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Aluminium is a noncorrosive, lightweight material used to fabricate parts for the aerospace, automobile, and construction
industries. Due to the low-temperature resistance, more heat is generated. At the same time, in machining, tremendous eforts are
taken to keep friction and chatter to aminimum and to attain better quality and perfect output, and also more attention is required
while selecting the machining process parameters. Spindle speed, rate of feed, radial and axial depth of cut, and radial rake angle of
the tool are the parameters utilized to machine aluminium 6063 using the HSS tool on CNC milling to estimate spindle and
worktable vibration using a prediction model. In this study, the design of the experiment of the response surface methodology
approach is used to create a second-order statistical equation for experimentation with the Design-Expert v12 software. Te
performance characteristics are analyzed using the ANOVA method. Te spindle speed achieved the lowest vibration between
2000 and 3000 rpm. Next, axial and radial depths were the most vibration-afecting parameter compared to the rate of feed and
radial rake angle of the tool. To fnd the best feasible response, the nondominant sorting genetic algorithm II (NSGA II) approach
was trained and tested using MATLAB software. Using a Pareto-optimal technique, the optimum worktable vibration ranged
from 0.00284 to 0.00165mm/s2, whereas the spindle vibration ranged from 0.02404 to 0.01336mm/s2. Te predicted values were
found to be in an excellent argument when Pareto-optimal solutions are used.

1. Introduction

In recent years, manufacturers have focused on predicting
machining process parameters to minimize machining
processes and to meet customer expectations of low cost and
high quality. Furthermore, predicting machining parameters
that can reduce machine and tool vibrations and produce
high-quality materials is crucial in machining. Some dis-
crepancies existed between the simulated and measured
cutting forces inside each cycle due to self-excited vibration
during the milling process [1]. Nowadays, vibration analysis
gives a great interest to researchers. Signifcant eforts are
needed to monitor and minimize vibrations in cutting tools
and machines. To measure and analyze the vibrations,

vibration testers, piezoelectric sensors, micro-
electromechanical sensors, proximity probes, laser Doppler
vibrometers, and accelerometers are used.

Te cutting process was performed using a cubic boron
nitride (CBN) end mill cutter and AISI-D3 steel material to
study the relationship between the wear in the tool and
vibration amplitude. Vibration is commonlymeasured using
an accelerometer. Te author [2] found that increased tool
wear is caused by an increase in vibration amplitude at high
peak frequencies.

Te vibration amplitude signal signifcantly increases
when the fank is substantially damaged. Tis results from
wearing one fute in an experiment employing accelerom-
eters while milling mild steel workpieces with HSS four-fute
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end mills to monitor tool wear evolution [3]. To increase
steel machinability, the infuence of vibration on surface
unevenness and tool wear was estimated using an end
milling process. Surface unevenness and wear in the tool can
be reduced using two-dimensional vibration-assisted
microend milling (2-D VAMEM) [4]. Sivasakthivel et al.
[5] measured the acceleration amplitude using a fast
Fourier-transform (FFT) analyzer of Al 6063 material, and
the tools used for experimentation were HSS end mill. Te
input parameters considered are the helix angle of a cutting
tool, spindle speed, feed rate, and the axial and radial depth
of cut and found that the tool’s helix angle is the most
relevant parameter in lowering vibration amplitude. Te
research reported by Shen et al. [6] experimented using
aluminium alloys to minimize the ultrasonic vibration. Te
bottom region of the slot and the vertical sidewall region of
the place were studied in a slot-milling machine experiment
to decrease surface unevenness. According to the F-test, the
most infuential factors are spindle speed and the rate of
feed. Surface unevenness and vibration amplitude are
minimized considering spindle speed, axial cutting depth,
feed, and heating temperature as input parameters are op-
timized using the analysis of variance (ANOVA) approach
with the design of experiment (DoE) of response surface
methodology (RSM) and the desired function approach. In
the vertical milling center experiment, surface morphology
and vibration were assessed using a ball-end-coated carbide
insert. According to Amin et al. [7], the temperature and
cutting speed have the greatest infuence on the resulting
surface quality and maximum vibration amplitude. Exper-
iments were performed using AISI H13 steel with a TiAlN
tool to measure the tool’s surface roughness, tool wear, and
vibration and concluded that wear in the tool and surface
roughness depend primarily on tool instability [8]. A fnite
element model is developed to fnd the vibration on milling
machines. Te experimental work was completed, and data
were obtained using statistical analysis, which revealed that
surface roughness is mostly impacted by the dynamical
features of the cutting tool [9].

