
Research Article
Reactive Ion Etching (RIE) Induced Surface Roughness Precisely
Monitored In-Situ and in Real Time by Reflectance Anisotropy
Spectroscopy (RAS) in Combination with Principle Component
Analysis (PCA)

Emerson Oliveira , Johannes Strassner , Christoph Doering ,
and Henning Fouckhardt

Integrated Optoelectronics and Microoptics Research Group, Physics Department, Technische Universität Kaiserslautern (TUK),
P.O. Box 3049, Kaiserslautern D-67653, Germany

Correspondence should be addressed to Emerson Oliveira; candido@rhrk.uni-kl.de

Received 8 September 2022; Revised 9 October 2022; Accepted 1 November 2022; Published 11 November 2022

Academic Editor: Zhigang Zang

Copyright © 2022 Emerson Oliveira et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Reactive ion etching (RIE) of group IV or III/V semiconductors is an important step in many lithographic processes in
semiconductor technology. Typically, surface roughness is undesired, but more and more applications arise where rough surfaces
are used as functional quasi-layers. Either to avoid roughness or to precisely defne it, in situ monitoring and control of the state of
the etch front is desirable to increase yield. As we already know, refectance anisotropy spectroscopy (RAS) or RAS equipment
might be used tomonitor the state of the etch front, to determine the current etch depth in situ precisely with accuracies of as good
as some lattice constants only, and to identify roughness morphologies, the latter in combination with principle component
analysis (PCA) and linear discriminant analysis (LDA). In cases where only one specifc morphology with diferent characteristic
parameters is under consideration, PCA sufces for monitoring, although the task is even harder. Te PCA-RAS combination
allows for distinguishing states of the etch front, which difer by a couple of minutes of etch duration only.

1. Introduction

Refectance anisotropy spectroscopy (RAS) is a powerful in
situ tool originally invented for precise monitoring of the
state of the growth front during epitaxial processes [1–3].
MOCVD (metal-organic chemical vapor deposition) pro-
cesses had been in mind, but RAS has been shown to work
for MBE (molecular beam epitaxy) as well [4]. A lot of very
valuable and interesting work has been done to understand
the physical reasons for certain peaks in the RAS spectra. But
for growth monitoring, the peaks’ reproducibility is more
important than their physical origin.

As in [5–7], RAS also works for the monitoring of the
etch front in situ and in real time during reactive ion etching
(RIE) processes, as long as the material desorption is not too

chaotic, i.e., as long as the chemical etch component is not
too strong. Tat means that desorption is not completely
statistical; molecules preferably detach from the edges of
existing surface clusters, similar but reversed to the ad-
sorption of molecules at cluster edges during growth. Tus,
the RAS spectra during growth and RIE are very similar.

Te RAS equipment can also be used to determine the
current etch depth with very high precision on the order of a
couple of lattice constants [8, 9]. In this case, the Fabry-Perot
oscillations of the genuine RAS signal spectra or of the
average refectivity spectra are used. Tese oscillations stem
from the ever decreasing thickness of the uppermost (i.e.,
currently etched) semiconductor layer upon etching.

And recently, we have verifed that RAS can even be
employed to monitor surface roughness upon etching and to
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identify diferent roughness morphologies with very high
accuracy. Tis way, there is a chance to change etch pa-
rameters in real time either to avoid any roughness or to
support a specifc desired morphology in both cases, to
increase yield.

Tis high accuracy of roughness morphology identif-
cation will be possible if RAS is combined with powerful
statistical tools, namely, principle component analysis
(PCA) and linear discriminant analysis (LDA) [10–12]. PCA
is concerned with a principle axis transformation in cases
with many “dimensions” and looks for the projection of the
maximum data variance. We are dealing with up to 142
dimensions, i.e., the genuine RAS signals at 71 diferent
photon energies and the average refectivities at the same
photon energies. In situations with many possible mor-
phologies (due to a broad range of etch parameters), it is
helpful to combine PCA with LDA. Te latter is also a di-
mensionality reduction tool, but-as opposed to PCA-it is
supervised, i.e., it uses prior “labeling” of categories, in our
case labeling of diferent roughness morphologies, like
“Wrinkles” or “Weak Ripples,” to name just two examples.
LDA fnds the projection of the multidimensional space that
results in the maximum separation between the known
categories/labels. For situations with multiple possible
morphologies, LDA alone is not sufcient because the
method has problems with noisy signals. And PCA alone will
not sufce if a reliable distinction between diferent mor-
phologies is sought after.

But oftentimes, RIE processes deal with just a narrow
range of etch parameters such that only a very specifc
surface morphology is to be expected. As we show in this
contribution, in these cases, RAS can even be used to
successfully identify certain parameter values of the evolving
mesas and pillars (here their height). Ten labeling is not
necessary; the analysis does not need LDA, but just PCA and
gets easier this way.

