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Mechanical properties are important indicators for evaluating the quality of strips.Tis paper proposes a mechanical performance
prediction model based on the Gray Wolf Optimization (GWO) algorithm and the Extreme Learning Machine (ELM) algorithm.
In the modeling process, GWO is used to determine the optimal weights and deviations of ELM and experiments are used to
determine the model’s key parameters. Te model efectively avoids manual intervention and signifcantly improves aluminum
alloy strips’ mechanical property prediction accuracy.Tis paper uses processed data from the aluminum alloy production plant of
Shandong Nanshan Aluminum Co., Ltd. as experimental data. When the prediction deviation is controlled within ±10%, the
GWO-ELMmodel can achieve a correct rate of 100% for tensile strength, 97.5% for yield strength, and 77.5% for elongation on the
test set. Te RMSE of the tensile strength, yield strength, and elongation of the GWO-ELM model was 5.365, 11.881, and 1.268,
respectively. Te experimental results show that the GWO-ELMmodel has higher accuracy and stability in predicting aluminum
alloy strips’ tensile strength, yield strength, and elongation. Te GWO-ELMmodel efectively avoids the defects of the traditional
model. It has a special guiding signifcance for producing aluminum alloy strips.

1. Introduction

Among the many indicators of hot-rolled alloy products,
mechanical properties, which are infuenced by the com-
plexity of processing parameters, are one of the important
indicators of the quality of hot-rolled alloy products.
Terefore, the mechanical properties of alloy products are
valued by many manufacturers and researchers. Accurate
prediction of the mechanical properties of hot-rolled alu-
minium alloys has become one of the hot topics in the
development and application of aluminium alloys [1, 2]. Up
to now, there are two main models in the feld of metal
property prediction. One of them is the construction of
material constitutive models for material property pre-
diction [3]. Jia et al. [4] used experimentally obtained stress-
strain data to calculate the material constants involved in the
Arrhenius-type constitutive model and the modifed

Zerilli–Armstrong (MZA) model. Zhang et al. [5] estab-
lished the constitutive model for the thermal deformation
behavior of high-strength aluminium alloy (Al-Zn-Mg-Cu).
Te results show that the constitutive model can accurately
predict the fow behavior of the Al-Zn-Mg-Cu alloy. Al-
though the emergence of the constitutive model enables
researchers to reasonably predict the product performance
according to the processing technology, the construction of
the constitutive model still needs experimental support and
reasonable assumptions, which leads to the fact that the
constitutive model cannot fully meet the requirements of
industrialization. To meet the needs of industrial pro-
duction, another model emerged along with the maturity of
computer technology, which uses intelligent algorithms to
analyze large amounts of real production data to obtain
more desirable predictions of mechanical properties. Along
with the development of computer technology, artifcial
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intelligence algorithms play an increasingly important role
in materials’ research. Various machine learning algorithms
applied to materials’ research have solved many challenging
problems [6]. Te combination of computer technology and
materials’ science will likely yield more important
achievements in the foreseeable future [7]. Guo et al. [8]
proposed a method for multiproperty prediction of mate-
rials using the Interior Point Algorithm. Te rationality and
reliability of the above theory are verifed successfully by the
experiment using the data of the steel production process.
Among the many machine learning algorithms on which
statistical models rely, neural network-like algorithms are
favored and widely used in the feld of material property
prediction due to their excellent properties [9, 10]. Niklas
et al. [11] needed to develop accurate models to ensure
efcient control equipment for superelastic shape memory
alloys (SMA). After training, the ANN can successfully
calculate model parameters from cyclic tensile stress-strain
tests, thereby improving the efciency of SMA control de-
vices. Lan et al. [12] experimentally established a dataset of
the chemical composition, processing parameters, and
mechanical properties of the A380 alloy. Te Fe/Mn content
ratio, Sr content, cooling rate, and porosity content were the
input variables, and ultimate tensile strength (UTS) and
elongation (El) were used as output parameters. Two ANN
models were developed, namely, (1) a back propagation
artifcial neural network (BP-ANN) model and (2) a back
propagation artifcial neural network model for particle
swarm optimization (PSO-BP-ANN). Te results show that
the established PSO-BP-ANN model has better reliability
and prediction accuracy than the BP-ANN model. Wu et al.
[13] established an ANN model to predict the bending
deformation in welded thin-walled aluminium alloy tube
structures. Te model’s input variables include the four
controllable position parameters of the weld, while the target
output is the bending distortion in the x- and y-axis di-
rections. A supervised multilayer feedforward back propa-
gation (BP) neural network is proposed to estimate the
bending distortion quickly and accurately. Te predicted
values of the designed BP neural network are compared with
the fnite element simulation results. Te results show that
the proposed BP neural network model can accurately
predict the bending distortion caused by welding over
a range of welding position parameters. Jaafreh et al. [14]
used a multiobjective evolution (MOE) algorithm and
machine learning techniques to predict the age-hardening
behavior of aluminium alloy under various machining
conditions. Te results showed that combining the MOE
algorithm and the machine learning process can successfully
refne features and construct accurate machine learning
prediction models compared to other feature selection and
preprocessingmethods. Sun et al. [15] used ANNmethods to
develop a correlation model between the thermal processing
parameters and mechanical properties of Ti-6Al-4V alloy
based on a series of forging and heat treatment experimental
data. Te correlation model was developed using the ANN
method. Te results show a reliable correlation between the
process parameters and the mechanical properties of the Ti-
6Al-4V alloy. Aykut et al. [16] improved the experimental

model of surface roughness using ANN and response surface
methodology (RSM).