Milling machine experiments were performed on C45E4
steel; optimization was carried out using a Gaussian process
regression model, which analyzes surface roughness while
taking into account tool vibration. Te Gaussian process
regression (GPR) model was used to forecast surface
roughness, and the results indicated that vibration in the tool
is also an important factor that impacts surface quality [10].
Te researcher [11] designed a mathematical model using
the RSM optimization technique to measure tool vibration,
surface quality, and tool wear during milling EN31 tools.Te
conclusion stated that the feed is the infuencing element
impacting surface quality and cutting speed afects the tool.
Te vibration analysis experiments were conducted by
Sivasakthivel et al. [12] on tool holders and workpiece
holders to machine aluminium Al 6351 material considering
the rake angle, nose radius, cutting speed, feed rate, and
depth of cut. Te regression model was developed, opti-
mization was performed using a genetic algorithm, and the
nose radius showed a negative value during sensitivity
analysis. Te author [13] stated that tool life, quality of

machined products, and functional behavior are primarily
afected by vibration. Studies have been conducted using
magnetic rheological fuid dampers to suppress vibration
using AISI 4340 steel with 45HRC indexable inserts on
milling machines. As a consequence, the damper decreases
tool vibration while increasing cutting performance. Te
cutting resistance and vibration are measured by [14] during
the simulation experiment using fnite element modeling.
Experiments have shown that improved tool orientation has
been found to minimize machining distortion and increase
surface quality.

Vibration analysis and Hilbert–Huang transforms
(HHTs) were used to monitor the condition of the milling
machine and compare the results with FFT. As a result,
HHTs revealed the diference in cutting edge due to its high
time/frequency resolution, and the cutting fuid increased
the vibration damping in the milling machine [15]. A
55NiCrMoV6 steel ball-end milling machine experiment
measured the cutting resistance and vibration. Surface
roughness topography was investigated utilizing the signal-
to-sound (S/N) ratio and grey rational analysis (GRA) with
the surface angle of inclination and tool overhang taken into
account. As a result, the angle of inclination and tool
overhang have a substantial impact on the produced force
and vibration values. Selecting the best tilt angle and tool
overhang will decrease surface quality [16]. Vibrations that
occur when a fat-end cutter arrives at a workpiece during
machining can have a signifcant impact on the quality of the
fnished part, tool life, and machining efciency. To address
this issue, a combination of modeling, simulations, and
experiments can be used to understand, predict, and miti-
gate these vibrations [17]. Te experiments were designed
using signal processing technology to measure the accel-
eration signals in spindle vibrations of tools generated
during the end mill process. Te protective chamfer, along
with a relatively high rake angle, is a successful criterion to
minimize the amplitude of vibration under most cutting
settings [18].

At various vibration amplitudes and cutting velocities,
compression studies were conducted on the surface integrity
of the Ti-6Al-4V end mill. Surface roughness values increase
as the cutting rate and vibration amplitude increase,
resulting in a considerable microvibration texture in rotary
ultrasonic elliptical end milling (RUEEM) in the form of
burrs divided into machined surfaces [19]. Lin et al. [20]
generated a regression model to forecast the surface
roughness of Al 6061 materials and optimized using artifcial
neural networks to measure vibration during endmills based
on cutting factors. Estimating prediction accuracy can be
ensured by emphasizing the results of the developed pre-
diction model derived from cutting conditions that consider
machining stability. A milling experimental study was
conducted by a researcher [21] to improve the surface
unevenness of AISI 52100 bearing steel and the impact level
of the workpiece. Te researcher [22] evaluated the surface
roughness in the slot end-mill process with a variable helix
angle for aluminium machining. A statistical analysis was
conducted to measure surface roughness and proved that
variable helix angles can produce much higher surface
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roughness quality than standard helix angle tools. Te ex-
perimental investigation of cutting vibration during
microend-milling of a straight groove involves studying and
measuring the vibrations generated during the machining
process. Based on the results, spindle speed is the most
critical characteristic that causes cutting vibration [23].

