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Te efect of aluminum oxide nanoparticles (Al2O3) on the 60/70 penetration of asphalt cement (AC) was investigated in terms of
the physical and rheological characteristics by using the Superpave testing procedures. Al2O3 at 3, 5, and 7% concentrations were
blended with 60/70 penetration of grade AC. Conventional testing procedures were adopted regarding the physical characteristics,
while dynamic shear rheometer (DSR) testing procedures were conducted to evaluate the high and low temperature failure
parameters. In addition, heuristic modelling techniques, artifcial neural networks (ANN), and support vector machines (SVM)
were employed to predict the performance characteristics of AC by using the mechanical testing conditions. Te frequency sweep
test and multiple stress creep recovery (MSCR) test results revealed that the optimum composition of Al2O3 was at 5% con-
centration considering the high temperature performance characteristics since further addition of the Al2O3 resulted in deg-
radation in the enhanced properties due to agglomeration of the nanoparticles in the blend. On the contrary, Al2O3 5%
demonstrated the lowest viscoelastic behavior at intermediate temperatures. Te higher complex modulus (G∗) and lower phase
angle (δ) parameters indicated that the increase in stifness due to the modifcation process was at the cost of losing elastic
properties against fatigue cracking. Moreover, based on the statistical performance indicator, coefcient of determination (R2), it
was observed that the ANNmodels for predicting G∗ and δ achieved a prediction accuracy of 0.989 and 0.911 while SVMmodels
were able to achieve 0.984 and 0.929, respectively, considering the training datasets. On the other hand, it was noted that SVM
models outperformed the ANN models in terms of a smaller gap between the results obtained from the training and testing
datasets. Te diference between the training and testing datasets for G∗ and δ parameters for the SVM models were 3.2% and
6.8% while for the ANN models, the diferences were 11.6% and 9.5%, respectively, indicating that the ANN models were more
prone to the overftting phenomenon.
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1. Introduction

Bituminous materials are found as natural deposits or ob-
tained as a product from the process of the distillation of
crude oil. Te quality of bitumen relies on its adhesive
properties and depends on the source it is obtained [1].
Bitumen is a viscoelastic material, meaning that it softens
when subjected to heat and hardens when cooled. Tey are
categorized by their dependability or capability to fow at
wide ranges of temperatures [2]. Due to the limitation of
bitumen regarding the temperatures, adding additives to
base bitumen is one of the best techniques to enhance the
properties of bitumen. Many materials were used as mod-
ifers of bitumen, namely, polymers, plastic, steel slag, and
glass. It was indicated that the usage of polymers to modify
bitumen was able to improve the quality and mitigate the
distresses on the mixture which leads to an increase in the
durability [3–5]. On the other hand, the incompatibility
between the bitumen and polymers leads to phase separation
among the blends which reduces the strength of the pave-
ment [6, 7].

As a result, nanomaterials have been introduced as another
way to enhance the bitumen properties and to improve
compatibility between the bitumen and the polymers. Nano-
materials have been developed and incorporated rapidly in the
design of fexible pavement roads as it has unique properties.
Tese properties include high surface work, a large fraction of
surface atoms, structural features, quantum efects, and spatial
confnement [8]. It was predictable that modifcation of bi-
tumen with nanomaterials would improve the properties of
bitumen including an increase in stifness, less temperature
susceptibility, and improved strength against weather-induced
and moisture damage. Some nanomaterials that have been
used to modify polymer-modifed bitumen includes nanoclay,
nanofbers, carbon nanotubes, and nanosilica. In the previous
studies conducted by using the aforementioned nanomaterials,
it has been reported that the performance of bitumen-modifed
with nanomaterials showed signifcant improvement in the
complex modulus while the phase angle was reduced, indi-
cating that the rutting parameter of modifed bitumen could be
minimized this way [9–11].