ANN is widely used in various felds of material research
[17, 18], but ANN is very time-consuming in the training
process. To overcome this shortcoming, the ELM algorithm
is proposed. ELM, an emerging single hidden layer neural
network algorithm [19], has received attention in material
property prediction research due to its fast learning speed
and high generalization capability. Cao et al. [20] used ELM
optimized by the genetic algorithm (GA) with other nu-
merical models (including fnite element model simulation)
to determine the critical dimensions of prefabricated gear
blanks with complex geometry for comparative analysis. Te
results showed that the GA-ELM and R-GPLVM predictions
were in good agreement with the experimental results. Sui
and Lv [21] combined the ELM algorithm-based model with
an attribute reduction method. With the attribute reduction
method combining information entropy and Gram–Sch-
midt orthogonal transformation, the process parameters
that can efectively afect quality were selected to form
a subset of features. Compared with traditional modelling
methods, the model has the advantages of a simple structure,
low time consumption, and high prediction accuracy. Te
prediction results show that the model has better adapt-
ability to complex hot rolling processes, and the prediction
performance is better than that of the traditional ELM
model. Liu et al. [22] proposed a rolling force prediction
method based on GA, PSO, and multihidden layer extreme
learning machine (MELM), namely, the PSO-GA-MELM
algorithm, which uses MELM as the primary model for
rolling force prediction. In the modelling process, a genetic
algorithm is used to determine the optimal number of
hidden layers and nodes and a particle swarm algorithm is
used to search for the optimal input weights and biases.
Experimental results show that the rolling force prediction
model trained by the algorithm has an excellent performance
in prediction accuracy and can be used for the prediction of
rolling force in the hot strip rolling process.

Although machine learning models, especially neural
network type models, have been widely used in the study of
steel materials, there has been little research in the prediction
of mechanical properties of aluminium alloy materials. Te
main objective of this study is to develop an optimised ELM
model that can accurately predict the mechanical properties
of aluminium alloy strips. Firstly, the model is built using
a dataset obtained from an aluminium alloy strip production
line. Secondly, the ELM model was optimised using the
GWO algorithm. Finally, a comparative analysis of the
accuracy of the model was carried out. Te experimental
results show that the model is feasible to be applied to the
prediction of mechanical properties of aluminium alloy
strips.

2. A Brief Introduction to MGWO, GWO,
and ELM

2.1. ELMAlgorithm. ELM was born in 2004 to overcome the
limitation of the complex and slow iterative structure of
traditional neural networks. ELM’s single hidden layer
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feedforward neural network randomly selects the weights
and biases of the number of hidden nodes. ELM has received
a lot of attention from scholars since its introduction be-
cause, compared with traditional neural networks, ELM as
single hidden layer feedforward neural networks (SLFNs)
can have faster iteration speed and better generalization
while ensuring accuracy [16]. Te algorithm principle of
ELM algorithm is shown in equations (1)–(7) [19]. Te
structure of the ELM algorithm is illustrated in Figure 1.

As illustrated in Figure 1, we suppose that there exist N
samples (Xi, ti), where Xi � [xi1, xi2, xi3, . . . , xin, ]T ∈Rn,
ti � [ti1, ti2, ti3, . . . , tim, ]T ∈Rm, when the neural network has
a hidden layer while that hidden layer has L hidden layer
neurons, the output value of the neural network can be
expressed as follows:

fL Xj􏼐 􏼑 � 􏽘
L

i�1
βig Wi ∙Xj + bi􏼐 􏼑, j � 1, 2, 3, · · · , N, (1)

where βi is the output weight between the frst i output
weight between the neuron in the hidden layer and the
neuron in the output layer, g( ∙ ) is the activation function,
and g(Wi ∙Xj + bi) represents the input parameterXj of the
output of the frst i output of the hidden layer neuron.
Wi � [wi1, wi2, wi3, . . . , win]T is the input weight between the
frst i input weight between the frst input neuron and the
hidden layer neuron, and bi is the output bias of the frst i

output bias of the frst hidden layer neuron, and Wi ∙Xj

denotes Wi as the inner product of Xj of the inner product.
Te smaller the error between the predicted and mea-

sured values of a single hidden layer neural network, the
more accurate themodel’s prediction results, as shown in the
following equation:

􏽘
N

j�1
fL Xj􏼐 􏼑 − tj

�����

����� � 0, (2)

i.e., parameters βiWi and bi exist as shown in the following
equation:

fL Xj􏼐 􏼑 � 􏽘
L

i�1
βig Wi ∙Xj + bi􏼐 􏼑 � tj, j � 1, 2, 3, · · · , N.

(3)

In the matrix form, this can be expressed as shown in the
following equation:

Hβ � T, (4)

of which H(W1, W2, · · · , WL, b1, b2, · · · , bL, X1, X2, · · · , XL)

�

g(W1 ∙X1 + b1) · · · g(WL ∙X1 + bL)

⋮ ⋱ ⋮
g(W1 ∙XN + b1) · · · g(WL ∙XN + bL)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

N×L

,β �

βT
1
⋮
βT

L

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

L×m

,T �

TT
1
⋮
TT

L

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

N×m

,H represents the output of the

nodes in the hidden layer, and β represents the output
weights from the hidden layer to the output layer. T rep-
resents the desired output value with high prediction

accuracy. As shown in equation (5), to obtain a single hidden
layer neural network with the desired prediction accuracy,
the parameters β∗, W∗, and b∗ are desired to be obtained.

