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In this article, the infuence of important parameters on the size-dependent thermoelastic behavior of functionally graded
magneto-electro-thermo-elastic microcylinders (FGMEE) is studied by means of modifed stress couple theory and under the
infuence of combined mechanical-thermal-magnetic loads. Te equations of motion were derived by considering the linear
behavior of the shells and considering the frst-order theory of the nonlocal shear deformation of the shells. In the following, the
results of solving the equations governing the buckle are analyzed. Based on this, frstly, the mechanical properties used in the shell
are presented, then the linear buckling behavior is studied, and fnally, the size-dependent buckling behavior of these structures is
studied. In the presented results, the mode numbers of each buckling load are shown as n and m, where n and m represent the
circumferential and longitudinal mode numbers, respectively. In the theory section, using the pairwise size-dependent theory, the
stress is corrected, and considering the shell with a relatively thick geometric structure and the forces due to the heterogeneous
thermal boundary conditions, a combination of convection heat transfer and displacement is used to obtain a three-dimensional
shell temperature distribution. Te equilibrium equations of the term electromagnetic coupling system are obtained using the
frst-order shear displacement feld of the shell and the structural relationships in the functionally graded magneto-electro-
thermo-elastic (FG-METE) intelligent material. Ten, using appropriate analytical and numerical methods, various components
of the displacement feld, electrical and mechanical potential, and, most importantly, structural stresses for diferent boundary
conditions are obtained.

1. Introduction

Smart materials today are widely used in advanced equip-
ment and have become an exciting feld of research. Tese
materials display a predesigned behavior against external
factors and are appropriate to the current situation. Some
intelligent materials tend to get deformed by a change in the
magnetic or electric feld [1–5]. Many studies have been
conducted on the applications of an essential group of in-
telligent composite materials in various industries, such as
aerospace, automotive, and medical engineering. Also called
intelligent materials, their mechanical and physical prop-
erties can change in diferent environmental conditions. A
critical class of intelligent materials, magneto-electro-elastic

(MEE) composite materials combine piezoelectric and
piezomagnetic phases. In other words, they display a com-
bination of piezoelectric and magneto-electric properties
that these materials fail to provide independently [6–9].
Magneto-electro-elastic materials are very useful for in-
telligent applications, thanks to their ability to transfer
energy in the electrical and mechanical magnetic phases.
Piezomagnetic and piezoelectric materials can convert en-
ergy from one form to another, such as magnetic, electrical,
mechanical, or thermal. Intelligent structures made of
piezomagnetic and piezoelectric materials have magneto-
electro-thermoplastics coupling efects [10–14]. Tis efect is
not present in the piezomagnetic or piezoelectric material
alone. Couplings between thermoplastics and electric felds
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in piezoelectric materials allow sensing perturbations and
thermomechanical disturbances from induced electrical and
magnetic potential measurements [15–18]. Magneto-electro
thermoplastic coupling efects have signifcant applications
in sensors, capacitors, and vibration control devices. One of
the basic elements for these intelligent structures is piezo-
electric/piezomagnetic layered composite materials, which
are generally subjected to mechanical and thermal loading.
All states of energy, such as mechanical, electrical, magnetic,
or metabolic, are eventually converted to thermal energy.
Hence, thermal energy is one of the most present and
available forms of energy. Unfortunately, a signifcant
fraction of the available thermal energy is always converted
into dissipative heat [19–22]. Vehicles, factories, power
plants, electronic devices, and even the human body waste
thousands of joules of thermal energy.

Te utilization of dissipative thermal energy and its
conversion into more useable forms, such as mechanical and
thermal energy, has become a curious feld of research in
recent decades. Recently, the low-temperature thermal en-
ergy conversion mechanism has been based on the ther-
moelectric efect (TE). Termoelectric transducers use
a refection efect when they have dissimilar hot ends of
conductors at a connection point [1]. Termoelectric heat
exchangers have a relatively small heat conversion efciency
factor of 5% when the hot end is below 200°C, limiting their
application and requiring a fundamentally diferent ap-
proach to converting heat energy into other useful forms of
energy [23–25]. Termomagnetic energy production is
thermoelastic electro-magneto graded (TEMG). Tis
method is based on the efect of heat on the magnetic
properties of ferromagnetic materials that undergo a rapid
phase change near the transfer temperature. Te transfer
temperature, also known as the blind temperature or blind
spot, returns to a state in ferromagnetic material where the
magnetizing property disappears, and the material is
transferred to a paramagnetic state [26–29]. Very rapid
changes inmagnetization around a given temperature can be
used to design a device that converts thermal energy into
electrical energy, whether directly or indirectly with me-
chanical energy [30].

In this article, the infuence of important parameters
on the size-dependent thermoelastic behavior of func-
tionally graded magneto-electro-thermo-elastic micro-
cylinders (FGMEE) is studied by means of modifed stress
couple theory and under the infuence of combined
mechanical-thermal-magnetic loads. Te equations of
motion were derived by considering the linear behavior of
the shells and the frst-order theory of the nonlocal shear
deformation of the shells. In the following, the results of
solving the equations governing the buckling are ana-
lyzed. Based on this, frstly, the mechanical properties
used in the shell are presented, then the linear buckling
behavior is studied, and fnally, the size-dependent buckle
behavior of these structures is studied. In the presented
results, the mode numbers of each buckling load are
shown as n and m where n and m represent the cir-
cumferential and longitudinal mode numbers,
respectively.

Akbarzadeh et al. [31] calculated the static response of
the magneto-electro-elastic (MEE) sheet using fnite element
analysis. Tey showed that the sheet’s vertical and transverse
shear stresses could be studied as degrees of freedom by
considering the mechanical deformation components and
electrical and magnetic potentials. Using Lord-Schulman’s
theory to analyze the electro-magneto-thermoplastic re-
sponse of thermoplastic magneto-electro-elastic (TMEE),
a hollow cylinder made of magneto-electro-elastic (MEE)
functionally graded material was used by Abbas and Zen-
kour [32] to study the efect of comfort time, temperature,
and volume fraction of each phase on the static parameters
of a smart-graded hollow cylinder. Tis study is presented as
a guide for the Termoelastic magneto-electro-elastic
(TMEE) response of smart materials under the heat
source infuence.