On the other hand, although nanomaterials are prom-
ising, some of them are expensive and demand further re-
search for exploration and optimization for bitumen
modifcation purposes prior to feld testing and applications
[9]. In addition, laboratory testing of materials is time- and
resource-intensive. In this vein, advanced statistical mod-
eling and soft computing modeling approaches are in vogue
in the prediction of the performance characteristics of as-
phalt binders [12].

Artifcial neural networks (ANN) is a nonlinear, non-
parametric modelling technique that is among the soft
computing methods which have proved to ofer a high
degree of accuracy in computational prediction of the results
observed in laboratory testing [13]. A signifcant amount of
research has been dedicated to modeling of asphalt mixtures
with the ANN, however, investigations on binder perfor-
mance were mostly limited to be addressed by the experi-
mental procedures. Lui et al. [14] studied the ANN and Iowa

models to predict dynamic modulus of base and recycled
shingle asphalt mixtures. El-Badawy et al. [15] compared
regression models and ANN models with Witczak and
Hirsch predictive models for forecasting dynamic modulus
of asphalt mixture. Tapkın et al. [16] presented a study to
predict the strain accumulation in polypropylene (PP)-
modifed marshal samples. Abedali [17] conducted a com-
parison study among the performance of multiple linear
regression models (MLR) and ANN with base asphalt
binder. Ziari et al. [18] perfomed a similar study to Abedali
with carbon nanotube (CNT)-modifed asphalt binders to
predict the rutting performance. Venudharan and Biligiri
[13] employed the ANN to predict the rutting performance
of asphalt binders with diferent crumb rubber (CR)
gradations.

Support vector machines is another subfeld of artifcial
intelligence methods which focuses on the development of
data modelling algorithms which can learn from trained data
points. Recently, SVM is gaining the attention of researchers
towards developing classifcation and regression models due
to its performance and attractive features such as embodying
the structural risk minimization (SRM) principle which is
known to perform better than the empirical risk minimi-
zation (ERM) principle employed by the neural networks
[19]. Previously, Maalouf et al. [20] studied the potential use
of SVM to predict resilient modulus of asphalt mixes and
compared their model performance with the traditional least
squares (LS) method. Gopalakrishnan and Kim [19] utilized
the support vector machine approach to predict the stifness
for the hot mix asphalt. Zhang et al. [21] conducted a re-
search study to predict Marshall parameters of fexible
pavement design by using SVM and genetic programing
(GP). Another study conducted by Uwanuakwa et al. [22]
utilized Gaussian process regression (GPR), recurrent neural
networks (RNN), ANN, and SVM to predict the rutting and
fatigue parameters in modifed asphalt binders.

Te objective of the current study was to conduct exper-
imental procedures to assess the rheological and physical
characteristics of base and nanoalumina-modifed binders and
to utilize artifcial intelligence models by considering the rhe-
ological behavior of the asphalt binders under diferent me-
chanical test conditions in order to forecast the experimental
outcomes at a more extensive range of testing conditions which
the asphalt is expected to undergo during its lifetime.

2. Methods and Data Analysis

2.1. Sample Preparation of Modifed Asphalt Binders. Te
base asphalt cement (BAC) used in the current study was 60/
70 penetration of grade and it was provided by Petronas
Petroleum while the additives ASA and Al2O3 were pur-
chased from the Shijiazhuang Chanchiang Corporation
Company in China. Physical properties regarding the ma-
terial properties are listed in Table 1.

Te blending of aluminum oxide nanoparticles (Al2O3)
into BACwas performed by adding diferent concentrations:
3%, 5%, and 7% by the weight of base asphalt. Te asphalt
was heated to a desirable temperature (150°C) then the
nanoparticles were incorporated into the blend gradually,
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and the whole samples were mixed under the temperature of
170°C by using a high shear mixer at a speed of 5000 rpm for
90 minutes.

2.2. Physical Properties. Assessments of physical charac-
teristics of base and modifed asphalt binders were per-
formed by following the American Society for Testing and
Materials (ASTM) criteria. Te penetration test was per-
formed according to ASTM D5 and softening point test was
implemented according to ASTM D36, while the viscosity
test was performed according to ASTM D4402.