H W
∗
, b
∗
, Xi( 􏼁β∗ − T

����
���� � min

W,b,β
H Wi, bi, Xi( 􏼁βi − T

����
����, (5)

where i � 1, 2, 3, · · · , L, is equivalent to making the loss
function J obtain its minimum value, as shown in the fol-
lowing equation:

J � min
W,b,β

􏽘

N

j�1
􏽘

L

i�1
βig Wi ∙Xj + bi􏼐 􏼑 − tj⎛⎝ ⎞⎠

2

. (6)

Te process of training a single hidden layer neural
network can be transformed into solving Hβ � T, which can
solve for the matrix H of the Moore–Penrose generalized
inverse matrix H†. Due to the characteristics of the ELM
itself, i.e., the input weights Wi and the hidden layer bias bi
are determined randomly. Once the input weights Wi and
hidden layer bias bi are determined, the output matrix of the
hidden layer H is uniquely determined. At this point, H† is
the matrix H of the Moore–Penrose generalized inverse, as
shown in the following equation:

β∗ � H
†T. (7)

2.2.GWOAlgorithm. TeGWO algorithm is inspired by the
hunting behavior of the grey wolf pack and is designed to
simulate the group collaboration behavior of the grey wolf
pack in the process of predation to achieve the purpose of
optimization [23]. Te GWO algorithm has an adaptive
convergence factor and a feedback mechanism that allows it
to avoid falling into the trap of local optimality in the global
search process. It, therefore, has higher accuracy and ro-
bustness in the problem-solving process.

Te grey wolf is a canine predator that prefers to live in
packs, with a clear hierarchical division of labor among its
members during the hunt. Te hierarchical distribution of
the grey wolf population is similar to the pyramid’s struc-
ture, as shown in Figure 2. Te pack’s leader is located at the
frst level of the pyramid and is called α. Te think tank team
of the pack at the second level of the pyramid is called β. β is
second only to α in terms of leadership in the pack, and when
there is a vacancy in α′s position in the pack, β will fll the
vacant position and become the new α. Te executors of the
pack are located at the third level of the pyramid and are
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Figure 1: Network structure of the ELM algorithm.
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called δ.Te wolves at the bottom of the pyramid are calledω
and are responsible for executing αβ and δ′s commands.Te
strict hierarchical distribution is directly refected in the
hunting activities of the grey wolf, which will be led by α.
During the hunting process, αβδ and ω will strictly follow
their duties and have a clear division of labor and the
hunting process can be divided into three main steps,
namely, fnding and surrounding the prey; harassing and
tracking the prey; and attacking the prey.

Te algorithm principle of the GWO algorithm is shown in
equations (8)–(15) [23]. Te grey wolf optimization algorithm
abstracts the hunting pattern of awolf pack into an optimization
algorithm. In the process of fnding and encircling prey, the grey
wolf’s process of encircling prey is defned in equations (8) and
(9) as follows. Equation (8) represents the distance between the
grey wolf and the prey. Here, D

→
represents the direction and

distance travelled by individual grey wolves. C
→

is the parameter
used to determine the direction of the wolf pack’s search for
prey, t represents the number of iterations of grey wolf posi-
tions, and X

→
P(t) represents the position that individual grey

wolves tend to approach. X
→

(t) represents the position of the
individual grey wolf when the iteration number is t. Equation
(9) represents the iterative formula for the position of the grey
wolf, and A

→
is the parameter used to adjust the radius of the

prey search. A
→

and C
→

calculation formulas are shown in
equations (10) and (11). a is the convergence factor, as shown in
equation (12), and a decreases from amaximum value of 2 until
it becomes 0 as the number of iterations increases. r1

→ with r2
→ is

a random vector with the modulus length set in the range [0, 1].

D
→

� C
→
∙ X

→
P(t) − X

→
(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (8)

X
→

(t + 1) � X
→

P(t) − A
→
∙ D

→
, (9)

A
→

� 2a ∙ r1
→

− a, (10)

C
→

� 2r2
→

, (11)

a � 2 −
2t

tmax
. (12)

In the practical application of the optimization algo-
rithm, the optimal three solutions are assigned to α, β, and δ
according to their ftness, making αβδ the leader of the pack
closest to the prey. In turn, the other grey wolves adjust their
positions according to the best-positioned grey wolf, cal-
culate their ftness after the position update, and rerank the
grey wolves according to their ftness size. Te mechanism
for individuals in the pack to update their positions is shown

in Figure 3. Te mathematical model of individual grey
wolves updating their positions can be shown as equation
(13). Here, D

→
α D

→
β D

→
δ represents the distance relationship

between α and β δ individuals and other individuals, re-
spectively, X

→
α X

→
β X

→
δ represents, respectively, the α β δ the

current position of the individual, C
→

1 C
→

2 C
→

3 represents
a random vector, and X

→
represents the current position of an

individual grey wolf. In a wolf pack ω, the distance and
direction of the individual to the target are shown in
equations (14) and (15).

D
→

α � C
→

1 ∙ X
→

α − X
→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

D
→

β � C
→

2 ∙ X
→

β − X
→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

D
→

δ � C
→

3 ∙ X
→

δ − X
→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(13)

X
→

1 � X
→

α − A1 ∙ D
→

α

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

X
→

2 � X
→

β − A2 ∙ D
→

β

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

X
→

3 � X
→

δ − A3 ∙ D
→

δ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

X
→

(t + 1) �
X
→

1 + X
→

2 + X
→

3

3
. (15)

From equations (10) and (12), the value of a will gradually
decreasewith the progress of iteration and the fuctuation range
of parameter A

→
will also decrease.Te grey wolf algorithm uses

the |A
→

| and C
→

to avoid the solution of the optimization al-
gorithm falling into a local optimum. As shown in Figure 4(a),
when |A

→
|> 1, the grey wolf individual moves away from the

target, i.e., a global search is performed. As shown in Fig-
ure 4(b), when |A

→
|<1, the individual grey wolf will launch

a fnal attack on the prey, i.e., the optimal solution is obtained.
From equation (11), it can be seen that C is a random value
taking values in the interval [0, 2]. C represents the size of the
hindrance for the grey wolf to approach the prey. C> 1 means
that the grey wolf individual is not easy to approach the target;
on the contrary, C< 1 means that the grey wolf individual is
easy to approach the target and C can maintain randomness
during the iterative process and helps the algorithm escape in
time when it is about to fall into a local optimum trap. Tis
algorithm feature also contributes to the ease with which the
grey wolf optimization algorithm can obtain a global optimum.

