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Te nano surface roughness of metallic materials is important in engineering and medical felds for specifc applications. Magneto
rheological abrasive fow fnishing (MRAFF) process was performed on nickel-free austenitic stainless workpieces in order to
obtain surface roughness at the nano level and also to forecast the performance of the MRAFF process in terms of responses such
as surface roughness (SR) and material removal rate (MRR). Tese two responses are afected by process factors such as hydraulic
pressure, current to the electromagnet, and the number of cycles performed during the machining process. Te design of
experiments (DOE) was used to determine the contributions of process parameters to output responses. Te techniques of grey
relational analysis (GRA) and principal component analysis (PCA) were used in these experimental investigations to discover the
process factors that minimise the fnal Ra and maximise MRR. Trough the DOE, a minimum SR of 63.24 nm and a maximum
MRR of 2.34mg/sec were obtained on the samples for the combination of 30 bar pressure, 6 A current, and 300 number of cycles.

1. Introduction

Components with close tolerances and good surface qualities
have been created in response to the recent increase in
demand for components that fulfll technical and functional
criteria for both engineering and medical applications. In
general, themicro/nano scale surface roughness of a material
has a substantial infuence on how well it works in terms of
fatigue strength, resistance to wear as well as corrosion, and
other associated properties [1].

If the material is a biomaterial such as AISI stainless steel
316L, the surface fnish has a strong and precise infuence on
biocompatibility characteristics such as viability and pro-
liferation of cells followed by adsorption of protein and

adhesion of bacteria. Te characteristics of biocompatibility,
such as cytotoxicity (cell viability and cell proliferation),
hemocompatibility, water contact angle, and bio-corrosion,
also depend strongly and precisely on the surface fnish of
the material.

Among the diferent kinds of austenitic steels, AISI 316L
is a common material for orthopaedic, cardiovascular, and
orthodontic implants, because of its satisfactory bio-
compatibility, corrosion resistance, and also viability in cost
[2–4]. However, issues have been found with the materials
being used in the biomedical feld.Temost essential issue is
the release of nickel ions from the implants due to corrosion
and wear [5]. Te functional characteristics of engineering
and medicinal materials are also signifcantly infuenced by
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the surface roughness at the nanoscale [6]. As a result,
a nickel-free stainless steel with nanofnishing is the subject
of the current efort.

It is always challenging to produce and regulate fne
fnishing of complicated surfaces and complex shapes. A
magnetically stifened slug of magnetorheological abrasive
(MRA) fuid is extruded back and forth through and across
the workpiece fxture in the MRAFF process. Metal removal
from the peaks occurs only where the magnetic feld is
applied over the workpiece’s surface, leaving all other lo-
cations untouched [7]. As it enters and exits the fnishing
zone, the rheological behaviour of polishing fuid moves
from almost Newtonian to Bingham plastic, and vice versa.
Te surface of the workpiece is rubbed, and the peaks are
sheared by the abrasive (cutting edges), which is supported
by the chains of ferrous particles. Te amount of material
sheared by abrasive grains from workpiece surface peaks is
determined by the strength of the MR-polishing fuid’s feld-
induced structure [8]. Magnetorheological fnishing (MRF)
[9], magnetic foat polishing (MFP) [10], magnetic abrasive
fnishing (MAF) [11], and AFM [12] are advanced fne
fnishing processes that aim to control the abrading forces.
Although the magnetic feld is used to modulate the
abrading forces in MAF, MRF, and MFP, their applications
are limited [13].

To preserve the versatility of MRF and AFM procedures,
a new hybrid approach known as “magneto rheological
abrasive fow fnishing (MRAFF)” was developed [8]. Tis
method is based on smart magnetorheological fuids, the
rheological behaviour of which can be altered by an external
magnetic feld. According to the literature, some researchers
have combined GRA and PCA to solve issues involving
multiple objectives [14]. Te efects of current, cycle count,
and hydraulic pressure, which are anticipated to play a key
role in improving surface roughness and MRR, have been
studied and optimised in this work with the aid of Taguchi’s
L27 orthogonal array technique and the combined
GRA-PCA method for efectively harnessing the MRAFF
process.