Aref [33] studied the static components of functionally
graded magneto-electro-thermo-elastic (FG-METE) func-
tionally graded beams, whose properties change exponen-
tially with thickness and are subject to extensive spatial
sinusoidal loading. Diferent results have been obtained for
the exponential index parameters of the functionally scaled
material for the electric potential and deformation curves.
One of the advantages of smart materials with functionally
graded magneto-electro-thermo-elastic (FG-METE) struc-
tures over smart materials with a layer structure is the ab-
sence of discontinuities in electrical displacement and
magnetic induction between diferent layers of material. Te
static response of the functionally graded magneto-electro-
thermo-elastic (FG-METE) stair coupling sheets under
diferent thermal environmental conditions has been studied
using fnite element formulations. When subjected to no
uniform temperature distribution, tensile stresses in the
magneto astrictive phase of the material are induced in the
joint-boundary boundary conditions. Boundary conditions
also afect the magnetic and electrical potentials in the di-
rection of displacement [34, 35]. Te static behavior of the
functionally graded magneto-electro-thermo-elastic (FG-
METE) sheet receives dramatic efects from the uniform
temperature distribution. Te following efects tend to
improve the static behavior of composites regardless of their
temperature distribution profle. Studies on the efect of heat
on multilayer magneto-electro-elastic (MEE) beams indicate
the same behavior as functionally graded magneto-electro-
thermo-elastic (FG-METE) stair sheets [36].

Kim and Baltazar [32] proposed a method to analyze
some structural properties of multilayer composites made of
functionally graded magneto-electro-thermo-elastic (FG-
METE) material. Teir analysis was based on matrix for-
mulation for layered composite material coupling proper-
ties, including piezoelectricity, piezomagnetism, and
thermoplastics. Tey fnally obtained an analytical and
closed-form solution for the efective properties of the smart
functionally graded composite. Tey also numerically
evaluated the efect of the gradient of the distributed
function gradient on the pyro magnetic and pyroelectric
constants. Tey showed that the efective pyroelectric and
pyromagnetic constants for the composite intelligent graded
material could signifcantly increase due to the distributed
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gradient in the thickness about two times the original value.
Tis constant variation is a function of the volume fraction
of the diferent phases that make up the various layers of
intelligent composite.

Sladek et al. [37] investigated the behavior of func-
tionally graded magneto-electro-thermo-elastic (FG-METE)
circular sheets using the meshless local Petrov–Galerkin
(MLPG) method under articulated and trapped conditions.
Tey concluded that the generated electric potential sig-
nifcantly afects the results of impact and static loads.

Aref [33] introduced the linear coupling equations to
study the electromechanical behavior of the shell with the
desired shape and made of magneto-electro-elastic (MEE)
functional graded material; these equations are further used
for the analysis of cylindrical, spherical, and circular shells.
Tey are fully functional, with the desired curvature and
thickness.

Kattimani et al. [33] have conducted various studies on
the static behavior of beams and intelligent composite sheets
made of magneto-electro-elastic (MEE) electro-elastic
magnetic materials placed in a thermal environment. A
common feature of most of these papers is the used of linear
coupling relationships in calculations and fnite element
analysis (FEA), and numerical solutions.

Wu and Lu [34] used a modifed Pagano method to
investigate the dynamic response of a functionally graded
multilayer magneto-electro-elastic (MEE) sheet with a sim-
ple abutment under diferent surfaces conditions. Tey
determined the conditions governing the surface for both
free electric and magnetic potential states and free magnetic
fux and electric fux and also used the exponential model to
distribute the properties of the material in the
thickness layer.

Phoenix et al. [35] proposed a layeredmodel of magneto-
electro-elastic (MEE) sheets and developed the Reisner
mixed variational theorem to perform a static and dynamic
analysis onmagneto-electro-elastic (MEE) composite sheets.

Ootao and Ishihara [36] studied the analysis of hollow
cylindrical shells of functionally graded magneto-electro-
thermo-elastic (FG-METE) under uniform surface heating.
Tey also studied the transient thermal stress problem for
the above cylindrical shell considering the plane strain
model and the efect of diferent parameters, such as in-
homogeneity of materials and electrical and magnetic po-
tentials on thermal stress.

Huang et al. [38] developed analytical and semi-
analytical models to change static parameters in the di-
rection of beam thickness. For the problem of general two-
dimensional stress, they assumed the functions governing
stress, electrical displacement, and magnetic induction in
two main parts, the frst part as a trigonometric function in

the longitudinal dimension and the axial direction of the
beam and the second part as an unknown function in the
thickness direction. Tey presented their analysis for dif-
ferent boundary conditions.

2. Relationships and Equations

2.1. Mathematical Model and Governing Formulation.
Figure 1 shows a schematic of the problem model, which is
a relatively thick cylindrical shell located in an electro-
magnetic feld [12]. Te electric feld and the magnetic feld
are included in the problem. Te microshell’s radius,
thickness, and length are also displayed with R, h, and L,
respectively.

According to the frst-order shear deformation theory of
shells, the displacement feld of a cylindrical shell in three
diferent directions of the cylindrical coordinate system x, θ,
z is shown by the following equation [8–10]:

u(x, θ, z, t) � u0(x, θ, t) + zψx(x, θ, t),

v(x, θ, z, t) � v0(x, θ, t) + zψθ(x, θ, t),

w(x, θ, z, t) � w0(x, θ, t),

(1)

where u_0 (x, θ, t), v_0 (x, θ, t), and w_0 (x, θ, t) represent
axial, peripheral, and radial deformations. Also, ψ_x (x, θ, t)
and ψ_θ (x, θ, t) represent the rotation of the vector per-
pendicular to an element in the middle plate of the sheet
thickness in the circumferential and axial directions. Te
kinematic relationships for a linear isotropic elastic material
can be expressed by considering and applying components
related to the kinematic parameters that afect the strain
energy. Nonetheless, strain tensors in the material are as
follows [13–15]:

εij �
1
2

ui,j + uj,i ,

χs
ij �

1
2

φi,j + φj,i ,

m
s
ij � 2l

2μχs
ij,

θi �
1
2

(curl(u)).