Using the Taguchi technique, cutting factors were
studied. Experiments have shown that cutting speed and
tooth contact feed were the most inducing factors afecting
the surface of the material in both cases. Regression and
ANOVA techniques were utilized to anticipate the accel-
eration amplitude. Based on the results, cutting speed has
a signifcant infuence on the vibration amplitudes [24]. Te
purpose of the study was to improve the machinability of
AISI H13 material and identify the ultrasonic vibrations
caused in the end milling process. Te results revealed
a continual change in mechanical loading caused by the
tool’s vibratory motion, resulting in a decrease in cutting
forces [25]. Implementing a stacked generalization ensem-
bles model for milling tool wear state recognition by vi-
bration signal analysis can enhance the efciency and safety
of machining processes by enabling proactive maintenance
and tool replacement, thereby minimizing downtime and
optimizing tool usage [26].

In general, vibration is undesirable phenomenon,
resulting in unpleasant motions and dynamic stresses, and
also afects machining performance, particularly surface

fnish and tool life. A survey of the previously published
literature indicates that there are a few publications pub-
lished on optimizing the parameters impacting vibration
characteristics during the milling process of aluminium
6063. Furthermore, none of the studies use experimental
analysis to evaluate spindle and worktable vibration under
real-world conditions, including the spindle speed, feed rate,
axial depth of cut, radial depth of cut, and radial rake angle of
the tool. Te RSM, ANOVA statistical analysis, and non-
dominated sorted genetic algorithm (NSGA-II) heuristic
approaches were also performed to optimize the milling
parameters.

2. Development of a Mathematical Model

Because the frst-order model tends to be inadequate for
a curved response surface, the second-order model is rec-
ommended to approximate a section of the genuine response
surface with curvature. All of the terms from the frst-order
model, as well as quadratic and cross-product terms, are
included in the second-order model. Second-order models
depict quadratic surfaces like minimum, maximum, ridge,
and saddle. Tus, a second-order linear diference equation
is a mathematical equation that represents the connection
between consecutive terms in a series. A quadratic poly-
nomial form and second-order model can be represented as
follows [5]:

y
″

� β0x0 + β1 x1 + β2x2 + β3x3 + β11x
2
1 + β22x

2
2 + β33x

2
3 + β11x1x2 + β12x1x3 + β14x2x3, (1)

where y″ is the approximated response given in the second-
order equation, β0 is the regression equation’s free term
coefcients, x0, x1, . . . are linear factors, x11, x22, . . . are the
quadratic terms, and x12, x13 , . . . are the interaction terms.

Te polynomial coefcients are determined using the
multiple regression method. Te coefcients are calculated
using the statistical software Design-Expert v12.

3. Experimental Design

In the present work, the spindle speed, feed rate, axial depth
of cut, radial depth of cut, and radial rake of the cutting tool
have been considered as the process parameters to measure
spindle and worktable vibration.

RSM is a set of mathematical and statistical tools used to
analyze situations like the one given using an empirical
model and also the most informative method of analysis of
the result of a factorial experiment. It is a technique that
graphs the results of polynomial regression studies in three
dimensions to ofer a sophisticated perspective of correla-
tions between combinations of two predictor variables and
an outcome variable.

Te output response vibration on the spindle and
worktable may be represented as a function of process
parameters such as the spindle speed (N), rate of feed (fz),

axial depth of cut (ap), radial depth of cut (ae), and radial
rake angle of the tool (c).

Using these parameters, the objective is to get the best
possible answer for the machine performance. Similarly,
several studies have theoretically anticipated output re-
sponses using equation (27):

A � cN
k1fz

k2ap
k3ae

k4 c
k5 , (2)

whereA is the actual acceleration amplitude response (mm/s2),
N is the spindle speed (m/min),fz is the rate of feed (mm/rev),
ap is the cutting depth (axial) (mm), ae is the cutting depth
(radial) (mm), and c is the rake angle of tool (radial) (degree).