2. Materials and Methods

Nickel-free austenitic stainless steel used in this study has the
following chemical compositions: Cr-17%;Mn-10%;Mo-3%;
Si-0.4%; C-0.5%; N-0.2%, and the remaining is Fe. Tere are
various parts in theMRAFF setup that are shown in Figure 1.
In this setup, the hydraulic cylinder is selected as a double
acting cylinder with tie rod construction based on the re-
quirements. Since the operating pressure of the cylinders will
be in the range of 30 to 80 bar, a tie rod and fange mounting
combination was preferred for mounting.

Te rod diameter of the hydraulic cylinder is 36mm. A
piston which fts this rod was machined from a mild steel
block. Te outer surface of the piston was machined in such
a way to accommodate the hydraulic seal. Tis seal prevents
the seepage of magnetorheological polishing fuid (MRPF)
when there is a relative movement in the container.

Te fuid is pressurised by a piston that is attached to the
container, which then extrudes it into the fxture for the

workpiece. Here, the pressured MRPF fuid is allowed to
travel through the cylindrical or fat workpiece through the
workpiece fxture [15]. Te fxture design is customised
according to the geometry of the workpieces to be machined.
Stainless steel was chosen for the fabrication of the fxture
since it is nonmagnetic.

Te electromagnet is designed to achieve a maximum
magnetic fux density of 0.5 T across the workpiece in a gap
of 50mm. To avoid a greater magnetic feld gradient at the
corners, the core diameter is chosen to be greater than the
length of the workpiece. Te magnetic coil has 1530 turns,
a maximum current of 10A, a copper wire gauge of 17 SWG,
a coil diameter of 103mm with a core diameter of 50mm,
a core length of 70mm, and steel for the core [8].

Cerium oxide and ferrous particles were selected as
constituents of MRA fuid in the following ratios: 60% of the
volume is silicone oil base fuid, 20% is cerium oxide (300
mesh size), and 20% is ferrous particle (400 mesh size).
Figure 2 shows the morphologies of ferrous and cerium
oxide particles captured by a scanning electron microscope
(SEM), and it is observed that for the identical scale, the
ferrous particles are bigger than cerium oxide particles. It
also demonstrates that ferrous particles are with curvy round
edges in the periphery, but the cerium oxide particles are
existing with sharp edges which are required to conduct the
metal removal process.

Oleic acid, a surfactant was introduced together with
cerium oxide and ferrous particles to keep the particles in
Brownianmotion.Temechanical stirrer was used to stir the
mixture. Te stirring lasts for thirty minutes. With the aid of
a mechanical stirrer, this liquid is then once again combined
with silicone oil and AP3 grease. A C-shaped electromagnet
is encompassing the workpiece fxture in such a way that
magnetic lines are perpendicular to the workpiece surface
kept in the fxture.

Te workpiece fxture held 50 SS 316L workpieces
measuring 50×10× 4mm and having an initial SR of
0.18 μm. Before the MRAFF process begins, the MRA fuid is
loaded into the experimental setup, the required pressure is
set in the hydraulic power pack, and the voltage in the

Top hydraulic cylinder

Bottom hydraulic cylinder

Top MRF fluid container

Bottom MRF fluid container

Workpiece fixture
Electromagnet

Figure 1: MRAFF experimental setup.
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electromagnet is set using a regulated power supply. Te
rheological nature of theMRA fuid is precisely controlled by
the magnetic fux density produced by the electromagnet,
which is directly proportional to the supply voltage. Te Fe
particles in the MRA fuid inside the workpiece fxture will
be scattered in the absence of a magnetic feld. When the
electromagnet is turned on, the Fe particles in theMRA fuid
form chains, and the strength of the chains increases.