(2)

In the above equations, ms
ij ^ expresses high-order

stresses. Also, εij, Xs
ij represent the strain tensor and the

expansion gradient. In addition, ui and φi also represent
minimal displacement vector components, respectively. On
the other hand, the strain components in the shell are as
follows [17]:
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(3)

Te nonzero components of the symmetric rotational
gradient tensor are as follows [19]:
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(4)

Tis paper investigates the properties of the cylindrical
shell material of graded magneto-electro-elastic materials as
a function that varies continuously and in the radial di-
rection of the z-axis based on the exponential model of the

graded material. Terefore, each property of the substance
can be expressed as follows [20]:

P(z) � PoVc(z) + PiVm(z), (5)

h
z (w)

z (w)

R

x (u)

L

R

θ (v)

θ

Figure 1: Schematic of a functionally graded magneto-electro-elastic cylindrical shell with arbitrary boundary conditions at both ends.
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where Po and Pi express the properties of the outer and inner
shell surfaces. Tese surfaces are assumed to be all-ceramic
and all-metal, respectively. Besides, the relationship between
the volume fraction of the two smart phases of the smart
functionally graded magneto is [21]:

VBaTiO3(z) + VCoFe2O4(z) � 1. (6)

Based on the combination law and the relations [22]:

P(z) � Po − Pi( Vc(z) + Pi,

VCoFe2O4(z) � 0.5 +
z

h
 

n

.

(7)

In the abovementioned relation, n is the exponential
index of the smart two-phase functionally graded magneto,
whose diferent properties can be expressed as follows [23]:

Cij(z) � Cijc − Cijm 
1
2

+
z

h
 

n

+ Cijm ,

ρ(z) � ρc − ρm( 
1
2

+
z

h
 

n

+ ρm ,

](z) � ]c − ]m( 
1
2

+
z

h
 

n

+ ]m ,

qij(z) � qijc − qijm 
1
2

+
z

h
 

n

+ qijm ,

χij(z) � χijc − χijm 
1
2

+
z

h
 

n

+ χijm .

(8)

Te following are the structural relationships for
a magneto-electro-elastic multiphase material with

a functionally graded structure in terms of thickness in the
thermal environment and with electrical and magnetic
potential [24]:

σxx

σθθ
τxθ

τθz

τxz
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(9)
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On the other hand, in equation (9), we have a magneto-
electro-thermo-elastic smart functionally graded magneto
[25]:

[c(z)] �

c11(z) c12(z) 0 0 0

c12(z) c22(z) 0 0 0

0 0 c66(z) 0 0

0 0 0 c55(z) 0

0 0 0 0 c44(z)
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[q(z)] �

0 0 q31(z)

0 0 q32(z)

0 0 0

0 q24(z) 0

q25(z) 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[s(z)] �

s11(z) 0 0

0 s22(z) 0

0 0 s22(z)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

[d(z)] �

d11(z) 0 0

0 d22(z) 0

0 0 d33(z)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

[r(z)] �

r11(z) 0 0

0 r22(z) 0

0 0 r(z)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

p(z)  �

p1(z)

p2(z)

p3(z)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

λ(z){ } �

λ1(z)

λ2(z)

λ3(z)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(10)

In order to satisfy Maxwell’s quasistatic relations, the
electric and magnetic felds are considered negative gradi-
ents of electric potentials Φ ̃(x, θ, z, t) and magnetic Ψ (x, θ,
z, t):

Ex � −
z Φ
zx

,

Eθ � −
1

R + z

z Φ
zθ

,

Ez � −
z Φ
zz

,

Hx � −
z Ψ
zx

,

Hθ � −
1

R + z

z Ψ
zθ

,

Hz � −
z Ψ
zz

.

(11)

Te boundary conditions of the electric and magnetic
felds at the upper and lower levels of the cylindrical shell are
as follows:

Φ x, y, −
h

2
, t  � − ϕ0,

Φ x, y,
h

2
, t  � ϕ0,

Ψ x, y, −
h

2
, t  � − Ψ0,

Ψ x, y,
h

2
, t  � Ψ0,

(12)

where ϕ0 and Ψ0 are external electrical potentials and ex-
ternal magnetic potentials. According to the magnetic-
electric boundary conditions, the explicit distribution of
electrical and magnetic potentials is presented as a combi-
nation of linear and cosine changes in the following form
[26].

Φ(x, y, z, t) � − cos
πz

h
 ϕ(x, y, t) +

2zϕ0
h

,

Ψ(x, y, z, t) � − cos
πz

h
 ψ(x, y, t) +

2zψ0

h
,

(13)

here ϕ (x, y, t) and ψ (x, y, t) are spatial variations related
to electrical and magnetic potentials in the x and θ
directions.
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 . Results and Discussion

3.1. Introduction. In this article, the infuence of important
parameters on the size-dependent thermoelastic behavior
of functionally graded magneto-electro-thermoelastic
microcylinders (FGMEE) is studied by means of modi-
fed stress couple theory and under the infuence of
combined mechanical-thermal-magnetic loads. Te
equations of motion were derived by considering the
linear behavior of the shells and the frst-order theory of
the non-local shear deformation of the shells. In the
following, the results of solving the equations governing
the buckle are analyzed. Based on this, frstly, the me-
chanical properties used in the shell are presented, then
the linear buckling behavior is studied, and fnally, the
size-dependent buckling behavior of these structures is
studied. In the presented results, the mode numbers of
each buckling load are shown as where n and m represent
the circumferential and longitudinal mode numbers, re-
spectively. Also, considering that the efect of diferent
boundary conditions is also investigated for the sake of
brevity, the simple, free, and clamped boundary condi-
tions are named with the letters S, F, and C, respectively,
thus the boundary conditions of simple supports at both
ends, two headed head, free head-head, and simple head-
head are denoted by the symbols SS, CC, CF, and CS.
It should be noted that in all cases, the shear correction
factor has been used. Also, the FGMEE microshell ma-
terial used in the analyzes is the two-phase BaTiO3-
CoFe2O4 material due to its unique properties such as
good mechanical properties, high chemical stability, and
suitability for various heat processes, whose mechanical
characteristics are given in Table 1. Te intended FGMEE
microshell consists of two piezoelectric phases of barium
titanate (BaTiO3) or phase B and piezomagnetic phase of
cobalt ferrite (CoFe2O4) or phase C, so that the material
properties gradually change along the thickness and from
the inner surface to the outer surface, i.e., the surface Te
exterior of the cylindrical shell is rich in piezoelectric
material, and the inner surface of the shell is rich in
piezomagnetic material. Barium titanate is a ferroelectric
ceramic material that exhibits the efects of light refraction
and piezoelectric properties, which is used in capacitors,
electromechanical transducers, and optics. Also, cobalt
ferrite is a hard magnetic material with an inverse spinel
structure, which is due to its unique properties compared
to other ferrites, such as magnetic anisotropy, balanced
saturation magnetization (MS), high coercive force (HC),
mechanical hardness, and high chemical stability. Special
attention has been paid to it and it is used as one of the
important compounds in magnetic recording environ-
ments because the high magnetic coercive force is the
main factor in increasing the volume of magnetic storage.