2.3. MGWO Algorithm. Te MGWO algorithm was pro-
posed by Zhang and Zhou [24] in 2021. Te algorithm
considers that a with diferent update strategies can sig-
nifcantly afect the algorithm’s performance [25]. Te al-
gorithm principle of the MGWO algorithm is shown in
equations (16)–(18) [24]. It uses a convergence factor update
based on regular exponential changes, as shown in equation
(16). In addition, to enhance the balance between global
search and local exploitation, the MGWO algorithm pro-
poses a new adaptive shifting strategy [24, 26], whose

α

β

δ

ω

Figure 2: Hierarchy chart of the grey wolf population.
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mathematical expression is shown in equation (17). Here,
the weights Wi of the mathematical expression are shown in
equation (18).

a � 2e
(− t/)

tmax, (16)

X
→

(t + 1) �
W1X

→
1 + W2X

→
2 + W3X

→
3

3
1 −

t

tmax
􏼠 􏼡 + X

→
1

t

tmax
, (17)

Wi �
Xi

�→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

X1
�→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + X2
�→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + X3
�→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

, i � 1, 2, 3. (18)

3. Proposed GWO-ELM Prediction Model

ELM is an efective mechanism for pattern classifcation
and regression learning. In the ELM algorithm model, the
number of hidden layer neurons needs to be determined
in advance and the structure of the neural network has
a direct impact on the accuracy of the ELM algorithm
model, which relies on a large number of hidden layer
nodes for good performance. As the number of nodes in
the hidden layer increases, the computational cost in-
creases signifcantly [27]. An excessive number of hidden
layer neurons will make an ELM model so complex that it
will slow down the prediction speed or even overft.
However, too few hidden layer neurons will result in an
ELM model that does not achieve the desired accuracy. To

date, there is no accepted and valid theory to guide the
selection of the number of hidden layer neurons. In most
cases, the determination of the number of hidden layer
neurons relies on the experience of the model trainer to
obtain the appropriate neural network parameters. If the
essential parameters of the algorithm depend too much on
manual selection, then the robustness of the model will be
reduced. In addition, the weights and biases of the ELM
model are randomly generated, which simplifes the al-
gorithm but also has a signifcant negative impact on the
algorithm’s accuracy, as the randomness of the parame-
ters makes the model’s accuracy highly uncertain.

Mean Absolute Percentage Error (MAPE) mean square
error (MSE) and root mean square error (RMSE) will be
used to evaluate the performance of the model. Te cal-
culation methods of MAPEMSE RMSE and R2 are shown in
equations (19)–(22), respectively [15].

MAPE �
100%

n
􏽘

n

i�1

_􏽢yi − yi

yi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (19)

MSE �
1
n

􏽘

n

i�1

_􏽢yi − yi􏼐 􏼑
2
, (20)

RMSE �

������������

1
n

􏽘

n

i�1

_􏽢yi − yi􏼐 􏼑
2

􏽶
􏽴

, (21)

ω
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Figure 3: Schematic of the grey wolf location update for the grey wolf algorithm.
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Figure 4: Individual grey wolves (a) moving away from their target and (b) attacking their prey.
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R
2

�
SSR

SST
�

􏽐
n
i�1

_􏽢yi − y􏼐 􏼑
2

􏽐
n
i�1 yi − y( 􏼁

2 , (22)

where n represents the number of samples to be substituted
into the formula for operation, _􏽢yi represents the predicted
value, yi represents the actual value, and y represents
the mean.

Te suitable combination of the number of hidden layer
neurons with the input weights and biases becomes the focus
of improving the prediction accuracy of ELM.Terefore, this
paper introduces the GWO algorithm to optimize the ELM
algorithm, forming a new hybrid algorithm named GWO-
ELM. Te fow of the GWO-ELM algorithm is shown in
Figure 5. In the modelling process of the GWO-ELM al-
gorithm, the population size, objective function, and the
maximum number of iterations of the GWO algorithm are
frst determined. Ten, the optimal number of hidden layer
neurons, the optimal input weights, and optimal bias of the
ELM network are determined using the GWO algorithm.
TeGWO algorithm then determines the optimal number of
hidden layer neurons, the optimal input weights, and the
ELM network’s optimal bias.

Te specifc steps of the GWO-ELM algorithm are as
follows:

(1) We determine the input data. Te raw data were
preprocessed and randomly divided into training
and test sets.

(2) We initialize the GWO algorithm and determine the
number of grey wolves in the grey wolf algorithm
population, the maximum number of iterations, and
the number of parameters to be optimized. We
determine the parameters A and C. We take i� 0.

(3) We initialize the weights and biases of the ELM, at
which point the number of hidden layer neurons is
no longer determined empirically but by experi-
mental comparison. At this point, the number of
hidden layer neurons is L� i+ 1.

(4) We calculate the ftness of each individual in the pack
to determine the best individual, in which MAPE is
used as the individual’s ftness. Te smaller the error
of an individual, the better it is. We determine α, β, δ,
and ω in the wolf pack based on the individual error
in the pack.

(5) We update the position and parameters of each grey
wolf a A and C.

(6) We update the input weight ω and the bias b of the
ELM model from the results of step (5) so that the
parameters of the ELM model take values closer to
the optimal values.

(7) We calculate the ftness of all grey wolves and update
αβδ and its ftness. Te individual prediction error
size determines that individual’s leadership position
in the wolf pack. Tat is, the αβδ of wolves is de-
termined according to the error of individual pre-
diction values from small to large.