A method for consecutive operation of hydraulic cyl-
inders at an appropriate pressure reacts to the Fe chains and
CeO2 particles. Te scraping power produced and metal
expulsion from the workpiece are dependent on the frmness
of the ferrous chains, abrasive particles held by them, and
hydraulic pressure [16], which can produce a surface fnish
at the nanometer level on even difcult to machinematerials.

2.1.Design of Experiments-Taguchi Technique. Te L27 series
was chosen to optimise these process parameters using the
Taguchi approach due to the efects of theMRAFF’s extrusion
pressure, current, and number of cycles (NOC) on the surface
roughness of the stainless-steel workpiece. Table 1 displays the
selected input parameters and their levels.

Dr. Genichi Taguchi’s theory in quality building is that
quality must be built into the item and be insensitive to noise
causes by reducing the deviation of qualities from goal
qualities and execution of things [17]. He was able to sep-
arate the contour of orthogonal displays from the concept of
graphical linear connection. Taguchi advised the use of
additive models and linear graphs.

In the case of an additive model, the primary efects
alone are examined, and the efects of interactions are ig-
nored, but the linear graph displays information about the
interactions. Taguchi employs the signal-to-noise (S/N)
ratio, which connects mean with variance. Te proportion
S/N is determined by the kind of value attributes, with
greater being better, smaller being better, and nominal being
better. Te greater the better option was applied for MRR
and smaller the better was preferred for surface roughness in
this experimental work, which is referred by:

S
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Te idea of smaller the better is given by:
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2.2. Grey Relational Analysis. In some real-time situations,
the information imagined by the data may not be completely
black and white (i.e., no information or full information).
Te outcomes of these challenges may be fuzzy or cloudy and
are sometimes referred to as grey. Grey relational analysis
(GRA) refers to an analysis that includes uncertain and
partially understood factors. Te initial phase of GRA is data
preprocessing, where normalised values are used. Te
original sequence is normalised here, while the processed
data sequence is supplied by

x
∗
i (k) �

x
0
i (k) − minx

0
i (k)

maxx
0
i (k) − min x

0
i (k)

. (3)

Te original data sequence is given by x0
i (k) in the

aforementioned equation, while the biggest and smallest
values are denoted by max x0

i (k) and min x0
i (k), re-

spectively. Te reference sequence is found when scaling the
performance sequence is in between 0 and 1 using the
normalisation process. When the data value is near to 1, it is
chosen as the best response since it contains the most needed
information. For the purpose of correlating the idea as well
as experimental responses, the grey relational coefcient is
calculated as

ζ(k) �
∆min + ζ.∆max

∆0i(k) + ζ.∆max
, (4)

where ∆0i(k) is the deviation sequence given by

(a) (b)

Figure 2: SEM images of (a) Fe particles (b) CeO2 particles.

Table 1: Factors and their levels.

Parameters Level 1 Level 2 Level 3
Pressure (bar) 20 30 40
Current (A) 2 4 6
No of cycles 100 200 300

Advances in Materials Science and Engineering 3



∆0i(k) � x
∗
0(k) − x

∗
i (k)

����
����,

∆max � max
∀j∈i

max
∀k

x
∗
0(k) − x

∗
j (k)

�����

�����,

∆min � min
∀j∈i

min
∀k

x
∗
0(k) − x

∗
j (k)

�����

�����.

(5)

Here, ζ is known as identifcation coefcient, ζ ∈ [0, 1]

and normally ζ � 0.5 is used. Te grey relational grade is
calculated by taking the average of all grey relational co-
efcients of output responses, and it is given by

ci �
1
n



n

k�1
iζ i(k). (6)

2.3. Principal Component Analysis. For a set of variables in
the existence of systematic interdependence, a multivariate
technique applied was referred as factor analysis. Principal
component analysis (PCA) is a type of multivariate strategy
in which all the information about the real variables are
consolidated by a mathematical technique by means of ei-
ther lesser or uncorrelated set of combinations with mini-
mum loss of information [18]. Te PCA consolidates factors
representing largest variances to build up the main key part
and the following largest variable meant for the consequent
principal component, until the sample variances are accu-
mulated as component groups.