Troughout this contribution, we assume maskless RIE
processes. But the method can also be applied to processes
with etch mask as long as some unmasked area or window is
provided for the RAS light spot of 4mm diameter at the
center of the wafer or sample [6].

Recent works with RIE point to applications such as
surface modifcation for self-cleaning [13], antirefection
[14], energy harvesting [15, 16], or metasurface fabrication
[17, 18], for example. An opportunity to enhance such
applications with in situ characterization might be possible
with RAS monitoring.

2. RAS Principle

Te genuine RAS signal is the diference ΔR in the optical
refectivity R of linearly polarized light at normal incidence
between two perpendicular directions. Tose are named x
and y and are rotated 45 degrees with respect to the twomain
crystal axes, normalized by the mean refectivity 〈R〉:

ΔR
〈R〉

(h]) �
Rx − Ry

Rx + Ry /2
, (1)

where the value depends on the photon energy h] of the RAS
light. Typical absolute values are around 10−3.

In principle, for normal incidence, a plane of incidence
as well as parallel or perpendicular light polarization should
not be defnable at all. But cluster edges on the growth, or,
here, etch front break the symmetry and allow for the
refectivity diference [1, 19].

Typically, a spectrally broad light source, i.e., a Xe lamp,
is used for RAS to be able to collect data for a broad range of
photon energies (e.g., from 1.5 to 5.0 eV).

Oftentimes, the genuine RAS spectrum is used for
evaluation, but sometimes the average refectivity, i.e., the
denominator in Equation (1), sufces or shows even more
pronounced peaks in the spectrum.

We employed an EpiRAS system from Laytec, Berlin,
Germany.

3. III/V Samples and Exemplary
Roughness Morphology

For these investigations, we have prepared quite diferent
samples, like GaSb and GaAs substrates or simple III/V layer
systems on these substrates, and quite diferent morphol-
ogies depending on etch parameters and sample holder
material (debris from the chamber walls and the holders
changes the etch conditions). In Figure 1, four morphology
examples are given, their SEM (scanning electron micro-
scope) micrographs as well as their RAS spectrum after
plasma switch-of.Te upper two examples are from plain or
simple GaSb wafer samples, and the other ones are from
plain GaAs wafer samples.

Figure 1 reveals that diferent morphologies come with
diferent RAS spectra, which makes morphology monitoring
by RAS meaningful.

For reasons of clarity, in this contribution, we stick to
just one sample type, i.e., fragments from original (not
overgrown) undoped 2″ GaSb wafers from Wafer Tech-
nology, Milton Keynes, UK. We also remain with one
particular—here exemplary—morphology, which we label
“Brush Cut.” Te nomination becomes obvious from the
SEM micrograph in Figure 2. And we rely on the 71 di-
mensions from the genuine RAS signal, according to
Equation (1), in addition to the 71 dimensions from the
average refectivity.

Te applied RIE parallel plate reactor is of type MicroSys
350 from Roth & Rau, Wuestenbrand, Germany.

Typical etch parameters to achieve the “Brush Cut”
morphology on GaSb are as follows:

(i) A stainless steel clamp and sample holder
(ii) A gas pressure of 8.6·10−3 hPa
(iii) A gas composition with 50 sccm of Ar and no Cl2

(i.e., the etch process is nonreactive)
(iv) A microwave power of 57W at 13.56MHz
(v) A bias voltage of 700V

We chose a morphology related to a nonreactive process
as an example on purpose because, in this case, the etching is
slow (etch rate≈ 0.023 μm/min) and it becomes more
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obvious how small the surface changes might be, for which
the genuine RAS signal is sensitive.

 . Principal Component Analysis (PCA)

PCA is used to reduce the dimensionality of a dataset in an
interpretable way without losing much information [10, 11].
It allows for attributing specifc scores to each genuine RAS
data spectrum based on the variance of the set of samples.

PCA is an unsupervised method, i.e., it does not need prior
labeling of the samples and fnds the linear combination,
which represents the direction of maximum variance within
the multidimensional data space. Maximum variance means
the best possible distinction between data belonging to
diferent samples. Te application of PCA in the semicon-
ductor industry is not new, see, e.g., [20, 21], but its com-
bination with RAS during RIE is to the best of our
knowledge.
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Figure 1: For four samples scanning electron microscope (SEM) images: (a) and related genuine RAS signal spectra. (b) Te top two
experimental results correspond to etching of plain GaSb wafers, the bottom ones to plain GaAs wafers.
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Te analyzed data consist of the spectral data recorded
after the etching process- “after” to begin with. If earlier data
and PCA evaluations exist, the analysis can also be done in
situ and in real time during the etch process and will give
results, helpful to tune etch parameters “on the fy” as
desired.