(8) We determine whether the maximum number of
iterations is reached; if not, we return to step (5);
otherwise, the optimal limit learning machine

Reach the maximum
iteration or not

Determine input data

Initialize the GWO population
and parameters αAC, i=0

Calculate the fitness of
individuals in the population ,
save the three best individuals

as αβδ

Calculate the fitness of all 
individuals , Update αβδ and 

fitness

Initialize the number of neurons
in the hidden layer (L) of ELM ,

L=i+1, weight ω and bias b

Initialize the weight ω and bias
b of ELM

Obtain the optimal L weight (ω)
and bias (b)

Obtain the optimal network and
output the predicted value

yes

no

Reach the maximum
L or not

yes

no

Update the location and
parameters

(aAC) of each individual

Figure 5: Flow chart of the GWO-ELM algorithm.
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structure is obtained when the number of neurons in
the hidden layer is L.

(9) To determine whether L reaches the maximum
number of hidden layer neurons. If it does not reach
the maximum number of hidden layer neurons, step
(3) is repeated; otherwise, the model’s prediction
accuracy can be compared when L takes diferent
values. Finally, the optimal ELM network structure
can be obtained.

4. Model Structure Building and
Experimental Analysis

Extensive experiments were conducted to test the prediction
accuracy of the proposed GWO-ELM model and compare
and analyze the performance of the GWO-ELM model with
that of the conventional ELM model and the MGWO-
ELM model.

4.1. Acquisition and Processing of Training Samples. Te
prediction performance of the extreme learning machine is
very dependent on the quality of the input data, and re-
dundant or conficting data will not result in the desired
prediction accuracy [28]. High-quality data are the basis for
establishing accurate models. Tis paper uses the actual
production data of Shandong Nanshan Aluminum Industry
Co., LTD, as experimental data. Te data come from the big
data platform database of the enterprise. Tis data are
available and can be obtained as shown in the Data
Availability section. Te test standard number GB/T 16865-
2013 was used to obtain data on material properties. In the
experiments of this paper, the correlation between the input
and output parameters was frst analyzed using correlation
analysis algorithms and physical metallurgy principles.
Parameters with signifcant infuence on tensile strength,
yield strength, and elongation were selected as input pa-
rameters for the model, and a total of 22 input parameters
were extracted. Te input parameters of the model are
shown in Table 1.Tis data are available and can be obtained
as shown in the Data Availability section. Te output pa-
rameters were set to tensile strength, yield strength, and
elongation, and the output parameters are shown in Table 2.
Table 1 shows the statistics for the mean, standard deviation,
and minimum and maximum values for each input pa-
rameter. Table 2 shows each output parameter’s mean,
standard deviation, and minimum and maximum value
statistics. After removing the outlier data for the initially
identifed parameters, the mean values were used to fll in the
vacant values. Te processed data will be used for model
training and testing. A total of 131 production data sets on 6-
series aluminium alloys and 5-series aluminium alloys were
collected and applied. Te main compositions of the alu-
minium alloys used for the data in this paper are shown in
Table 3. Seventy percent of the total data (91 sets) will be
assigned to the training set and used to train the model to
have the desired prediction accuracy.Te remaining data (40
sets) will be allocated to the test set to test the model’s
performance.

Data processing needs to avoid the adverse impact of the
diference in the order of magnitude between diferent
parameters on the prediction results, so the input parameters
need to be normalized before input into the model. Te
input parameters need to be normalized before being fed
into the model. Te data normalization method is shown in
equation (23), the input parameters will be normalized to [0,
1] [29]. Here, x represents the normalized data, xmax and
xmin represent the maximum andminimum values of data in
the dimension, respectively, and xi represents the normal-
ized result.

xi �
x − xmin

xmax − xmin
. (23)

4.2. Determination of the Parameters of the GWO-ELM
Algorithm. Te network structure of the GWO-ELM model
is closely related to the data structure. Te dimensionality of
the input determines the number of neurons in the input
layer. Te dimensionality of the output determines the
number of neurons in the output layer. Te input parameter
is 22 dimensions, so the number of neurons in the input
layer is set to 22; the output parameter is 3 dimensions, so the
number of neurons in the output layer is set to 3. In the
following experiment, 70% of the data will be used to train
the model and the remaining 30% will be used to test the
performance of the model. Te entire simulation process in
this experiment was carried out using Python 3.6. Firstly, the
activation function was determined by the experiment [30].
Te number of neurons in the hidden layer was tentatively
set to 22 to test the model’s prediction accuracy with dif-
ferent activation functions. Te experimental results are
shown in Table 4. Te mean square error of the test set and
the mean absolute percentage error of the test set were
minimized when the activation function was “sigmoid.” Te
mean squared error of the training set for the “sigmoid”
activation function is 316.72, the mean squared error of the
test set is 594.99, and the total mean squared error of the
prediction is 401.68. Te mean squared error of the training
set for the “sigmoid” activation function and the mean
absolute percentage error for the training set are 8.02, the
mean absolute percentage error for the test set is 10.45, and
the total mean absolute percentage error is 8.76. Te ELM
algorithm activation function is set to “sigmoid.”

Next, experiments are used to determine the optimal
number of hidden layer neurons for the ELM algorithm.Te
number of hidden layer neurons has a large impact on the
prediction results of the ELM model, and too many or too
few hidden layer neurons will decrease the model’s pre-
diction accuracy. In this section, the ELM activation func-
tion is “sigmoid” and the other parameters remain
unchanged. Te number of ELM hidden layer neurons was
determined to be in the range [1, 38] based on the di-
mensionality of the input parameters used in this experi-
ment. Te performance of the ELM model with diferent
numbers of hidden layer neurons was compared, and the
results are shown in Figure 6. When the number of neurons
in the hidden layer was less than 23, for tensile strength, yield
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strength, and elongation, the prediction accuracy of the test
set increased with the increase of the number of neurons.
When the number of neurons in the hidden layer exceeds 23,
especially the prediction accuracy of elongation, the pre-
diction accuracy of the test set shows a trend of fuctuation
decline. Te reason for the previously mentioned phe-
nomenon is that with the increase of the number of hidden
layer neurons, the overftting tendency of the model

increases and the overftting leads to the abnormal increase
of the prediction error of the test set. As shown in Figure 6,
the prediction accuracy reached its peak when the number of
hidden layer neurons was 23.