PCA is used to address issues based on multiobjective
optimisation utilising Taguchi’s approach. Te PCA is
a method for elucidating various covariance patterns using
a direct mix of measured properties. Te PCA strategy [19]
used in this work consists of the following steps:

Step 1: Development of characteristic array of multiple
responses

x1(1) x1(2) . . . . . . x1(n)

x2(1) x2(2) . . . . . . x2(n)

⋮ . . . . . . . ⋮

⋮ . . . . . . . ⋮

xm(1) xm(2) . . . . . . xm(n)
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, (7)

where xi(j) denotes the value in the matrix, i� 1, 2, 3,
. . .,m; j� 1, 2, 3, . . ., n. In this study,X is the normalised
S/N ratio of each response and m� 27, n� 3.
Step 2: Generation of the correlation coefcient array
It is generated as:

Rjl �
Cov xi( (j), xi(l)

σXi(j)XσXi(l)
 , j � 1, 2, 3 . . . n; l. (8)

Here, the sequence covariance of xi (j) and xi (l) is
referred as Cov (xi (j) and xi (l)): standard deviation of
xi (j) is denoted as σxi (j); and standard deviation of xi (l)
sequence is referred as r σxi (l).
Step 3: Calculation of Eigen vectors and values

Eigenvectors and values are calculated by using the
correlation array.

R − λkIm( Vik � 0, (9)

where λk refers to the eigen values 
n
k�1λk � n, k �

1, 2, 3 . . . n; Vik � [ak1ak2 . . . akn]T refers to the eigen
vectors for the respective eigen value λk.
Step 4: Determination of the principal components

Te formulation of the uncorrelated principal compo-
nents is formulated as follows:

Ymk � 
n

i�1
Xm(i) · Vik, (10)

where Ym1 and Ym2 are the frst and second principal
components and so on. Based on variance, the principal
components are arranged in decreasing order with respect to
the variance andmany of the variances in the data are related
to the frst principal component.

3. Results and Discussion

Optimization software Minitab 16.0 was used to formulate
L27 experiments in order to optimise the process parameters
of the Magnetorheological abrasive fow fnishing process by
the Taguchi method.

3.1. Surface Measurements and MRR. Te stainless-steel
workpieces machined by the MRAFF process were ana-
lysed by Talysurf Coherence Correlation Interferometer
(CCI). By considering the mass of the workpiece before and
after the machining and machining time, MRR for each
sample was calculated.

Te surface roughness of the stainless-steel workpieces
were measured by Talysurf Coherence Correlation In-
terferometer (CCI). Te 3D surface of the workpiece along
with the 2D graph is shown in Figure 3. During the mea-
surement, the focused area was kept as 3 μm× 3 μm, the
evolution length was 0.8mm, and the vertical resolution was
0.01 nm (0.1A˚). More surface irregularities could be ob-
served on the SS 316L sample before theMRAFF process and
a smaller number on the sample after the MRAFF process
from the 3D profles. In each sample, three surface mea-
surements were made at diferent locations and their mean
values have been used for the study.

3.2. Combined GRA-PCA. For the purpose of normalising
the outputs, equation (1) is used. In GRA, normalising is
followed by deviation sequence. After the calculation of
deviation sequence, the grey relational coefcients were
found by using equation (2). Principle component analysis
was used to fnd MRPI [20], and all the aforementioned
values are given in Table 2.

From the experimental results by considering the mean
value of the responses, it is observed that when the hydraulic
pressure is increased from 30 to 40 bar, MRR was reduced by
10.13%, and SR was increased by 1.35%. While the hydraulic

4 Advances in Materials Science and Engineering



pressure is increased from 40 to 50 bar, an increment of
1.37% of MRR and 2.07% of SR were observed.