2.3. Viscoelastic Properties of Modifed Asphalt Binders. A
dynamic shear rheometer (DSR) was used to conduct fre-
quency sweep test to evaluate the changes of viscoelastic
properties, stifness (G∗ ), and phase angle (δ) for base and
modifed asphalt binders. Te tests were conducted under
various temperatures (10, 15+10 up to 75°C) by using two
diferent spindles; an 8mm and a 25mm in diameter for
samples that have a height of 2mm and 1mm for low and
high temperatures, respectively. Te testing frequencies
ranged from 0.1592Hz to 15.92Hz. In addition, DSR was
used to conduct multiple stress creep and recovery (MSCR)
at a temperature of 64°C by using a 25mm diameter spindle
with the thickness of 1mm. InMSCR test, twenty cycles were
used with one second of a loading time and nine seconds of-
loading and the test was carried out using two stress levels
100 Pa and 3200 Pa [23].

2.4. Artifcial Intelligence Modelling and Analysis. In ad-
dition to the mechanical empirical evaluation of the base and
modifed asphalt binders, current study proposed artifcial
intelligence research methods, namely, artifcial neural
networks (ANN) and support vector machines (SVM) as
predictive models for the estimation of high and interme-
diate temperature performance characteristics of asphalt
binders. Te database for the artifcial intelligence modelling
was built by using the outcomes of the mechanical tests
conducted under laboratory conditions. Te data points
were frstly normalized in order to improve data integrity
and reduce data redundancy and MATLAB 2019b, Math-
Works was used to develop the ANN and SVM models.

Te ANN is a system for processing data by mimicking
the idea of the way biological neurons work in a human
brain. Te ANN is composed of highly interconnected
processing constituents called artifcial neurons, which

operate in parallel logic and transmit information from one
layer to others in serial operations [24]. Information is
processed at the neurons, and the signals are passed through
connection links, which are associated with weight vectors
that determine the strength of the connections. Te func-
tions of these neurons are the frst to sum up all the initially
assigned weights from the lower layers and then to process
the sum by a linear or nonlinear activation function to
determine the output signal from the given input signals
[25]. According to Venudharan and Biligiri [13], pure-linear
function is categorized as linear, whereas hyperbolic tangent
and logarithmic-sigmoidal functions are classifed as non-
linear activation functions. As adopted in this study, hy-
perbolic tangent activation function is given in the following
equation.

yj �
2

1 + e
−2sj

, (1)

where sj � input jth neuron, yj � output jth neuron.

Tis type of machine learning method is referred to as a
feed-forward neural network model (FFNNM) and it is
adopted in the current study due to its efciency in gen-
eralization [26]. As illustrated in Figure 1, the structure of
the neural network was composed of three main layers,
namely, the input layer, a hidden layer, and the output layer
where the fow of information was from the input layer to the
output layer. FFNNM was utilized with a backpropagation
method where the aim was to fnd the optimum weights as
an iterative process to minimize the error between the target
and computed outputs with a selected accuracy [27].

A number of alternative ANN model structures were
developed with 762 set of data points collected from the
experimental investigations. Te dataset was randomly di-
vided as the training, validation, and testing. Te training
dataset was used for ftting the model. Te validation dataset
was used to provide an unbiased evaluation of the model ft
and to adjust the model hyperparameters. Herein, K-fold
cross validation technique was utilized to minimize the bias
and variance [28]. Finally, the test dataset was used in the
evaluation of model performance by using untrained dataset.

Two diferent scenarios were modelled based on the
experimental outcomes for G∗ and δ of base and modifed
asphalt binders. Levenberg–Marquardt (LVM) was the
training algorithm adopted in the ANNmodeling.Te input
parameters (xi) considered to have infuence on the target
parameters were the mechanical test conditions, tempera-
ture (T) and frequency (F) for both models. Te output

Table 1: Physical properties of the base AC, ASA, and Al2O3.