Next, the population size of the grey wolf algorithm was
determined by experiments. Te number of iterations was
set to 300, and the number of individuals in the population
ranged from [10, 100]. Te prediction results of the test set

Table 1: Statistical information on input parameters.

Number Parameter Unit Mean Std Min Max
1 Machine speed (m/min) 21.352 8.735 7.0 48.0
2 Heating temperature-1 (°C) 418.130 100.595 314.9 575.0
3 Heating temperature-2 (°C) 419.368 101.832 314.8 575.1
4 Heating temperature-3 (°C) 419.094 101.684 314.8 575.0
5 Heating temperature-4 (°C) 418.385 101.255 315.1 575.0
6 Heating temperature-5 (°C) 418.247 101.283 314.9 574.9
7 Heating temperature-6 (°C) 417.496 100.936 315.0 575.2
8 Heating temperature-7 (°C) 417.301 101.120 310.4 575.3
9 Heating temperature-8 (°C) 417.449 101.091 310.4 575.7
10 Heating temperature-9 (°C) 417.466 101.057 310.5 575.5
11 Heating temperature-10 (°C) 417.507 101.047 310.5 575.6
12 Heating temperature-11 (°C) 417.398 101.079 310.6 575.4
13 Heating temperature-12 (°C) 412.836 104.010 309.8 574.9
14 Elongation of tension bending straightening 1 (%) 0.312 0.454 0 1.0
15 Preageing temperature 1 (°C) 19.535 4.991 11.0 33.3
16 Preageing temperature 2 (°C) 19.973 5.46918 11.2 38.1
17 Preageing speed (m/min) 22.267 8.290 8.0 49.0
18 Coiling tension (N/mm2) 12.008 0.488 7.0 13.0
19 Depression distance of tension bending straightening (mm) 0.428 0.273 0.036 0.979
20 Pretension of tension bending straightening (N/mm2) 50.088 15.883 17.0 90.0
21 Post-tension of tension bending straightening (N/mm2) 50.088 15.883 17.0 90.0
22 Elongation of tension bending straightening 2 (%) 0.312 0.454 0 1.0

Table 2: Statistical information on output parameters.

Number Parameter Unit Mean Std Min Max
1 Tensile strength MPa 263.789 43.507 204.000 338.667
2 Yield strength MPa 212.830 61.052 93.667 309.500
3 Elongation % 14.366 3.460 7.500 26.667

Table 3: Main components of aluminium alloy strip.

Element Al (%) Mg (%) Si (%) Fe (%) Cu (%) Cr (%) Mn (%) Ti (%) Ga (%) Others
(%)

Mass
percentage

6xxx 97.12 1.0122 0.6931 0.5564 0.2391 0.2301 0.084 0.025 0.0166 0.028
5xxx 94.37 4.7273 0.0969 0.2498 0.0674 0.0335 0.3961 0.0191 0.0141 0.022

Table 4: Comparison of diferent activation functions.

Name
MSE MAPE

Train set Test set All Train set Test set All
Sigmoid 316.72 594.99 401.68 8.02 10.45 8.76
tanh 498.75 1052.36 667.79 10.25 14.29 11.49
Linear 196.76 2544.63 913.65 7.55 13.10 9.25
rbf_l1 18150.11 22051.90 19341.50 49.48 52.97 50.54
rbf_l2 405.53 901.78 557.06 9.38 11.79 10.12
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with the number of iterations are shown in Figure 7. Te
prediction results of the test set showed low prediction errors
when the population size was 67, 78, and 86. Still, too large
population would cause the model training time to be ex-
tended, resulting in unnecessary time wastage.

Te choice of objective function has a massive impact on
the performance of the GWO algorithm. When the model is
a multioutput algorithm, the infuence of the weights be-
tween diferent objectives on the prediction accuracy of the
fnal algorithm is of interest. To investigate the efect of the
objective function weights on the mechanical properties of
aluminium alloys, the objective function used in this paper is
shown in equation (24). Here, PT, PY, and PE are the
predicted values of tensile strength, yield strength, and
elongation, respectively; ET EY EE are themeasured values of
tensile strength, yield strength, and elongation, respectively;
N is the number of measured values; j i is the penalty co-
efcient of yield strength and elongation, respectively. Te
number of iterations of the GWO algorithm is set to 100, and
the trends of tensile strength, yield strength, and elongation
with the change of penalty coefcients are shown in Figure 8.
As an example, Figure 8(a) shows the relationship between
the MAPE error of tensile strength and the penalty co-
efcient. Te closer the color was to dark, the smaller the
MAPE error and the better the prediction accuracy. Dif-
ferent combinations of the penalty coefcient correspond to

diferent prediction accuracies of mechanical properties.
When the combination of penalty coefcients (i, j) is (20,
80), (90, 50), (60, 30), and (90, 80), the prediction error of
tensile strength is small. Similarly, after comparing
Figures 8(b) and 8(c), the penalty coefcient corresponding
to the minimum prediction error of yield strength and
elongation can be obtained. Te prediction errors of yield
strength and elongation of tensile strength are summarized.
When the penalty coefcient (i, j) is (20, 80), the prediction
errors of three mechanical properties are smaller at the
same time.

Te trend of variance of MAPE for the three output
variables is shown in Figure 9, which indicates that when the
penalty coefcients j i are 80 and 20, respectively, the cor-
responding MAPE variances for tensile strength, yield
strength, and elongation are smaller. When the penalty
coefcients are 80 and 20, respectively, the predicted values
of tensile strength, yield strength, and elongation can
maintain a balance of the predicted values of the three
mechanical properties while ensuring a small accuracy of
their own. Te penalty coefcients in the objective function
equation (23) j i are chosen as 80, 20. Te comparison
between the optimal penalty coefcient and the original
coefcient is shown in Table 5. Te optimal penalty co-
efcient can not only reduce theMAPE of the test set but also
signifcantly reduce the variance of the prediction errors of
the three variables. A lower variance means that the pre-
diction error distribution of the three variables is more
balanced.