Temodel parameters are k1, k2, k3, k4, k5 (assessed from
experimental data), and the letter c stands for the “error”
factor.

Te experiments were carried out utilizing the DoE
process of RSM as recommended in [28, 29]. As given in
equation (2), the spindle speed, feed rate, radial cut depth,
axial depth, and radial rake angle of the tool are the input
parameters.

A central composite design (CCD) in statistics is an
experimental design that may be used in response surface
techniques to create a second-order (quadratic) model of the
response variable without requiring a full three-level
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factorial experiment. Te design matrix is selected as per
CCD, and levels are coded as −2, −1, 0, 1, and 2. As per the
recommendation and suggestion given by the Production
Technology Handbook (Hindustan Machine Tools [30], the
ranges of cutting values and conditions are selected as
presented in Table 1. As indicated in Table 2, 32 experiments
were designed to estimate the process parameters. Tese
experimental designs were developed using the Design-
Expert v12 software, which is a tool that helps us in de-
signing experiments and analyzing the data. To anticipate
spindle and worktable vibration, a second-order mathe-
matical equation was devised, whose appropriateness was
determined using ANOVA [31, 32]. Te MATLAB software
was used for vibration optimization experiments. Te
nondominated sorting genetic algorithm (NSGA-II) fore-
casts spindle and worktable vibration.

4. Experimentation

Te milling process was carried out in a CNC vertical
machining center (Model-S33). A photographic view of the
machined specimen and the HSS tool is shown in Figure 1
and Figure 2.Te test specimen of aluminium (Al 6063) alloy
with a dimension of 50mm× 50mm× 50mm was prepared
as a cube block to perform experimental work. Aluminium
6063 is a medium-strength alloy with moderate fracture
toughness at high strength. Aluminiummetal’s softness, low
melting point, and low electrical resistivity are most likely
due to the few electrons available for metallic bonding. As
a result, considerable attention should be given during
machining. Table 2 shows the chemical properties of Al 6063
(Jindal Aluminium, Bengaluru, India). Te HSS end mill
cutter was used for cutting operations under dry conditions.
When compared to other tool steels, HSS tools have greater
heat and wear resistance, durability, and hardness levels.
HSS has a low coefcient of friction and great shock

resistance, which helps to minimize chipping and breakage
during use.

While conducting the test, two unidirectional piezo-
electric accelerometers were fxed in the spindle to achieve
spindle vibration and another on the worktable to achieve
worktable vibration. So, the measured vibration in each
channel was designated as Channel 1 and Channel 2 as
shown in Table 3. Te LabVIEW TM software was used in
the experiment to act as a data acquisition platform to
acquire the vibration.

5. Results and Discussion

5.1. Prediction Using ANOVA. ANOVA is a statistical test
that compares the mean values of diferent groups to de-
termine the infuence of one or more factors. Te ANOVA
test is used in a regression analysis to examine the infuence
of independent factors on the dependent variable. Moreover,
the ANOVA test helps in determining the signifcance of an
experiment’s results.

5.2. Prediction of Spindle Vibration Using ANOVA. Te
spindle vibration was measured using channel 1, whose
ANOVA results are shown in Table 4. Te F-value is 37.13,
and the p value is less than 0.05 indicating that the model is
adequate (signifcant) and there is a 0.01%magnitude chance
of occurring due to noise. Te lack of ft F-value is 3.11,
which indicates that the model term is insignifcant and
there is an 11.71% chance that the lack of ft F-value is caused
by noise. Te predicted R2 of 0.7191 does not match the
adjusted R2 of 0.9589 as closely as one might expect. Te S/N
ratio is measured by adeq precision. A ratio greater than 4 is
preferred. Te S/N ratio of 22.034 suggests an adequate
signal.