Te changes of the modulus of elasticity against the
thickness obtained from the power changes in the power law
relationship for FGM composed of BaTiO3 and CoFe2O4 are
shown in Figure 2. As can be seen, the and states represent
the isotropic shells made of CoFe2O4 and BaTiO3,
respectively.

In addition, in presenting the results, dimensionless
critical loads are used, which are defned as follows:

ρcr �
Pcr

Pcl
, (14)

where it is the critical load obtained by solving the equations
and represents the critical buckling load for the classical
shell, which is as follows for the cylindrical shell with simple
boundary conditions [2]:

Pcl �
2πh

2

R
2

��������

3 1 − v
2

 

 . (15)

3.2. Verifcation of Results. In the following, four compar-
ative studies have been conducted between the results of the
present project and the existing articles. In order to ensure
the correctness and accuracy of the obtained answers, at
frst a comparison was made between the critical tem-
perature diference of the cylindrical shell presented in
reference [3] and the value obtained in this research; the
results are listed in Table 2. It can be seen that the diference
in the obtained results is appropriate and expected, and it
can be accepted considering the percentage of diferences
between the results obtained from the digestive research are
reasonable and logical. As it can be seen in Table 2, under all
the same conditions, in metals and ceramics, with the
increase of the coefcient of thermal expansion, the critical
temperature diference decreases, so that the critical
temperature diference in the cylinder made of alumina is
more than that of silicon and that of nickel is more than
that of stainless steel. and also, in general, in the same
conditions, the critical temperature diference in ceramics
is much higher than in metals, which can be considered one
of the reasons for the high modulus of elasticity in these
materials.

Next, the critical buckling load of the FGM shell under
compressive loading is compared with the results of the

Table 1: Mechanical properties of materials used in a two-phase
BaTiO3-CoFe2O4 FGMEE microshell [1].

Mechanical properties BaTiO3 CoFe2O4

C11 (GPa) 166 286
C12 (GPa) 77 173
C13 (GPa) 78 170
C33 (GPa) 162 269.5
C44 (GPa) 43 45.3
C66 (GPa) 44.5 56.5
e15 (C/m2) 11.6 0
e31 (C/m2) − 4.4 0
e33 (C/m2) 18.6 0
s11 (10− 9 C/Vm) 11.2 0.08
s33 (10− 9 C/Vm) 12.6 0.093
q15 (N/Am) 0 550
q31 (N/Am) 0 580.3
q33 (N/Am) 0 699.7
d11 (Ns2/VC) 0 0
d33 (Ns2/VC) 0 0
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studies conducted by Blooriyan et al. [4] and Bagherizadeh
et al. [5] in Table 3.

Te parameters used to extract the results of this
table are as follows: From the comparison of the results of
this research and the studies conducted by Blooriyan et al.
[4] and Bagherizadeh et al. [5], they are compared
in Table 3. Te parameters used to derive the results of
this table are as follows: Em � 70GPa, Ec � 380GPa, and
]m � ]c � 0.3.

3.3. Te Efect of Distribution of Properties in the Target
Material. As a frst step, the efect of the distribution of
properties in the target material and boundary conditions on
the critical buckling load of the FGMEE microshell was
investigated, the results of which are presented in Tables 4
and 5. In Table 4, the critical mechanical force for diferent
boundary conditions and for diferent values (L/R) and
exponential distribution parameters of the properties are
presented, and in Table 5, the critical temperature of
microshell buckling with diferent boundary conditions is
presented. Te dimensions of the FGMEE microshell are
considered as h � 5 μm and (l/h) � 0.1.

Te boundary conditions of the beam are indicated by
two English letters, where C is the symbol of braced
support, S is simple support, and F is free support. For
example, the CC represents the shell with bearing

conditions on both its inner and outer edges, while the SS
shell represents the shell with simple supports. Te
boundary condition of the shell is displayed with only one
letter that indicates the type of support in the outer radius.
As expected, the increase decreases the shell stifness and
thus the frequency. In addition, as can be seen, with the
increase of n, the critical load of the shell increases, which
was expected, because the increase of n causes an increase
in the Young’s modulus and, as a result, the bending
stifness of the structure.

Figure 3 shows the efect of the relative length parameter
(L/R) on the buckling mechanical load of the FGMEE shell
for diferent values of the material change exponent. As can
be seen, the amount of buckling load decreases with the
increase of the relative length. Tat is, the load bearing in
shorter shells with larger n is more than long shells with
lower n. In addition, as the profle of the target material
increases, the critical load values also increase. Because with
increasing the profle of the target material, the material is
inclined towards the CoFe2O4 metal, as a result of which the
modulus of elasticity increases, the material becomes harder,
so the critical force increases. Similarly, by reducing the
profle of the target material, the material is inclined towards
the softer metal BaTiO3 and the modulus of elasticity is
reduced, thus the critical force is reduced. In addition, it can
be seen that due to the presence of thermal loading in the
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Figure 2: Changes in modulus of elasticity against thickness obtained from power changes in the power law relationship.

Table 2: Comparison of critical temperature distortion for an isotropic cylindrical shell for diferent materials.

Error Reference results [3] Te results of
the present method h/R Materials

0.07 256.8651 257.0345 0.008 Nickel
1.49 1564.4034 1604.7801 0.05
0.51 221.3198 222.4519 0.008 Steel
0.44 1348.001 1353.9012 0.05
1.47 460.3751 453.6189 0.008 Silicon Nitride
0.30 2771.0983 2762.8000 0.05
1.93 458.1918 467.0391 0.008 Alumina
4.36 2790.6780 2912.3405 0.05
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system, with the increase in the L/R ratio, the mechanical
buckling force tends to zero, which is due to the presence of
thermal compressive stresses in the structure, which cause
thermal buckling in the FGMEE shell. For example, in the

case of L/R� 20 for n� 0 and n� 0.6, the dimensionless
critical buckling load of the system is equal to 0.32 and 0.68,
respectively, which indicates an increase of 1.13 times in the
shell buckling load. Figure 4 shows the efect of the relative

Table 3: Critical buckling load for FGM cylindrical shell under external compressive loading.