Materials Parameters Units Test methods Values

BAC (60/70)

Specifc gravity — ASTM D70 1.03
Penetration at 25°C dmm ASTM D5 70.0
Softening point °C ASTM D36 46.0

Viscosity at 135°C Pa·s ASTM D4402 0.50

ASA Specifc gravity — — 0.30
Size mm — 2.00

Al2O3 Size nm — 13.0
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parameters (yi) were G∗ and δ for scenario 1 and scenario 2,
respectively. Te approach to fnd the optimum model was
employed by the trial and error method by using diferent
ANN architectures.

Support Vector Machines (SVM) is another signifcant
computational modelling tool that has been used in solving
numerous engineering problems including classifcation and
regression. Te aim of this technique is to learn the
boundaries between the two classes through mapping the
inputs to a high dimensional region. Initially, SVM’s were
used as a classifer for character and object recognition tasks;
however, more recently the technique has also been proven
to be efective in regression and time series prediction ap-
plications. SVMmodelling technique has been derived from
the statistical learning theory which has a number of distinct
characteristics as compared to the traditional neural net-
works such as using a set of linear functions defned in a high
dimensional space, carrying out risk minimization by using
the loss function, and utilizing a risk function which consists
of the empirical error and a regularization term which is
derived from structural risk minimization (SRM).

Assuming that, the dataset includes
D � ((xi, yi), i � 1, 2 . . . . . . .n) where xi is the input and yi is
the output parameters, the optimum SVM function is
expressed as follows.

y � f(x) � wφ(x) + b, (2)

where w is the weight factor, φ(x) represents the activation
function, and b is the bias.

Te accuracy of the proposed model relies on the
minimization of the regularized risk function, which is as
expressed as follows .

R(ω) �
1
2
‖ω‖

2
+ C

1
n

􏽘

n

i�1
LƐ(y, f(x)). (3)

With ε-insensitive loss function,

LƐ(y, f(x)) �
|y − f(x)| − Ɛ , for|y − f(x)| ≥Ɛ,

0, otherwise,
􏼨 (4)

where the frst term 1/2‖ω‖2 measures the fatness of the
function, and the second term C1/n 􏽐

n
i�1 LƐ(y, f(x)) is the

empirical error. Te regularization parameter C determines
the trade-of between the empirical error and the fatness of
the model.

In other words, the suitable selection of user-defned
parameters, which are regularization parameter C, radius of
insensitive tube ε, and the parameter of RBF kernel function
c is crucially important to improve the model accuracy.
Regularization parameter C controls the approximate
function smoothness or fatness for the SVM where higher
values ofC represents higher penalty of errors and vice versa.
Another parameter that controls the accuracy of the ap-
proximation function is the ε parameter which has signif-
icant efects on the number of support vectors. Te ε
parameter smoothens or complexifes the approximate
function where a smaller value of ε leads to less support
vectors and results in less complex learning machines and
vice versa.

Te SVM modelling approach adopts the idea of kernel
functions. Herein, the radial basis kernel function (RBF) as
expressed in equation (5) was utilized.

K(M, N) � e
−Y|M− N|2

􏼒 􏼓, (5)

where K is the kernel, M is the training input, N is the
unlabeled input, and c is the kernel specifc parameter.

In order to select the most suitable user-defned pa-
rameters, the manual method involving larger number of
trials was used. Parameters combination resulting in the
smallest value of root mean squared error (RMSE) and higher
value of coefcient of determination (R2) was selected.
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Figure 1: Schematic diagram of FFNNM with backpropagation network.
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After developing both prediction models by using the
ANN and SVM, the systematic evaluation of the model
efciencies was performed in conjunction with statistical
performance indicator metrics. Model prediction capacity
with training and the testing datasets were evaluated by
performance indicator metrics, which were mean squared
error (MSE), root mean squared error (RMSE), and coef-
fcient of determination (R2) as given in the following
equations.