P PT, PY, PE( 􏼁 �
1
n

􏽘

n

i�1

PT − ET

ET

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ j × 􏽘

n

i�1

PY − EY

EY

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ i × 􏽘

n

i�1

PE − EE

EE

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎛⎝ ⎞⎠ × 100%, i, j � 1, 10, 20 · · · 100. (24)
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Te number of iterations of the GWO algorithm sig-
nifcantly impacts the prediction results, and each iteration
will obtain a better value of the ELM algorithm parameters
than the previous iteration. Te GWO algorithm population
size was set to 30, the ftness function was set to equation
(24), and i� 20, j� 80. Te relationship between the pre-
diction accuracy of the GWO-ELM model test set and the
number of iterations, as well as the model training time and
the number of iterations, is shown in Figure 10. As the it-
erations proceeded, the R2 of the test set increases gradually
and the modelling time increased linearly with the number
of iterations. When the number of iterations reaches 3150,
the prediction accuracy of tensile strength, yield strength,
and elongation converges.

In summary, the parameters of the GWO-ELM algo-
rithm have been determined and are shown in Table 6.When
the values of parameters are shown in Table 6, the iterative
optimization of weight ω and bias b by the GWO algorithm

can be realized. Tus, when the maximum number of it-
erations is reached, the optimal input weight ω and bias b of
the ELM network in the GWO-ELM model are determined.

4.3. Experimentation and Evaluation of Model Performance.
In this section, mechanical property prediction experiments
demonstrate the excellent prediction accuracy of the pro-
posed GWO-ELM model. Te model comparison experi-
ment of the GWO-ELM model, MGWO-ELM model, and
traditional ELM model is designed to verify the advantages
of the proposed GWO-ELM model. Each model was run
through twenty replicates, and the results were averaged to
avoid misleading results from model chance.

To ensure a fair comparison, the corresponding pa-
rameters for the GWO-ELM model and the ELM model in
this experiment are shown in Table 6. Te parameters used
by the MGWO algorithm are consistent with the GWO
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algorithm. MAPE and RMSE were error measures for the
mechanical properties’ prediction models. Te prediction
errors of the three models after twenty replicate experiments
for the three mechanical properties are shown in Table 7.
Table 7 provides an excellent visual representation of the
prediction results of the GWO-ELM model, MGWO-ELM
model, and ELM model for the three mechanical properties.
In the test set, RMSE errors of tensile strength of the
GWO-ELM model, MGWO-ELM model, and ELM model
are 5.365, 11.557, and 21.489, respectively. Te RMSE errors

of yield strength in the GWO-ELM model, MGWO-ELM
model, and ELM model are 11.881, 20.465, and 43.313,
respectively. Te RMSE errors of the elongation in the
GWO-ELM model, MGWO-ELM model, and ELM model
are 1.268, 1.848, and 5.360, respectively. Te above-
mentioned result indicates that the GWO-ELM model
mentioned in this paper has a signifcantly higher prediction
accuracy than the conventional ELM model for the three
mechanical properties of tensile strength, yield strength, and
elongation. Te MGWO-ELM model outperforms the ELM
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Table 5: Optimal penalty factor vs. original factor.

i j
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model but is weaker than the GWO-ELM model. In the test
set, for tensile strength, yield strength, and elongation, the
MAPE of the GWO-ELM model is 1.703, 2.703, and 5.994
respectively, while the corresponding MAPE of the
MGWO-ELM model is 2.316, 5.185, and 9.244 respectively,
and that of the ELM model is 5.317, 16.165, and 19.630,
respectively. Te abovementioned result indicates that the
average accuracy of the GWO-ELM model is signifcantly
higher than that of the MGWO-ELM model for the three
mechanical properties of tensile strength, yield strength, and
elongation. R2 was used as the evaluation index to evaluate
the prediction results of the test set. Te R2 values of tensile
strength in GWO-ELM, MGWO-ELM, and ELM models
were 0.9857, 0.9805, and 0.7102, respectively. Te R2 values
of yield strength in GWO-ELM, MGWO-ELM, and ELM
models were 0.9662, 0.9804, and 0.3958, respectively. Te R2

values of elongation in GWO-ELM,MGWO-ELM, and ELM
models were 0.9141, 0.9074, and −0.8312, respectively. Te
abovementioned results show that GWO-ELM and
MGWO-ELM achieve an ideal ftting efect in the prediction
of tensile strength, yield strength, and elongation, and the
performance of the two models is far better than that of the
ELM model. In addition, GWO-ELM was better than
MGWO-ELM in the prediction of tensile strength and
elongation, so the GWO-ELMmodel was slightly better than
MGWO-ELM.

Te predicted results of the GWO-ELM model,
MGWO-ELM model, and ELM model compared to the
actual values after twenty replicate experiments for the three
mechanical properties are shown in Figure 11. Both in the
training set and the test set, the prediction accuracy of the
yield strength and elongation of the tensile strength is higher

in the GWO-ELM model and the ft degree of the yield
strength and elongation of the tensile strength is higher in
the GWO-ELM model. Te error distributions of the three
model test sets are shown in Table 8. For the three me-
chanical properties of tensile strength, yield strength, and
elongation, the GWO-ELM model has a more obvious
advantage in the prediction results of the test set. Tis is
especially true for the tensile and yield strengths. When the
prediction deviation is controlled within ±10%, the pre-
diction accuracy of tensile strength in the GWO-ELM
model, MGWO-ELM model, and ELM model is 100%,
97.5%, and 80%, respectively. Te prediction accuracy of
yield strength of the GWO-ELM model, MGWO-ELM
model, and ELM model is 97.5%, 92.5%, and 62.5%, re-
spectively. Te prediction accuracy of elongation in the
GWO-ELMmodel, MGWO-ELMmodel, and ELMmodel is
77.5%, 77.5%, and 37.5%, respectively. Although the pre-
diction accuracy of elongation of GWO-ELM and
MGWO-ELM is the same when the error is controlled
within ±10%, the prediction accuracy of the GWO-ELM
model is better than that of MGWO-ELM when the pre-
diction error is 5%.Te abovementioned results indicate that
the prediction accuracy of GWO-ELM is more stable than
MGWO-ELM and ELM models.