L/R
h/R

0.01 0.025
Present Ref [4, 5] Ref [4, 5] Present Ref [4, 5] Ref [4, 5]

50 79.901 79.898 79.929 80.160 80.582 79.486
300 480.136 480.022 479.506 476.305 476.033 476.383
900 438.178 438.225 438.157 430.290 431.366 428.647

Table 4: Critical mechanical force of FGMEE shell for boundary conditions and diferent values and exponential distribution parameter.

BC n
(L/R)

0.5 10 50 100

CC
0.2 0.78421 0.73012 0.64931 0.58013
0.5 0.82369 0.68920 0.56178 0.46921
1 0.98402 0.80341 0.63094 0.58902

SS
0.2 0.60342 0.45761 0.40349 0.20453
0.5 0.76491 0.51739 0.48701 0.40983
1 0.90385 0.62901 0.59351 0.44987

Table 5: Critical temperature of FGMEE shell for diferent boundary conditions and for diferent values and exponential distribution
parameter.

BC n
(L/R)

0.5 10 50 100

CC
0.2 753 725 680 620
0.5 768 740 705 673
1 782 759 731 708

SS
0.2 687 668 653 640
0.5 702 689 670 658
1 723 710 684 664

20 120 220 320 420 520 620 720
L (R)

0
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Figure 3: Te efect of the relative length parameter (L/R) on the buckling mechanical load of the FGMEE shell for diferent values of the
exponential power in the presence of a thermal feld.
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length parameter (L/R) on the critical buckling temperature
of the FGMEE shell for diferent values of the material
change exponent. As can be seen, with the increase of the
length-to-radius ratio, the decreasing trend of the critical
buckling temperature takes place at the beginning with
a relatively large slope, but gradually, with the increase of the
length-to-radius ratio, the slope of the changes decreases.
Also, it can be seen that with the increase in the gradient
index of the material, the critical buckling temperature of the
shell increases, which is due to the increase in the equivalent
stifness of the structure as a result of the increase in the
amount of CoFe2O4 solid material in the shell. It should be
noted that according to Figure 4, in small L/R, the efect of
the gradient index of the material on the critical temperature
of buckling is greater and this efect decreases with the
increase of the L/R ratio. For example, in the cases of L/
R� 20 and L/R� 120, by increasing the gradient index of the
material from 0 to 1, the critical temperature of the system
increases by about 83% and 72%, respectively.

Figure 5 shows the efect of the material gradient index
on the critical dimensionless axial buckling load. It has been
shown that with the increase of the gradient index of the
material, the critical buckling load becomes larger and tends
to an asymptotic state for large values of n. Te main reason
for this increase can be stated as follows: for large amounts of
n, the constituent material of the shell will be rich in
CoFe2O4 components, which usually have more mechanical
resistance than BaTiO3 materials. Considering that the
bending strength of the shell with BaTiO3 metal is much less
than that of the pure CoFe2O4 shell, as the volume per-
centage of BaTiO3material in the shell increases, the bending
strength of the shell and, as a result, the critical axial buckling
load decreases. With increasing the profle of the target
material, the material tends towards the CoFe2O4 metal, and
as a result, the modulus of elasticity increases and the sta-
bility of the structure increases. It is also observed that for
smaller values of exponential power, the critical buckling
load has more changes than for large values of n.

3.4. Efect of Electric Potential and Magnetic Potential.
Magneto-electro-elastic materials show the internal cou-
pling between magnetic, electric and elastic domains.
Magneto-electro-elastic materials have common behavior
between elastic, electric, and magnetic domains. Tese
materials are not found in free form in nature, and in fact,
the composite of a piezoelectric material and a piezo-
magnetic material forms the magneto-electro-elastic mate-
rial. Magneto-electro-elastic materials release the strain
caused by deformation in the form of electric and magnetic
felds. With connecting electrodes to these materials and
then connecting them to an electrical consumer, this me-
chanical energy can be converted into electromagnetic
power. It should be mentioned that in order to convert the
magnetic feld into electric current, the magnetic feld must
frst be converted into electric current using a coil or in-
ductor. In general, smart materials can be used in all kinds of
sensors and transducers due to their energy conversion
properties. In particular, smart magneto-electro-elastic
materials can be used as a source of power generation.
with placing these materials in vibrating systems, their
mechanical deformation can be extracted and stored as
electrical power. Considering the increasing use of smart
cylindrical microshells in microelectromechanical systems
and ultra-sensitive sensors and ultra-fast actuators, the efect
of various parameters on their mechanical performance is
very important. Based on this, in this section, the efect of
electric potential and magnetic potential on the critical
buckling load and critical buckling temperature of the
FGMEE microcylinder is studied. Te efect of electric
potential diference and magnetic potential intensity on the
mechanical load of dimensionless buckling is shown in
Figure 6. Tese results are presented for L/R� 200, n� 0.4
and R/h� 100 and in the presence of temperature feld.
According to Figure 6, it can be seen that the electric po-
tential diference applied to the shell has a signifcant efect
on the buckling load. From Figure 6, it can be seen that the
positive electric potential diference causes the buckling load
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Figure 4:Te efect of the relative length parameter (L/R) on the critical buckling temperature of the FGMEE shell for diferent values of the
exponential power in the presence of a thermal feld.
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to decrease and the negative electric potential diference
causes the shell buckling load to increase. Based on this, it
can be said that the positive electric potential diference
causes compressive stresses in the system and, accordingly,
reduces the equivalent stifness of the structure, and as
a result, the shell buckles less due to external forces. Te
reverse of this behavior is true for a negative electric po-
tential diference, and by applying a negative electric po-
tential diference, tensile stresses are created in the structure,
and as a result, the equivalent stifness of the structure in-
creases. As the stifness of the structure increases, the ten-
dency of the shell to change shape will decrease, and as
a result, the bearing capacity of the FGMEE shell will in-
crease. Based on the results, it can be seen that in the case of
classical theory (for l� 0), applying the electric potential
Φ0 � 50V and Φ0 � − 50V diference to the magneto-elec-
tro-elastic shell causes a 43% decrease and a 42% increase in
the critical buckling load of the system, respectively. Based
on this, and according to the curve in Figure 6, it can be said
that the efect of the electric potential diference on the
changes in the buckling load of the structure is almost linear.
Tese results are in acceptable agreement with the results
presented by Liu et al. [6] for MEE nanosheets based on
nonlocal theory. According to Figure 6, it can be seen that
the critical buckling load of FGMEEmicroshell is afected by
the magnetic potential and the efect of small sizes. Te
results show that the buckling load of the structure increases
with the increase of the magnetic potential Ψ0 due to the
increase of the equivalent stifness of the structure, and on
the other hand, with the decrease of the magnetic potential
and the increase of the small size parameter due to the
softening efect of these parameters, the mechanical buckling
load of the FGMEE cylindrical microshell decreases. It
should be noted that, as can be seen, the increase in buckling
load with increasing external magnetic potential and the
decrease in buckling load with decreasing electric potential
diference are both linear.