RMSE �

������������

1
n

􏽘

n

i�1
􏽢ci − ci( 􏼁

2

􏽶
􏽴

, (6)

R
2

� 1 −
(c − 􏽢c)

2

c − cmean( 􏼁
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
, (7)

where 􏽢ci is the ith experimentally observed data and ci is the
ith target data predicted by the ANN and SVM models.

3. Results and Discussion

3.1. Efects of Nanoparticles on Physical Properties. Te in-
fuences of nanoparticles on the physical properties of
modifed binders were illustrated in Figure 2. It was noted
that, modifed binders have higher stifness compared to the
base binder as the penetration values were declined and the
softening point values were risen. Te reduction in pene-
tration was nearly 63% for 5% Al2O3 and 60% for 3% Al2O3.
At 7% Al2O3, the modifed binders have shown a diferent
reaction as the reduction in penetration was slightly less than
3 and 5% concentrations but higher than the base asphalt
with a reduction of penetration around 45%. As a response
to the reduction in penetration, the softening points of
modifed asphalt binders were improved by nearly 15% for
5% Al2O3, followed by 11% increment for 3% and 7% Al2O3
modifed binders. In addition, the efects of Al2O3 nano-
particles on the viscosity of modifed binders at diferent
temperatures are shown in Figure 3. Te Superpave requires
that the viscosity of asphalt binders must not be more than
3 Pa·s at 135°C. It was noted that all of the asphalt binders
passed the requirement of the Superpave method as the
highest number among the blends was 1.04 Pa·s at 135°C for
7% Al2O3 while lowest viscosity noted to be for the base
asphalt binder which was 0.50 Pa·s.Te additional increment
of the modifer content led to a rise in the viscosity value
which was an expected outcome since the modifcation
process has led to an increase in stifness for the asphalt
binders.

3.2. Experimental Results of Rheological Properties

3.2.1. Efects of Nanoparticles on the Isochronal Plots.
Te isochronal plots which represent stifens and elasticity of
binders at various temperatures and at a frequency of 1.592
(10 rad/s) are demonstrated in Figures 4 and 5, respectively.
Te results showed that the base asphalt binder has the
lowest stifness and the highest elasticity, 5% Al2O3 has the

maximum stifness and the minimum elasticity among the
blends while this was followed by 7% Al2O3 and 3% Al2O3 of
the modifer contents.Te results indicated that 5% of Al2O3
has the optimum viscoelastic properties among the blends.
In addition, the highest complex modulus resulted in higher
stability under permanent deformation at high tempera-
tures, whereas the lower phase angle indicated to a higher
resistance to thermal cracking at low temperatures. It is
noteworthy to mention that, 7% Al2O3 showed a diferent
behavior as the complex modulus was decreased and the
phase angle was enhanced at the same time compared to 5%
Al2O3.Tis might be due to the occurrence of agglomeration
among the nanoparticles during the mixing process which
have afected the dispersion of nanoparticles in the asphalt
matrix [11].

3.2.2. Efects of Nanoparticles on the Master Curves. To
better characterize and understand the rheological perfor-
mance of nanoparticles-modifed asphalt binders, a master
curve was constructed. A master curve is a representation of
stifness (G∗) and elastic modulus (δ) over a range of
temperatures and frequencies by using convenient shifting
factors. Te reference temperature (Tref ) was 25°C and data
points at other temperatures were shifted horizontally to
construct a single curve. Figure 6 illustrates the master
curves of G∗ and δ for the base and modifed asphalt
binders. Te greater stifness and elasticity denoted that, the
binder has superior viscoelastic properties which indicated
better resistance to permanent deformation and fatigue
cracking at elevated temperatures and low temperatures.
Figure 6 demonstrates that, the base asphalt has the highest
elasticity and the lowest stifness, while 5% Al2O3 has the
lowest elasticity and highest stifness among the blends.
Based on the results revealed by the master curves, it can be
concluded that 5% Al2O3 can be considered as the optimum
concentration for the modifcation process particularly at
high temperatures although the improvement in high
temperature performance characteristics was at the expense
of losing elastic characteristics for the modifed asphalt
binders.