Te regression analysis equation of real machining pa-
rameters can be expressed as

spindle vibration ASV(  � +0.226242 − 0.000043 × N − 0.166098 × fz − 0.172614 × ap − 0.248864 × ae − 0.001251 × c

− 0.000025 × N × fz + 2.50000E − 06 × Nvap + 0.000015 × N × ae − 5.00E − 07 × N × c

+ 0.1250 × fz × ap − 0.062500 × fz × ae + 0.006250 × fz × c + 0.0250 × ap × ae + 0.000833

× ap × c + 0.000417 × ae × c + 8.68182E − 09 × N
2

+ 0.426136 × fz
2

+ 0.092045 × a
2
p

+ 0.142045 × a
2
e + 0.000033 × c

2
.

(3)

5.3. ANOVA for the Prediction of Worktable Vibration. In
channel 2, the vibrations of the worktable are measured. Te
ANOVA values of worktable vibration are shown in Table 5.
Te F-value is 53.04, and p values >0.05 show that the model
is adequate (signifcant) and there is a 0.01% chance of

change due to noise. Te lack of ft F-value is 0.62 showing
that the model is inadequate (not signifcant) and 71.03%
could occur due to noise.

Te regression equation of actual machining parameters
can be expressed as
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Table 1: Process parameters and their levels.

Parameters (input variables) Notations used Units
Factorial levels

−2 −1 0 1 2
Spindle speed N rpm 1500 2000 2500 3000 3500
Rate of feed fz mm/rev 0.04 0.06 0.08 0.1 0.12
Depth of cut (axial) ap mm 0.5 0.6 0.7 0.8 0.9
Depth of cut (radial) ae mm 0.5 0.6 0.7 0.8 0.9
Radial rake angle of tool c Degree 12 15 18 21 24

Table 2: Chemical properties of Al 6063.

Weight
(%) Si Cu Fe Mn Cr Mg Ti Zn Al

Al 6063 0.44 0.028 0.21 0.047 0.011 0.48 0.011 0.079 97.70

Figure 1: Experimentation setup.

Figure 2: Photographic view of the machined specimen and the HSS tool.

Table 3: Trial (experimental) values with responses.

Run
Machine
spindle
speed

Rate
of feed

Depth of
cut

(axial)

Depth of
cut

(radial)

Radial
tool rake
angle

Channel 1:
spindle
vibration
ASV(Exp)

Channel 2:
worktable
vibration
AWTV(Exp)

Predicted RSM:
spindle vibration
ASV(Pred RSM)

Predicted RSM:
worktable
vibration

AWTV(Pred RSM)
mm/s2

1 2000 0.06 0.6 0.6 21 0.019 0.0035 0.0187 0.0035
2 3000 0.06 0.6 0.6 15 0.021 0.0043 0.0206 0.0043
3 2000 0.1 0.6 0.6 15 0.018 0.0035 0.0177 0.0035
4 3000 0.1 0.6 0.6 21 0.018 0.0041 0.0178 0.0041
5 2000 0.06 0.8 0.6 15 0.018 0.0042 0.0176 0.0042
6 3000 0.06 0.8 0.6 21 0.019 0.004 0.0187 0.0040
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Table 4: ANOVA results of response 1: channel 1 (spindle vibration).

Source Sum of squares Df Mean square F-value p value
Model 0.0003 20 0.0000 37.13 <0.0001 Signifcant
N 0.000024 1 0.0000 67.02 <0.0001
fz 1.667E− 07 1 1.667E− 07 0.4654 0.5092
ap 6.000E− 06 1 6.000E− 06 16.75 0.0018
ae 0.0000 1 0.0000 37.70 <0.0001
c 6.667E− 07 1 6.667E− 07 1.86 0.1997
N fz 1.000E− 06 1 1.000E− 06 2.79 0.1229
N ap 2.500E− 07 1 2.500E− 07 0.6981 0.4212
N ae 9.000E− 06 1 9.000E− 06 25.13 0.0004
N c 9.000E− 06 1 9.000E− 06 25.13 0.0004
fzap 1.000E− 06 1 1.000E− 06 2.79 0.1229
fzae 2.500E− 07 1 2.500E− 07 0.6981 0.4212
fz c 2.250E− 06 1 2.250E− 06 6.28 0.0292
apae 1.000E− 06 1 1.000E− 06 2.79 0.1229
ap c 1.000E− 06 1 1.000E− 06 2.79 0.1229
ae c 2.500E− 07 1 2.500E− 07 0.6981 0.4212
N2 0.0001 1 0.0001 385.86 <0.0001
f2