Te data are subtracted by the respective spectra prior to
etching and subsequently smoothed by the Savitzky-Golay
algorithm [22]. For each sample, 71 genuine RAS signal
values and 71 average refectivity values are collected, each
for a diferent photon energy (from 1.5 to 5.0 in 0.05 eV
steps).

Any set of signals for each of the photon energies along
the diferent samples will be called a feature. Tus, there are
71 features related to the genuine RAS signal spectra and 71
features related to the average refectivity signal. Here, we
employ four diferent samples with “Brush Cut”
morphology.

To minimize the contribution of outliers in the dataset, a
normalization algorithm is applied: the features are di-
minished by their respective averages and divided by their
respective standard deviations. Te number of the features is
represented by the index i (i� 1, . . ., 71) here, which spans
the number of diferent photon energies, once for the
genuine RAS signal and again for the average refectivity.
Tus, the feature signals are defned as follows:

Y
→

i �
y
→

i − yi

σi

, (2)

Y
→

i is the normalized ith feature vector, y
→

i is the unnor-
malized ith feature vector, yi the average within the ith

feature, and σi the standard deviation related to the ith

feature. After this normalization, the (dimensionless) fea-
tures have a null average and a unit standard deviation. Te
initial standard deviations and averages stay recorded for
later collection of data from additional samples for real-time
evaluations.

Te PCA algorithm calculates the covariance matrix, its
eigenvectors, and its eigenvalues from the normalized data.
Te eigenvectors are sorted according to their eigenvalue in
decreasing order, which can be interpreted as the contri-
butions of each eigenvector to the total variance of the data.

Te scalar product of the eigenvector with the dataset for any
one sample results in a score, being the value of the re-
spective principal components, e.g., PC1, or PC2. By ap-
plication of this mathematical procedure on diferent
eigenvectors, the desired number of principal components
(PCs) is obtained [11]. Te whole procedure is identical to
making a principle axis transformation, e.g., in mechanics,
for the rotation of the ellipsoid of the moments of inertia in
three dimensions. But in this contribution, we deal with
many more dimensions, i.e., either 71 or 142, as mentioned
above.

In principle, any user of the RIE-RAS-PCA combination,
which is newly reported here, should be aware that the PCs
are not necessarily directly related (not to speak of pro-
portional) to specifc pillar parameters. Te optical refec-
tivity from which the PCs are deduced depends on many
parameters, like pillar height, width, distance, aspect ratio,
and maybe more. Teir infuences might be interrelated in a
complicated manner. Even then, e.g., a plot of the frst
principal component for the genuine RAS signal versus the
frst principal component for the average refectivity signal
might give distinct spots for diferent etch fronts of the same
morphology. Tis might already be helpful for RIE moni-
toring and etch front characterization. But in our exemplary
case, fortunately, PC1 for RAS is nearly proportional to etch
time, and PC1 for average refectivity is nearly proportional
to the height of the pillar or brush hair, as will also be
demonstrated below.

5. Results

Figure 3 presents the fnal genuine RAS spectra for the
samples of “Brush Cut” morphology with diferent etch
times. Samples are labeled A (1min etching), B (5min), C
(10min), and D (35min) and are color coded. Te spectra
presented in Figure 3 are subtracted from their respective
spectra prior to etching and fed into the PCA algorithm.
Figure 4 gives the resulting frst principal components of
PC1 for genuine RAS (PC1RAS) and for the average
refectivity (PC1average refectivity) for such samples. Te same
etch parameters have been applied for the experiments as
mentioned in Section 3.

Te PCA evaluation has been done after the completion
of all four etch processes. But considering the retrieved
eigenvectors and the stored RAS and refectivity spectra, it
would also be possible to identify specifc spots in the chart,
which relate to the samples and their intermediate RAS and
refectivity spectra at specifc points in time before the end of
the etch process. Tose spots are marked partially trans-
parent andmake a visualization of the surface state evolution
over the current etch time possible. For example, sample B
with 5min of overall etch duration evolves from the situ-
ation and chart spot after 1min of etching which is identical
to the situation and chart spot for sample A with 1min
overall etch duration into the situation and spot after 5min.

It is obvious from the PC chart in Figure 4 that even
slight changes in etch time result in diferent spot positions
in the chart, which reveals the sensitivity of the technique.
Considering the fact that we use amorphology example here,

500 nm

Figure 2: Scanning electron microscope (SEM) image of a “Brush
Cut” morphology introduced during nonreactive ion etching (IE)
of a GaSb wafer. Depending on etch time, the pillar (brush hair)
height/width is quite diferent.
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which is related to a nonreactive and, thus, slow ion etch
process, this sensitivity also applies to minor changes in the
surface roughness.