3.2.3. Efects of Nanoparticles on High Temperatures Per-
manent Deformation. Bitumen is a thermoplastic material
that performs as solid and liquid at low and high temper-
atures, respectively. Te permanent deformation (rutting) is
one of the efects of the most common issue of the pavement
at elevated temperatures, and the ASTM revealed that to
stand with this issue, the bitumen (unaged) must have
permanent deformation more than or equal to 1 kPa. Te
efects of rutting on base and modifed binders are displayed
in Figure 7. It was noted that, the modifed binders have less
temperature susceptibility compared to the base binder. Tis
indicated that the modifcation of bitumen using nano-
particles can reduce the permanent deformation and in-
crease the service life of the pavement. Te best performance
at 65°C was achieved by 5% Al2O3 concentration with en-
hancement up to 210%, which was followed by 7% and 3%
Al2O3 with improvements around 118% and 44%,
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respectively. Moreover, all the blends passed the require-
ments of Superpave at 65°C while the 5% Al2O3 has also
passed it at 75°C.

3.2.4. Efects of Nanoparticles on Low Temperatures Termal
Cracking. Te Superpave technique considered 5000 Pa as
the maximum limit for fatigue-cracking at low and inter-
mediate temperatures. Figure 8 illustrates the infuence of
nanoparticles on the fatigue resistance parameter for base
and modifed binders. Te results showed that, the modifed
asphalt binders have higher stifness in comparison with the
base asphalt binder which was designated as the base asphalt

and has better elastic properties compared with the modifed
binders. Moreover, nanoparticles have a signifcant efect on
visco-properties, and it does not have an excellent impact on
elastic properties, but all binders were within the specif-
cation of Superpave which is less than 5000 Pa at 25°C.

3.2.5. Efects of Nanoparticles on the MSCR. MSCR test was
used to simulate themovement of trafc fow on the highway
surface and to evaluate the resistance and recovery of asphalt
binder to rutting after the applied loads are removed [29].
Figure 9 presents the results of MSCR for the base and
modifed asphalt binders under stress levels of 100 and
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3200 Pa. It was found that the binder with 5% Al2O3 has the
maximum efect on the permanent deformation at elevated
temperatures at both levels. Te improvement in creep
compliances were 1.27 and 43.81 Pa at 100 and 3200 Pa,

respectively. Te reduction of the creep compliance pa-
rameter was also anticipated from the increase in hardness of
modifed asphalt binders as observed from the physical tests.
Meanwhile, the base asphalt binder has the maximum
sensitivity to permanent deformation at high temperatures
with compliance values of 4.04, 168.38 Pa for both stress
levels respectively. In addition, the improvements in resis-
tance of permanent deformation were 35% and 44% for 3%
Al2O3 and 69% and 73% for 5% Al2O3 and 61% and 69% for
7% Al2O3 at 100 and 3200 Pa individually.

3.3. Artifcial Intelligence Model Results. Support vector
machines (SVM) and artifcial neural network (ANN)
models were developed by using MATLAB (MathWorks Inc
R2019b). Dataset included 852 data points from the me-
chanical test conditions (testing temperature and loading
frequency) as the input parameters and the G∗ and δ as the
output parameters. A total of four individual models were
constructed to predict two diferent outputs; G∗ and δ by
using two diferent modelling techniques; ANN (model 1
and model 2) and SVM (model 3 and model 4, respectively).

A number of diferent ANN architectures with diferent
learning algorithms, activation functions, and a various
number of hidden neuron layers were trained iteratively to
fnd the best performing network structure. Te optimum
model was obtained by using the Levemberg Marquadt
(LM) learning algorithm with two inputs, three hidden
neurons, and one output topology. Te network utilized
backpropagation method to minimize the errors in pre-
diction and the activation function was selected as the
hyperbolic tangent activation function. On the other hand,
the radial basis kernel function was utilized for the model
development by the SVM. After setting the suitable user-
defned parameters, the 10-fold cross validation technique
was utilized to improve model prediction accuracy. By
using this technique, the data points were divided into ten
diferent sets. Each algorithm was then trained by using
nine of the sets and evaluated using the tenth set. Tis
process was repeated 10 times and each time a diferent set
was used for testing. Te mean of the predictions from ten
diferent models were then used to evaluate the perfor-
mance of the algorithm.

