupling [36]. Chloride ion is an environmental
factor that a�ects the corrosion current. Chloride ions can

Table 5: Prediction accuracy of each algorithm (the R2 and MAE calculation results for each optimized model in the training set and testing
set).

Models
Ecorr Icorr

R2 MAE R2 MAE
Training set Testing set Training set Testing set Training set Testing set Training set Testing set

RF 0.850 0.660 0.028 0.056 0.790 0.610 0.030 0.070
MLR 0.470 0.260 0.069 0.100 0.210 0.140 0.080 0.093
SVR 0.520 0.350 0.071 0.089 0.450 0.370 0.080 0.085
XGBoost 0.940 0.530 0.022 0.063 0.950 0.480 0.019 0.078
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Figure 3: Predictive performance for corrosion potential and corrosion current using the RF model and corresponding characteristic
importance.
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dissolve the protective layer of magnesium hydroxide on the
magnesium alloy, converting it to magnesium chloride,
making the surface more active and more prone to corrosion
[37, 38]. �e importance of the input characteristics corre-
sponding to corrosion potential and corrosion current pre-
diction models is shown in Figure 2.

3.2. Prediction of Corrosion by Creating Feature Methods.
Using the feature creation method, a new set of material
features was created, and the above four methods were used
to predict the corrosion potential and corrosion current.
Table 5 lists the R2 and MAE calculation results of each
optimized model in the training and testing sets. �e results
showed that the �tting e�ect of RF regression was the best
accuracy comparatively. �erefore, the RF model was used
in the subsequent analysis.

Based on the excellent prediction accuracy of the RF
model, the relationship between the corrosion potential and
corrosion current is well �tted using the feature creation
method. However, no speci�c study has proven the rela-
tionships between the corrosion potential, corrosion cur-
rent, and the physical properties of these atoms. While this
process faces challenges in explaining the model, the sample
composition is still represented by its atomic and physical
properties, which helps predict corrosion using the feature
creation method [24]. �e RF model and its corresponding
characteristic importance are shown in Figure 3.

3.3. Generalization Ability of the Machine Learning Model.
Nine rows of new corrosion data, comprising transitionmetal
zirconium, nickel, and the rare earth element neodymium,
were collected from thepublished literature as veri�cation sets
(Table S2) since none of the samples in our previous dataset
contained three elements.We used this validation set to verify

the model’s generalization. After the chemical compositions
of these sampleswere transformed into the previously selected
atomic and physical parameters via the method created using
the above features, the optimized stochastic forest model was
used to obtain the prediction results for each sample. �e
methods are shown in Figure 4. �e prediction model dem-
onstrated a high level of accuracy.

4. Conclusion

�is study proposed a model to predict the corrosion po-
tential and corrosion current of magnesium alloys. After
comparing di�erent machine learning models, an RF pre-
diction model was established. �e in¦uences of the
chemical composition and environmental factors on each
sample’s corrosion potential and corrosion current were
proved intuitively using the RF algorithm.�en, we used the
feature creation method to transform the alloy composition
into the speci�c atomic and physical parameters, which
expanded the model application range. Finally, a veri�cation
set was used to con�rm the high accuracy of the prediction
model. Machine learning’s robust data regression and data
mining abilities are useful in analyzing magnesium alloy
corrosion data, which could serve as a helping tool for
researching magnesium alloy corrosion.

Data Availability

�e data used to support the �ndings of this study are in-
cluded within the article.
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Figure 4: Comparisons of experimental measurements with predicted values using machine learning models: (a) comparison of corrosion
potential results and (b) comparison of corrosion current results. Nine validation set samples were used.
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