Figure 4 also reveals that PC1RAS monotonically in-
creases with etch time while PC1average refectivity decreases. As
the etch time progresses, so does the morphology devel-
opment, increasing the RAS signal due to the emerging and
increasing anisotropies caused by the roughness formation.
On the other hand, the average refectivity (i.e., the zeroth
order scattering) decreases as scattering is more likely on a
rough surface. So, it is worthwhile to investigate whether a
pillar parameter follows the behavior of the PCs with etch
time.

To retrieve the characteristic parameters of samples A
through D, we cleaved the samples into two parts and
inspected their cross sections with an SEM again. One of

those SEM micrographs, i.e., the one for sample D, is ex-
emplarily given in Figure 5.

Table 1 lists the important pillar parameters of the four
samples which have been collected by the SEM sample
inspection and the two-dimensional spatial autocorrelations
from such images. From the autocorrelations, it can be seen
that the pillars are, in general, elliptical.

Indeed, the pillar height inversely follows the evolution
of the frst principal component for the average refectivity.
Of course, refectivity must be closely related to the height
and width of the refecting/scattering entities.

Figures 6 and 7 show plots of the dependencies of
PC1RAS on etch time and PC1average refectivity on pillar height,
respectively.

Tis fnding reveals that RAS, together with PCA
analysis, allows for retrieving the pillar height with high
accuracy. Of course, for in situ analysis, a set of formerly
evaluated samples has to exist, from which the PC chart is
calculated and the pillar heights can be calibrated to extract
them in situ and in real time.

Nevertheless, it has to be stressed that the diferent
principal components (PC1 to PCx), retrieved from the
statistical PCA analysis, are not necessarily and in
general will not be proportional, inversely proportional,
or otherwise directly related to one specifc character-
istic pillar parameter. Tis dependence is highly related
to the type of data being analyzed with the PCA and can
vary enormously. A principle component might be
proportional to the diference in the squares of two
physical parameters, just to name one example (also
taken from mechanics and the theory of moments of
inertia).

In the context of RAS or refectivity data evaluation, we
also expected a complicated dependence of the principle
components on pillar data because the PCs are statistically
retrieved from refectivity values in a complicated manner,
and the refectivity itself is dependent on diferent param-
eters of the received etch front. But in our case, obviously,
there are some simple interdependencies, as mentioned
above.
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But even in cases where there is no direct (and thus
simple) relation between some specifc PCs and specifc
“pillar” parameters, the principle component analysis (PCA)
and the calculated PC chart will be helpful because distinct
spots in the chart will apply to distinct etch times. Tus, the
combination of RIE-RAS and PCA is even helpful to dis-
tinguish etch fronts within the same class of roughness
morphology.

6. Conclusions

Over the last 35 years, refectance anisotropy spectroscopy
(RAS) has proved to be a powerful method for monitoring
and subsequent in situ control of epitaxial growth fronts as

well as etch fronts in group IV and III/V semiconductor
technology. Tis contribution is emphasizing the use of RAS
during (maybe reactive) ion etching (RIE).

Earlier work has shown that RAS can be used during
RIE for precise in situ determination of the current etch
depth. Moreover, it has been verifed by us that RAS (to
be published elsewhere) combined with powerful sta-
tistical tools can be employed for the identifcation of
diferent surface roughness morphologies with high
accuracy.

In this contribution, we have shown that this latter
fnding can be extended to an extreme situation, i.e., for
diferent samples of the very same surface roughness
morphology.

Using principle component analysis (PCA) as the sta-
tistical tool, surfaces of diferent samples can be distin-
guished, which difer by minor changes in etch time and
surface parameters only.

In our example, the physical quantity, which infu-
ences the average refectivity data and its frst principle
component (PC1) most, is the height of the etched pillars/
mesas. But even in cases where there was no simple re-
lationship between a specifc principle component and a
specifc pillar parameter, PCA would be helpful because
distinct spots in a chart of two relevant principle com-
ponents (e.g., in a PC plot) would apply to distinct etch
times and etch fronts.

With a stored set of RAS spectra from earlier similar
samples, the reported method can even be applied for new
etch processes in situ and in real time with the help of
intermediate RAS spectra.

Te newly introduced RIE-RAS-PCA combination
gives another degree of freedom to in situ monitoring and
control of RIE processes and will increase the yield
considerably.
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Table 1: List of characteristic pillar/brush hair parameters for the four samples of “Brush Cut” morphology.

Sample Etch time (min) Height (nm) Width (nm) Aspect ratio Average pillar distance (nm)
A 1 21 30.1 0.79 18.7
B 5 61 28.1 2.42 16.4
C 10 70 36.2 2.40 17.6
D 35 80 31.1 3.13 15.4
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Figure 6: Dependence of PC1RAS on etch time: both quantities are
nearly proportional.
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Figure 5: Scanning electron microscope (SEM) image of the cross section of “Brush Cut” morphology for sample D.
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