When the supply current to the electromagnet is in-
creased from 2 to 4A, 78.26% increment inMRR and 10.32%
reduction of SR were observed. Te further increase in
current from 4 to 6A increases the MRR by 48.09% and
reduces the SR by 10.27%. Te increase in NOC from 100 to
200 leads to increase the MRR by 32.1% and decrease the SR
by 5.27%. Te subsequent increase of NOC from 200 to 300
reduces the SR by 5.08% and increases the MRR by 30.75%.

From the results of PCA, the selected given vectors for
MRR and SR are 0.707 and 0.707 since the Eigen value is
1.9276 which is greater than 1 and desirable as given in
Table 3. Te average value of MRPI [21] for the selected
levels of input parameters, the optimal values are found and

given in Table 4. Te pressure of 30 bar, current of 6A, and
300 number of cycles were found as optimum levels.

Te variations of Multiresponse Performance Index
(MRPI) for all the levels of input parameters are shown as
the main efect plot in Figure 4. In this graph, the pressure
values are 30, 40, and 50 bar at the level 1, 2, and 3, re-
spectively. Similarly, current values are 2, 4, 6A and number
of cycles are 100, 200, and 300, respectively, at three levels.

Biplots are a type of statistical exploratory graph that is
a generalisation of the two-variable scatterplot. A biplot is
a combination of a score plot and loading plot. Te biplot is
a graphical representation of information from both samples
and variables in a data matrix. Vectors, linear axes, and
nonlinear trajectories are used to represent variables, while
points are used to represent samples. In the case of

(a) (b)
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Figure 3: 3D surface of SS 316L (a) beforeMRAFF process, (b) afterMRAFF process 2D graph of SS 316L surface, (c) beforeMRAFF process
and, (d) after MRAFF process.
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categorical variables, category level points can be used to
represent the levels of a categorical variable. A generalised
biplot shows data on both continuous and categorical
variables.Te biplot as shown in Figure 5 is used to interpret
the overall scoring of Eigen values with respect to the re-
sponses simultaneously. It is utilised to describe the location
of one response over the other by means of the principal
components. Biplot depicts the available subspace along
with the score points. For the initial two parts, biplot fnds
the proportion between the perceptions and factors acces-
sible in subspace.

In PCA, the loading plot is used to determine which
variables have the greatest impact on each component.
Loadings can range from −1 to 1. Loadings close to −1 or 1
indicate that the variable has a signifcant impact on the
component. Loadings close to zero indicate that the variable
has little efect on the component. Te loading plot can help
you fgure out which variables have the most infuence on
each component. Loadings can range from −1 to 1. Loadings
close to −1 or 1 indicate that the variable has a signifcant
impact on the component. Loadings close to zero indicate
that the variable has little efect on the component. Te
loading plot in Figure 6 shows that when primary segment 1
and vital segment 2 expand, the estimation of MRR increases
while the assessment of surface roughness decreases, in-
dicating a link between these two yield responses.

From the interaction plot for MRPI as shown in Figure 7,
it is observed that the interaction is existing in between
hydraulic pressure and current as well as hydraulic pressure
and number of cycles since all other combinations are
showing the MRPI variations without any interactions.

Analysis of variance (ANOVA) as given in Table 5 is
utilised to summarise the percentage contribution of input
parameters on the output response [22]. From this table, it is
understood that the current to the electromagnet is the most
dominant input parameter; it holds 70.74% contribution
followed by the number of cycles and hydraulic pressure
each of them having 22.41% and 1.78% contribution,
respectively.

3.3. Efect of Hydraulic Pressure. When the hydraulic ex-
trusion pressure is increased from 30 to 50 bar, the surface
roughness and MRR on stainless-steel workpieces depict
that there is no appreciable improvement because of the
increase in hydraulic pressure [23]. Since the pressure values

Table 3: Eigen values and variation of principal components.