Te statistical metrics utilized in this study to evaluate
the model efciency were the coefcient of determination
(R2) and the root mean squared error (RMSE). Figure 10
illustrates the best performing networks for predicting
targets of G∗ and δ with training datasets based on R2. Te
R2 values close to +1 indicated that, the model has high
capacity for predicting the experimental outcomes. From
Figure 10, it was observed that, the ANN model slightly
performed better than the SVM model for predicting the
G∗ while the SVMmodel outperformed the ANN model in
predicting the experimentally observed δ with the training
datasets.

On the other hand, it should be noted that, a smaller
diference between the R2 values obtained for the training
and testing datasets is signifcantly important in order to
avoid model overftting. On this basis, the model
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performances with the training and testing datasets are
presented in Table 2. It was observed that the R2 obtained for
model 1 was 0.989 and 0.873 for training and testing datasets
and 0.911 and 0.816 for model 2, respectively. On the other
hand, for the SVM models, the R2 for training and testing
datasets were 0.984 and 0.952 for model 3 and 0.929 and
0.861 for model 4, respectively. Based on these results, it was
concluded that a smaller gap between the training and
testing datasets for the SVM models suggested that those
models have not sufered from the overftting phenomenon

which could have negatively afect the performance of the
models for untrained datasets.

Moreover, besides evaluating the model performance by
the R2, the residuals distribution of the models have sig-
nifcant infuence on the model prediction performance. On
this basis the RMSE values for the models are also computed
and tabulated in Table 2. A smaller RMSE value indicated
smaller distribution of the errors and therefore resulted in
better performingmodels. From Table 1, it was observed that
the smallest RMSE values for the testing datasets were
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R² = 0.989
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Figure 10: Te measures of goodness of ft for (a) ANN G∗ prediction, (b) ANN δ prediction and SVM, (c) SVM G∗ prediction, and
(d) SVM δ prediction model results.

Table 2: ANN and SVM model results for G∗ and δ prediction.

Model 1: ANN model
for G∗ prediction

Model 2: ANN model
for δ prediction

Model 3: SVM model
for G∗ prediction

Model 4: SVM model
for δ prediction

Training Testing Training Testing Training Testing Training Testing
R2 0.989 0.873 0.911 0.816 0.984 0.952 0.929 0.861
RMSE 0.017 0.060 0.054 0.107 0.021 0.041 0.045 0.091
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obtained by the model 3 where the RMSE was 0.041 and the
highest RMSE was obtained for model 2 with 0.107.

In addition, considering that high R2 values do not al-
ways mean a good regression model, the residual distri-
bution test decides whether the selected model is suitable for
describing the empirical data, or if another model is required
[30]. Te residuals distribution of the two models by using
the testing datasets for predicting the G∗ and δ are shown in
Figures 11 and 12, respectively. As observed from both the
fgures, in the SVM model, the residual variations were
minimal and consistent, while the deviance in the ANN was
signifcantly larger than in the SVM models.

4. Conclusion

Te physical properties and rheological performance char-
acteristics of aluminum oxide nanoparticle- modifed as-
phalt binder were investigated by using conventional and
DSR testing procedures. Heuristic modelling techniques
were utilized to predicting the experimental outcomes
namely, G∗ and δ from the mechanical testing conditions,
testing temperatures and frequencies. Based on the me-
chanical test results and the heuristic analysis to predict the
experimental outcomes, the following conclusions were
drawn.

(i) Te investigation of rheological properties shows an
increase in the complex modulus and decline in the
phase angle, indicating better viscoelastic properties
which led to mitigate the asphalt distress.