z 8.523E− 07 1 8.523E− 07 2.38 0.1512
a2

p 0.0000 1 0.0000 69.40 <0.0001
a2

e 0.0001 1 0.0001 165.26 <0.0001
c2 2.561E− 06 1 2.561E− 06 7.15 0.0216
Residual 3.939E− 06 11 3.581E− 07
Lack of ft (LF) 3.106E− 06 6 5.177E− 07 3.11 0.1171 Not signifcant
Error 8.333E− 07 5 1.667E− 07
Cor total 0.0003 31

Table 3: Continued.

Run
Machine
spindle
speed

Rate
of feed

Depth of
cut

(axial)

Depth of
cut

(radial)

Radial
tool rake
angle

Channel 1:
spindle
vibration
ASV(Exp)

Channel 2:
worktable
vibration
AWTV(Exp)

Predicted RSM:
spindle vibration
ASV(Pred RSM)

Predicted RSM:
worktable
vibration

AWTV(Pred RSM)
mm/s2

7 2000 0.1 0.8 0.6 21 0.021 0.0041 0.0208 0.0041
8 3000 0.1 0.8 0.6 15 0.02 0.0038 0.0197 0.0038
9 2000 0.06 0.6 0.8 15 0.018 0.004 0.0178 0.0040
10 3000 0.06 0.6 0.8 21 0.021 0.0041 0.0209 0.0041
11 2000 0.1 0.6 0.8 21 0.019 0.004 0.0190 0.0040
12 3000 0.1 0.6 0.8 15 0.021 0.0044 0.0209 0.0044
13 2000 0.06 0.8 0.8 21 0.02 0.0041 0.0199 0.0041
14 3000 0.06 0.8 0.8 15 0.024 0.0032 0.0238 0.0032
15 2000 0.1 0.8 0.8 15 0.018 0.003 0.0179 0.0030
16 3000 0.1 0.8 0.8 21 0.023 0.004 0.0230 0.0040
17 1500 0.08 0.7 0.7 18 0.021 0.0042 0.0214 0.0042
18 3500 0.08 0.7 0.7 18 0.025 0.0046 0.0254 0.0046
19 2500 0.04 0.7 0.7 18 0.015 0.0032 0.0156 0.0032
20 2500 0.12 0.7 0.7 18 0.015 0.0031 0.0152 0.0031
21 2500 0.08 0.5 0.7 18 0.017 0.0042 0.0174 0.0042
22 2500 0.08 0.9 0.7 18 0.019 0.0039 0.0194 0.0039
23 2500 0.08 0.7 0.5 18 0.018 0.0039 0.0189 0.0039
24 2500 0.08 0.7 0.9 18 0.022 0.0038 0.0219 0.0038
25 2500 0.08 0.7 0.7 12 0.015 0.0037 0.0156 0.0036
26 2500 0.08 0.7 0.7 24 0.016 0.0039 0.0162 0.0039
27 2500 0.08 0.7 0.7 18 0.015 0.0035 0.0147 0.0035
28 2500 0.08 0.7 0.7 18 0.015 0.0036 0.0147 0.0035
29 2500 0.08 0.7 0.7 18 0.015 0.0034 0.0147 0.0035
30 2500 0.08 0.7 0.7 18 0.015 0.0035 0.0147 0.0035
31 2500 0.08 0.7 0.7 18 0.014 0.0036 0.0147 0.0035
32 2500 0.08 0.7 0.7 18 0.015 0.0035 0.0147 0.0035

6 Advances in Materials Science and Engineering



work table vibration AWTV(  � +0.019316 − 2.38106E − 06 × N − 0.015350 × fz − 0.006284 × ap − 0.005034 × ae

− 0.000914 × c + 0.000012 × N × fz − 2.87500E − 06 × N × ap − 3.75000E

− 07 × N × ae − 2.08333E − 08 × N × c − 0.021875 × fz × ap + 0.015625 × fz × ae

+ 0.001562 × fz × c − 0.018125 × ap × ae + 0.000521 × ap × c + 0.000354 × ae × c

+ 8.54545E − 10 × N − 0.247159 × fz
2

+ 0.012614 × a
2
p + 0.007614 × a

2
e + 7.07071E

− 06 × c
2
.