In the prediction results of the test set, the absolute error
distribution of the prediction results of tensile strength, yield
strength, and elongation in diferent models is shown in
Figure 12. As shown in Figure 12(a), the prediction error range
of tensile strength in the GWO-ELMmodel is smaller than that
of the other two models. As shown in Figure 12(b), the pre-
diction error range of yield strength on the GWO-ELMmodel
is smaller than that of the other two models. As shown in

Table 6: Optimal parameter confguration for the GWO-ELM model.

Algorithm Parameters Confguration

GWO
Number of iterations 3150

Population size 67
Penalty coefcient [i, j] [20, 80]

ELM

Number of neurons (input layer) 21
Number of neurons (output layer) 3
Number of neurons (hidden layer) 23

Activation functions Sigmoid

Table 7: Comparison of the predictive performance of the three models.

Mechanical
properties Name

RMSE MAPE R2

Train set Test set Train set Test set Train set Test set

Tensile strength
GWO-ELM 9.052 5.365 1.951 1.703 0.9549 0.9857
MGWO-ELM 7.939 11.557 1.574 2.316 0.9534 0.9805

ELM 10.976 21.489 2.702 5.317 0.9386 0.7102

Yield strength
GWO-ELM 15.499 11.881 4.204 2.703 0.9303 0.9662
MGWO-ELM 16.795 20.465 4.225 5.185 0.9022 0.9804

ELM 19.163 43.313 6.176 16.165 0.9053 0.3958

Elongation
GWO-ELM 1.424 1.268 7.371 5.994 0.7649 0.9141
MGWO-ELM 1.355 1.845 6.937 9.244 0.8123 0.9074

ELM 1.630 5.360 8.864 19.630 0.7384 −0.8312
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Figure 11: Predicted versus actual values of the (a) GWO-ELM training set, (b) GWO-ELM test set, (c) MGWO-ELM training set,
(d) MGWO-ELM test set, (e) ELM training set, and (f) ELM test set.
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Figure 12: Absolute error distribution of the mechanical properties: (a) tensile strength, (b) yield strength, and (c) elongation.

Table 8: Distribution of prediction errors for the three model test sets.

Mechanical properties Name
Prediction value deviation (%)

[0, 5] [5, 10] [10, 15] [15, 20] set [20, +∞]
Correct ratio (%)

Tensile strength
GWO-ELM 95 5 0 0 0
MGWO-ELM 95 2.5 0 0 2.5

ELM 65 15 15 0 5

Yield strength
GWO-ELM 87.5 10 5 2.5 2.5
MGWO-ELM 62.5 30 2.5 2.5 2.5

ELM 37.5 25 7.5 7.5 22.5

Elongation
GWO-ELM 57.5 20 12.5 5 5
MGWO-ELM 42.5 25 10 7.5 15

ELM 12.5 25 7.5 15 40
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Figure 12(b), the prediction error range of yield strength in the
GWO-ELMmodel is signifcantly smaller than that of the other
two models. Te GWO-ELM model performs better than the
MGWO-ELM model in predicting tensile strength and yield
strength but not in predicting elongation. As shown in
Figure 12(c), theMGWO-ELMmodel is slightly better than the
GWO-ELM model in the prediction of elongation. In general,
compared with the other two models, the prediction accuracy
of tensile strength, yield strength, and elongation can be higher
in the GWO-ELM model.

5. Conclusion

Tis paper proposes an intelligent optimization algorithm,
which has the advantages of a simple structure, short training
time, and high prediction accuracy. Tis algorithm is suc-
cessfully applied to the prediction of mechanical properties of
aluminium alloy strips in this paper and eventually achieves
high prediction accuracy, providing a new method for pre-
dicting the mechanical properties of aluminium alloy strips,
which has broad application prospects.

(1) Preprocessed industrial production data were used
to train and test the GWO-ELM model. Trough
several experiments, the optimal network structure
of the ELM algorithm and the optimal parameters of
the Grey Wolf algorithm were determined. Te
weights and biases of the ELM were determined by
the GWO algorithm.Te optimal GWO-ELMmodel
structure was successfully determined.

(2) After repeated training, the RMSEs of the
GWO-ELM model for tensile strength, yield
strength, and elongation were 5.365, 11.881, and
1.268, respectively. While the corresponding RMSEs
of the MGWO-ELM model were 11.557, 20.465, and
1.845, and the corresponding RMSEs of the ELM
model were 21.489 and 43.313.Tis indicates that the
ELM model optimized by the GWO algorithm has
higher prediction accuracy.

(3) When the prediction deviation is controlled within
±10%, the prediction accuracy of tensile strength in
the GWO-ELM model, MGWO-ELM model, and
ELM model is 100%, 97.5%, and 80%, respectively.
Te prediction accuracy of yield strength of the
GWO-ELM model, MGWO-ELM model, and ELM
model is 97.5%, 92.5%, and 62.5%, respectively. Te
prediction accuracy of elongation in the GWO-ELM
model, MGWO-ELM model, and ELM model is
77.5%, 77.5%, and 37.5%, respectively. Te com-
prehensive performance of the GWO-ELMmodel in
predicting tensile strength, yield strength, and
elongation is better than that of the other two
models. Te GWO algorithm successfully improves
the stability and robustness of the ELM model.
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