(ii) Nanoparticles can increase the hardness of modifed
binders which reduce the rutting efects at high
temperatures, but it has lacked the efects at low
temperatures due to low elastic characteristics.

(iii) Both ANN and SVMmodels were able to predict the
targeted outputs, G∗ and δ, accurately while SVM
models were able to capture the nonlinear rela-
tionship in the dataset and was shown to be more
efcient in predicting the untrained data points.
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diction of polypropylene modifed marshall specimens in
repeated creep test using artifcial neural networks,” Expert
Systems with Applications, vol. 36, no. 8, pp. 11186–11197,
2009.

[17] A. H. Abedali, “Predicting complex shear modulus using
artifcial neural networks,” Journal of Civil Engineering and
Construction Technology, vol. 6, no. 3, pp. 15–26, 2015.

[18] H. Ziari, A. Amini, A. Goli, and D. Mirzaiyan, “Predicting
rutting performance of carbon nano tube (CNT) asphalt
binders using regression models and neural networks,”
Construction and Building Materials, vol. 160, pp. 415–426,
2018.

[19] K. Gopalakrishnan and S. Kim, “Support vector machines
approach to HMA stifness prediction,” Journal of Engineering
Mechanics, vol. 137, no. 2, pp. 138–146, 2011.

[20] M. Maalouf, N. Khoury, and T. B. Trafalis, “Support vector
regression to predict asphalt mix performance,” International
Journal for Numerical and Analytical Methods in Geo-
mechanics, vol. 32, no. 16, pp. 1989–1996, 2008.

[21] W. Zhang, A. Khan, J. Huyan, J. Zhong, T. Peng, and
H. Cheng, “Predicting Marshall parameters of fexible
pavement using support vector machine and genetic pro-
gramming,” Construction and Building Materials, vol. 306,
Article ID 124924, 2021.

[22] I. D. Uwanuakwa, S. I. A. Ali, M. R. M. Hasan, P. Akpinar,
A. Sani, and K. A. Sharif, “Artifcial intelligence prediction of
rutting and fatigue parameters in modifed asphalt binders,”
Applied Sciences, vol. 10, no. 21, p. 7764, 2020.

[23] A. Khadivar and A. Kavussi, “Rheological characteristics of
SBR and NR polymer modifed bitumen emulsions at average

pavement temperatures,” Construction and Building Mate-
rials, vol. 47, pp. 1099–1105, 2013.

[24] A. S. Tokar and P. A. Johnson, “Rainfall-runof modeling
using artifcial neural networks,” Journal of Hydrologic En-
gineering, vol. 4, no. 3, pp. 232–239, 1999.

[25] E. Ozgan, “Artifcial neural network based modelling of the
Marshall Stability of asphalt concrete,” Expert Systems with
Applications, vol. 38, no. 5, pp. 6025–6030, 2011.

[26] S. T. Yousif and S. M. Abdullah, “Artifcial neural network
model for predicting CompressiveStrength of concrete,” Tikrit
Journal of Engineering Sciences, vol. 16, no. 3, pp. 55–66, 2009.

[27] I. C. Yeh, “Modeling of strength of high-performance con-
crete using artifcial neural networks,” Cement and Concrete
Research, vol. 28, no. 12, pp. 1797–1808, 1998.

[28] Z. Reitermanova, “Data splitting,” in Proceedings of the 28th
Annual Conference of Doctoral Students  WDS 2019,
pp. 31–36, WDS, Prague, Czech Republic, June 2019.

[29] H. Kim, S. J. Lee, and S. N. Amirkhanian, “Rheology of warm
mix asphalt binders with aged binders,” Construction and
Building Materials, vol. 25, no. 1, pp. 183–189, 2011.

[30] A. Hammoudi, K. Moussaceb, C. Belebchouche, and
F. Dahmoune, “Comparison of artifcial neural network
(ANN) and response surface methodology (RSM) prediction
in compressive strength of recycled concrete aggregates,”
Construction and Building Materials, vol. 209, pp. 425–436,
2019.

Advances in Materials Science and Engineering 11