(4)

Table 6 shows the adjusted R2 and predictedR2 values for
spindle and worktable vibration. Te R2 value and the
predicted R2 value are 0.9589 and 0.7191 for spindle vi-
bration. Te R2 value and the predicted R2 value are 0.9711
and 0.8795 for worktable vibration. Te R2 value is 0.9589
for spindle vibration and 0.9711 for worktable vibration.Te
coefcient of determination R2 indicates that the goodness
of ft for the models is nearer to 1. So, the model is
signifcant.

5.4. Interaction Efect for Spindle Vibration (ASV).
Figure 3(a) shows the interaction plot and its efects on the
spindle speed and the rate of feed on spindle vibration. Due
to the wide contact area between the cutting tool and the
workpiece and tool movement relative to the workpiece, an
increase in the feed is followed by an increase in spindle
vibration. However, when the spindle speed is between 2000
and 3000 rpm, the vibration is relatively low, indicating that
a medium spindle speed produces better results. Figure 3(b)

depicts the interaction plot of spindle speed and the depth of
cut (axial) on spindle vibration. Te vibration is low when
the spindle speed is between 2000 and 3000 rpm. However,
when the depth of cut (axial) is between 0.6 and 0.7mm,
vibration is reduced. Tis might be because the contact area
is damped, resulting in minimal vibration. Te interaction
impact of spindle speed and radial depth on spindle vi-
bration is depicted in Figure 3(c). As with the depth of cut
(axial), the same result occurs. When the radial depth of cut
is between 0.7 and 0.8mm, however, vibration is reduced.
Tis is due to the increased difculty of moving the tool into
the workpiece. Te interaction impact of the spindle speed
and radial rake angle of the tool on spindle vibration is
shown in Figure 3(d).

When the radial rake angle is low, the vibration is very
low. Tis might be because when the rake angle rises, al-
though the speed should be between 2000 and 3000 rpm, the
contact area between the tool and the workpiece grows,
causing more chips to develop and increased vibration in the

Table 5: ANOVA for response 2: channel 2 (worktable vibration).

Source Sum of squares df Mean square F-value p value
Model 4.778E− 06 20 2.389E− 07 53.04 <0.0001 Signifcant
N 2.204E− 07 1 2.204E− 07 48.94 <0.0001
fz 2.042E− 08 1 2.042E− 08 4.53 0.0567
ap 1.838E− 07 1 1.838E− 07 40.80 <0.0001
ae 3.375E− 08 1 3.375E− 08 7.49 0.0193
c 1.504E− 07 1 1.504E− 07 33.40 0.0001
N fz 2.256E− 07 1 2.256E− 07 50.09 <0.0001
N ap 3.306E− 07 1 3.306E− 07 73.40 <0.0001
N ae 5.625E− 09 1 5.625E− 09 1.25 0.2876
N c 1.563E− 08 1 1.563E− 08 3.47 0.0894
fzap 3.063E− 08 1 3.063E− 08 6.80 0.0244
fzae 1.563E− 08 1 1.563E− 08 3.47 0.0894
fz c 1.406E− 07 1 1.406E− 07 31.22 0.0002
apae 5.256E− 07 1 5.256E− 07 116.70 <0.0001
ap c 3.906E− 07 1 3.906E− 07 86.73 <0.0001
ae c 1.806E− 07 1 1.806E− 07 40.10 <0.0001
N2 1.339E− 06 1 1.339E− 06 297.24 <0.0001
f2

z 2.867E− 07 1 2.867E− 07 63.65 <0.0001
a2

p 4.667E− 07 1 4.667E− 07 103.62 <0.0001
a2

e 1.700E− 07 1 1.700E− 07 37.75 <0.0001
c 2 1.188E− 07 1 1.188E− 07 26.37 0.0003
Residual 4.955E− 08 11 4.504E− 09
Lack of ft 2.121E− 08 6 3.535E− 09 0.6239 0.7103 Not signifcant
Pure error 2.833E− 08 5 5.667E− 09
Cor total 4.827E− 06 31
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Table 6: Adjusted R2 and predicted R2 values for spindle and worktable vibration.