Components Eigen value Diference Variation (%) Cumulative (%) Eigenvector [MRR
and SR]

Z1 component 1.9276 0.700 96.40 96.40 [0.707, 0.707]
Z2 component 0.0724 0.667 3.60 100.00 [0.707, −0.707]

Table 4: Response table for grey relational grade.

Factors Level 1 Level 2 Level 3 Max–Min
Pressure 0.289 0.269 0.263 0.026
Current 0.197 0.256 0.367 0.170
NOC 0.229 0.266 0.325 0.096
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Figure 4: Main efect plot for MRPI variation.
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Figure 5: Biplot for MRR and SR.
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Figure 6: Loading plot for MRR and SR.
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used does not induce much on the indentation/shearing
force on the ferrous chains as well as abrasive particles, no
signifcant correlation is obtained for hydraulic pressure on
output responses.

3.4.EfectofCurrent. As the current is raised from 2A to 6A,
the surface roughness of stainless-steel workpieces continues
to diminish, and the surface quality improves. Te sur-
rounding ferrous chains boost the bonding strength of the
abrasive particles as a result of the greater magnetic fux
density caused by the rise in current [23]. As a result, the
abrasive particles’ inclination to spin is considerably de-
creased, and they are actively involved in material removal
and lowering surface roughness.

3.5. Efect of Number of Cycles. Te surface smoothness
improved signifcantly when the number of cycles was in-
creased from 100 to 300 [24]. Te removal of loosely held
material left over after the surface grinding was primarily
responsible for the frst reduction in surface roughness. Te
deeper grinding marks are removed after the entire material
burrs have been removed, further reducing surface
roughness.

3.6. Validation of Optimised Results. Validation experiments
were carried out to validate the optimised GRA-PCA results,
which are shown in Table 6. Validation results are found to
deviate from predicted values by no more than 5%. As
a result, the model developed using the response surface
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NOC

2,000 4,000 6,000

30,000 40,000 50,000 100 200 300
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0.2

0.3

0.4

0.2

0.3

0.4

Figure 7: Interaction plot for mean MRPI.

Table 5: Analysis of variance.

Source DF SeqSS Adj SS Adj MS F P % Count
Pressure (bar) 2 0.0034 0.0034 0.0017 3.52 0.05 1.78
Current (A) 2 0.1335 0.1335 0.0668 139.5 ≤0.001 70.7
NOC 2 0.0422 0.0423 0.0212 44.22 ≤0.001 22.4
Error 20 0.0096 0.0095 0.0005 5.06
Total 26 0.1888
S� 0.0218703 R-Sq� 94.93% R-Sq (adj)� 93.41%.
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methodology can be used to predict the fnal Ra and MRR of
nickel-free austenitic stainless-steel within the range of input
variables chosen.

4. Conclusion

Experiments were carried out to study the efects of current,
cycle count, and extrusion pressure on the surface fnish in
order to optimise theMRAFF process parameters and obtain
a nano level surface fnish on nickel-free stainless-steel
workpieces. Te fndings below are the result of the ex-
perimental study. Minitab 16.0 software was used to opti-
mise the process parameters.

(i) With respect to the experimental results and
analysis carried out, the increase in hydraulic
pressure plays a least signifcant role towards the
responses

(ii) Te most dominant input parameter is the current
to the electromagnet as it plays a major role in the
amount of metal removal from the workpiece
surface that tends to achieve surface roughness at
the nano level

(iii) When compared with the other two input param-
eters, a moderate role is played by the number of
cycles towards the fnal SR and MRR

(iv) From the GRA-PCA technique, the optimum
combination of input parameters that results in
minimum SR along with maximum MRR is iden-
tifed as 30 bar pressure, 6 A current, and 300
number of cycles
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