Table 6 shows the efect of magnetic potential and ex-
ternal electric potential on the critical buckling temperature

of the FGMEE cylindrical microshell. Tese results are
presented for L/R� 200, n� 0.4 and R/h� 100 in the pres-
ence of a temperature feld. Tese results can be used as
benchmark results to evaluate other numerical methods and
also for the fast design of METE cylindrical shells in en-
gineering applications. According to the results of this table,
it can be seen that the efect of external electrical potential
and also external mechanical potential on the critical
buckling temperature of the system is similar to the external
mechanical load. Te critical buckling temperature of the
FGMEE microshell decreases relatively linearly with in-
creasing electric potential and increases with increasing
magnetic potential. For AΨ � 0 and n� 0, by increasing the
external electric potential to 20V and decreasing it to − 20V,
the critical buckling temperature is obtained as 437.740 and
734.824, respectively, which indicates a 25% decrease and
a 27% increase in the critical buckling temperature of the
microshell is relative to the absence of external electric
potential. In addition, the results show that the volume
fraction of BaTiO3 and CoFe2O4 materials in magneto-
electro-elastic shells has a signifcant efect on the critical
temperature. By increasing the gradient index of thematerial
and increasing n, the amount of piezomagnetic cobalt ferrite
material (CoFe2O4) in the FGMEE microshell increases,
which increases the critical buckling temperature of the
system.

According to the results of Figure 6, it can be concluded
that the increase in the electric potential diference or the
negative value of the external magnetic potential can cause
the buckling of the FGMEE microshell. Considering that the
increase in electric potential diference reduces the equiv-
alent stifness of the structure, buckling due to the increase in
electric potential diference is logical. Based on this, in
Figures 9 and 10, the efect of the gradient index of the
material on the critical external electric potential as well as
the critical external magnetic potential is shown. Te results
show that the increase in the gradient index of the material
increases the magnetic potential and the critical electric
potential, and the efect of the gradient index of the material
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Figure 5: Te efect of the material gradient index on the critical dimensionless axial buckling load of the FGMEE shell.
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on increasing the critical magnetic potential is greater than
its efect on the critical electric potential. For example, for l/
h� 0, with the increase of n from 0 to 4, the critical external
electric potential and the critical external magnetic potential
of the FGMEE microshell increase by about 22% and 82%,
respectively. Tis phenomenon shows that external mag-
netic charges are also two efective factors in the structural
stability of FGMEE cylindrical microshells. Te volume
fraction of the BaTiO3 and CoFe2O4 phases and the external
magneto-electric charges should be selected appropriately so
that the performances of the FGMEE cylindrical microshell
meet the requirements. In addition, it can be seen that the
growth rate of the critical external magnetic potential with n
is much higher than the corresponding case of the critical
external electric potential, and for larger values of n, the

efect of the functional graded distribution of materials on
the critical values of the electric potential and magnetic
potential almost converges to a certain value. In addition, the
efect of the electric potential diference in increasing or
decreasing the buckling load with efective properties close
to piezoelectric is greater than its efect in increasing or
decreasing its value with efective properties close to pie-
zoelectric phase. It can be seen that when the gradient index
of material n decreases, the critical buckling load decreases.
Te reason for this phenomenon is the reduction of the
efective Young’s modulus for magneto-electrostatic mate-
rials with an increase in the amount of piezoelectric material.
Also, when a negative/positive electrical potential is applied
to the system, tensile/compressive radial forces are generated
that change the stifness of the system and thus afect the
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Figure 6: (a) Efect of electric potential diference and (b) magnetic potential on the mechanical load of dimensionless buckling of FGMEE
cylindrical microshell for diferent values of small size parameter.

Table 6: Te efect of external magnetic potential and electric potential on the critical buckling temperature of a FGMEE cylindrical
microshell with boundary conditions of supporting supports at both ends.

Ψ0 (A)
Φ0 (V)

− 20 − 10 0 10 20
n� 0
− 0.5 612.597 537.605 460.872 387.460 317.647
− 0.2 672.659 596.847 521.454 448.286 369.879
0.0 734.824 659.008 583.875 544.345 477.740
0.2 795.946 725.170 632.457 569.534 492.342
0.5 857.143 789.331 648.877 631.765 557.973
n� 1
− 0.5 884.313 806.501 730.688 654.876 579.063
− 0.2 947.475 867.645 793.850 717.038 641.225
0 1008.64 935.838 859.034 779.199 703.386
0.2 1058.798 993.954 914.172 841.361 765.548
0.5 1135.959 1058.167 978.376 903.522 827.709
Note that it changes in a specifc range, so the range of changes in external electric potential (Φ0) is greater than the range of changes in external magnetic
potential (Ψ0). Tis is because the value is greater than and as a result of the results of the axial force and which are directly dependent on these constants, the
efect of the force caused by the external electric potential will be less than the axial force caused by the external magnetic potential (Figures 7 and 8).
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buckling load of the system. It should be noted that the
greater the value of the positive magnetic potential, the
higher the system stifness and buckling load will be. In
addition, the results shown in Figures 9 and 10 show that
there is a signifcant diference between the length scale
parameter in the buckling behavior of FGMEE microshells
predicted by the modifed Couple stress model and the
classical model.

Considering that the thickness of FGMEE microshells
also has a signifcant efect on the buckling behavior,
therefore, the buckling load for diferent values of the h/R
parameter, the small size parameter and the gradient index

of the material are shown in Table 7. According to these
results, it can be seen that the buckling load increases sig-
nifcantly with the increase of shell thickness; for example,
with the increase of h/R from 0.01 to 0.5, the buckling load
increases by about 4.8 times. Another result that can be seen
according to Table 7 is that with the increase in the amount
of CoFe2O4, its efect on increasing the buckling load
decreases.

3.5. Termal Buckling Analysis. In this article, the efect of
various factors on the thermal buckling behavior of
a magneto-electro-elastic microshell under combined me-
chanical and thermal loading is studied. Considering that in
this research, three diferent types of heat transfer distri-
bution in FMEE microshell are considered, which are:
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Figure 7: Te efect of external electric potential on the critical
buckling temperature diference ΔTcr of the FGMEE microshell.
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buckling temperature diference ΔTcr of the FGMEE microshell.
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(1) Te temperature on the outer surface increases as
much as TΔ, and the temperature increases uni-
formly by the same amount throughout the entire
thickness.

(2) Te temperature on the outer surface increases as
much as TΔ and remains constant on the inner
surface of the cylinder at the ambient temperature,
i.e., T� 300K. In this case, the temperature changes
from the outer surface to the inner surface are as-
sumed to be linear.

(3) Te temperature on the outer surface increases as
much as TΔ, and on the inner surface of the cylinder,
it remains constant at the ambient temperature, i.e.
T� 300K, and the temperature changes follow the
conduction law. Terefore, according to the re-
lationships presented in the third chapter, the
temperature change is assumed to be nonlinear.

Terefore, in this section, frstly, the efect of tempera-
ture distribution in the shell wall on the buckling of these
shells is studied. Figure 11 shows the efect of heat transfer
with uniform temperature distribution on buckling load of
FGMEE microshell. In this fgure, the efect of the ambient
temperature on the mechanical buckling load is shown for
diferent values of the gradient index of the material.
According to this fgure, it can be seen that, in general, with
the increase in temperature and the gradient index of the
material, the mechanical buckling load of FGMEE micro-
shells increases signifcantly as a result of increasing the
equivalent stifness of the structure. For the FGMEE
microshell for n� 0.1, the dimensionless mechanical buck-
ling load at ambient temperature is equal to 0.3, and with the
increase of temperature to 500K, this value is equal to 0.15,
which indicates a reduction of about 50% of the di-
mensionless critical mechanical buckling load. Also, for the
cylindrical microshell for n� 3, the dimensionless buckling
mechanical load at ambient temperature and 500K

temperature is equal to 1.27 and 0.88, respectively, which
indicates a 31% decrease in the stability of the structure with
increasing temperature. Tese results show that in the
presence of piezomagnetic cobalt ferrite phase (CoFe2O4),
the efect of temperature on the reduction of buckling load
and instability of the structure is less.

Figure 12 shows the efect of heat transfer in a constant
temperature state on the inner and outer surfaces of the shell
and the linear temperature changes from the outer surface to
the inner surface of the FGMEE shell on the buckling
mechanical load. According to the results, it can be seen that
this type of temperature distribution has a signifcant efect
on reducing the buckling load of these types of shells, and as
the temperature increases, the instability of the system oc-
curs due to much less external forces. For example, for the
microshell for n� 0.1, by increasing the temperature of the
inner wall of the shell from 293K to 500K, the dimensionless
buckling load of the system is about 0.35 and 0.10, re-
spectively, which represents a 71% reduction in the me-
chanical buckling load. Also, similarly, it is observed that for
the shell with the gradient index of the material equal to
n� 3, the dimensionless buckling load of the system at the
mentioned temperatures is about 2.4 and 0.93, respectively,
which shows that the dimensionless buckling load is reduced
by about 75%.

Te efect of heat transfer in the case of nonlinear
temperature change along the thickness on the buckling load
of a double-walled FGMEEmicroshell is shown in Figure 13.
As can be clearly seen, with the increase of the gradient index
parameter of the material, the buckling load of the desired
shell has increased and its hardness has increased. For ex-
ample, at the ambient temperature of 293K, with the in-
crease of n from 0 to 3, the mechanical load of dimensionless
buckling of the shell under investigation has increased by
about 5.3 times.

In addition, another result is that according to the
buckling load curves according to the temperature of the

Table 7: Buckling load of a functionally graded cylindrical magneto-electroelastic microshell by values of diferent parameters h/R, L/R, and
exponential distribution.

n h/R
L/R� 40 L/R� 80 L/R� 150 L/R� 200

l/h� 0 l/h� 1 l/h� 0 l/h� 1 l/h� 0 l/h� 1 l/h� 0 l/h� 1

0.00

0.01 0.45 0.34 0.42 0.31 0.38 0.29 0.31 0.26
0.10 1.13 0.93 1.04 0.87 0.95 0.78 0.85 0.71
0.20 1.44 1.32 1.33 1.11 1.21 1.02 1.20 1.00
0.50 2.01 1.69 1.85 1.54 1.69 1.40 1.55 1.29

0.10

0.01 0.59 0.43 0.53 0.33 0.47 0.28 0.39 0.39
0.10 1.27 1.07 1.31 1.01 1.17 0.91 0.97 0.88
0.20 1.78 1.42 1.76 1.23 1.58 1.14 1.30 1.21
0.50 2.67 2.14 2.65 1.95 2.39 1.69 1.96 1.96

0.30

0.01 0.79 0.54 0.66 0.44 0.60 0.32 0.49 0.43
0.10 1.47 1.20 1.45 1.08 1.31 1.00 1.09 0.97
0.20 2.04 1.62 2.00 1.42 1.80 1.24 1.48 1.28
0.50 3.38 2.70 3.33 2.20 3.00 2.03 2.47 2.17

0.60

0.01 1.36 0.86 1.07 0.87 0.96 0.73 0.79 0.70
0.10 2.30 1.80 2.23 1.81 2.01 1.64 1.65 1.45
0.20 2.77 2.17 2.68 2.17 2.41 2.03 1.98 1.53
0.50 4.56 3.62 4.48 3.63 4.03 3.39 3.31 3.01
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Figure 11:Te efect of heat transfer with uniform temperature distribution on the buckling load of a double-walled magneto-electroelastic
microshell.
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inner wall of the shell falls into three cases: uniform tem-
perature distribution, temperature distribution assuming
linearity along the thickness, and temperature distribution
assuming nonlinearity along the thickness, as shown in
Figures 11–13. As shown, it is observed that in cases of
nonlinear temperature distribution in the shell wall and at
high temperatures, thermal stresses have a signifcant efect
on the dimensionless buckling load of the shell under in-
vestigation. As an example, for a shell with a material
gradient index equal to 0.1 in three cases of uniform tem-
perature distribution, linear temperature distribution in the
wall and nonlinear temperature distribution in the wall of
the FGMEE shell, the dimensionless buckling load at
a temperature of 350K is obtained as 0.26, 0.28, and 0.23,
respectively. If at a temperature of 400K, these values are
equal to 0.22, 0.24, and 0.12, respectively. Meanwhile, with
the increase in temperature from 350K to 400K, the drop in
buckling capacity in three states of uniform temperature
distribution, linear temperature distribution in the wall, and
nonlinear temperature distribution in the wall of the
FGMEE shell reaches 15%, 14%, and 47%, respectively. Te
reason for the greater drop in buckling capacity is caused by
thermal stresses, and as a result, the equivalent stifness of
the structure decreases. According to Figures 4–12, it can be
seen that for a certain value of the temperature diference
between the inner and outer surfaces of the shell, the me-
chanical buckling load is equal to zero, and this corre-
sponding temperature value is called the critical buckling
temperature and by showing it, it will be given. In Table 8,
the critical buckling temperature of the magneto-electro-
elastic shell is shown for the gradient index values of the
material and the type of heat distribution in the shell wall.
According to the results of this table, it is clearly seen that the
temperature distribution in the thickness of the shell has
a signifcant efect on the critical buckling temperature of
these shells. An interesting result that can be seen from the
results of this table is that according to the way of tem-
perature distribution in the shell wall, the critical buckling
temperature is also obtained diferently. For example, for the
case of uniform temperature distribution in the shell wall, it
is observed that by changing the heat distribution from

uniform to linear and nonlinear, the critical temperature of
shell buckling decreases. According to the results, the greater
the degree of nonlinearity of heat distribution, the more
signifcant the changes in the critical buckling load.

4. Conclusion

Based on these experiments, the main results are summa-
rized as follows:

(i) With the increase of shell thickness, the buckling
load increases signifcantly, and for example, with
the increase of h/R from 0.01 to 0.5, the buckling
load increases by about 4.8 times.

(ii) With increasing the amount of CoFe2O4 in mag-
neto-electro-elastic cylindrical microshell mate-
rials, its efect on increasing the buckling load
decreases.

(iii) Observed that in cases of nonlinear temperature
distribution in the shell wall and at high temper-
atures, thermal stresses have a signifcant efect on
the dimensionless buckling load of the shell under
investigation.

(iv) For the shell with amaterial gradient index equal to
0.1 in three cases of uniform temperature distri-
bution, linear temperature distribution in the wall,
and nonlinear temperature distribution in the wall
of the FGMEE shell, the dimensionless buckling
load at 350K is obtained as 0.26, 0.28, and 0.23
respectively; if at a temperature of 400K, these
values are equal to 0.22, 0.24, and 0.12, respectively.

(v) With the increase in temperature from 350K to
400K, the drop in buckling capacity in the three
states of uniform temperature distribution, linear
temperature distribution in the wall, and nonlinear
temperature distribution in the wall of the FGMEE
shell reaches 15%, 14%, and 47%, respectively. Te
reason for the greater drop in buckling capacity is
caused by thermal stresses, and as a result, the
equivalent stifness of the structure decreases.

Table 8: Dimensionless critical buckling temperature of cylindrical magneto-electro-elastic microshell for diferent values of material
gradient index and type of heat distribution in the shell wall.

How to distribute temperature n
L/R

20 50 100 300

Uniform distribution
0.0 534.64
0.01 656.79 593.34 520.43 479.87
0.1 736.15 686.91 617.02 528.98

Linear temperature distribution in the wall
0.0 508.22
0.01 585.37 554.37 547.34 516.79
0.1 627.85 580.98 558.05 523.09

Nonlinear temperature distribution in the wall
0.0 407.08
0.01 414.42 403.82 388.07 372.73
0.1 425.73 414.54 401.21 386.38
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(vi) For the case of uniform temperature distribution
in the shell wall, it is observed that the critical
temperature of shell buckling decreases with the
change of heat distribution from uniform to linear
and non-linear. According to the results, the
greater the degree of non-linearity of heat distri-
bution, the more signifcant the changes in the
critical buckling load.

(vii) Te buckling force of the FGMEE microshell de-
creases with the increase of the small size pa-
rameter, which is due to the softening efect of the
small size parameter on the equivalent stifness of
the structure.

(viii) For FGMEE microshell, buckling load decreases
linearly with increasing electric potential and in-
creases with increasing magnetic potential.

(ix) In the case of classical theory (for l� 0), applying
the electric potential diference to the magneto-
electroelastic shell causes a 43% decrease and a 42%
increase in the critical buckling load of the system,
respectively.

(x) Te efect of the electric potential diference on the
buckling load changes of the structure is almost
linear.

(xi) Te buckling load of the structure increases with
the increase of the magnetic potential due to the
increase of the equivalent stifness of the structure,
and on the other hand, with the decrease of the
magnetic potential and the increase of the small
size parameter due to the softening efect of these
parameters, the mechanical buckling load of the
FGMEE cylindrical microshell decreases.

(xii) It should be noted that, as can be seen, the increase
in buckling load with increasing external magnetic
potential and also, the decrease in buckling load
with decreasing electric potential diference is
linear.

(xiii) For AΨ � 0 and n� 0, by increasing the external
electric potential to 20V and decreasing it to -20V,
the critical buckling temperature is obtained as
437.740 and 734.824 respectively, which shows
a 25% decrease and a 27% increase. At the critical
buckling temperature of the microshell, it is rel-
ative to the absence of external electric potential.

(xiv) Te volume fraction of BaTiO3 and CoFe2O4
materials in magneto-electro-elastic shells has
a signifcant efect on the critical temperature. By
increasing the gradient index of the material and
increasing n, the amount of piezomagnetic cobalt
ferrite material (CoFe2O4) in the FGMEE micro-
shell increases and this increases the critical
buckling temperature of the system.
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