Vibrations Source Sequential p value Lack of ft p

value R2 Adjusted R2 Predicted R2

Spindle vibration Quadratic <0.0001 0.1171 0.9854 0.9589 0.7191 Suggested
Worktable vibration Quadratic <0.0001 0.7103 0.9897 0.9711 0.8795 Suggested
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Figure 3: Continued.
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Figure 3: Interaction plot for spindle vibration of (a) N vs. fz over ASV, (b) N vs. ap over ASV, (c) N vs. ae over ASV, (d) N vs. c over ASV,
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Figure 4: Continued.
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spindle. Te interaction impact of the rate of feed and the
axial depth of cut on spindle vibration is revealed in
Figure 3(e). Figures 3(a) and 3(b) show that when the rate of
feed rises, vibration increases and vibration decreases as the
axial depth of cut decreases between 0.6 and 0.7mm. Te
interaction impact of the rate of feed and the radial depth of
cut on spindle vibration is revealed in Figure 3(f). As il-
lustrated in Figures 3(a) and 3(c), the same outcome is
duplicated. Figure 3(g) indicates that the rate of feed and the
radial rake angle have a less interaction impact. Figure 3(h)
depicts a plot of predicted vs. actual responses.

5.5. Interaction Efect for Worktable Vibration (AWTV).
Figure 4(a) depicts the interaction efect of the spindle speed
and the rate of feed on worktable vibration. Te rate of feed
has less infuence on worktable vibration than the spindle
speed. Te vibration is at its lowest between 2000 and
2750 rpm, and then, the vibration rises beyond these limits.
As previously stated, the spindle vibrations will be more
signifcant at lower and higher speeds, resulting in increased
worktable vibrations. Tese spindle vibrations will be
transmitted to the worktable, resulting in vibrations on the
work surface. Te vibration on the worktable is lessened
when the rate of feed is increased.Te worktable vibration is
high between 0.06 and 0.1mm/rev.Tis could be because the
spindle dampens most of the vibration frequencies at lower
and higher rates of feed, resulting in only minor vibrations in
the worktable, whereas at an intermittent rate of feed, the
vibrations transferred to the spindle are less and the majority
of the vibrations are transferred to the worktable.

Te interaction impact of the spindle speed and axial
depth of cut on worktable vibration is depicted in
Figure 4(b). Tis case probably occurs due to the spindle
vibrating more at lower depths of cut (axial) and higher
speeds, and these vibrations are transmitted to the work-
table, causing worktable vibrations. Still, there was no dis-
cernible efect at higher axial depths.When the spindle speed
is low, the change in axial depth has little efect on the
vibration of the worktable. Te increase in axial depth

reduced worktable vibration, while the spindle speed was
low between 2000 and 2750 rpm, with a maximum spindle
speed of 3500 rpm. Tis might be due to the fact that even
when the axial depth increases, the tool continues to remove
material from the workpiece at a consistent rate, even at
decreased spindle speeds. Figure 4(c) depicts the interaction
infuence of the spindle speed and the radial depth of cut-
over worktable vibration. Te spindle speed should be be-
tween 2000 and 2750 rpm, and the radial depth should be
between 0.6 and 0.8mm to reduce worktable vibration. Tis
might be because the spindle vibrates more at lower and
greater radial depths, conveying this infuence to the
worktable as well. Te vibrations will be damped at an in-
termediate value of the radial depth, resulting in low
worktable vibrations.

Te impact of the spindle speed and rake angle on
worktable vibration is shown in Figure 4(d). Te worktable
vibration was found to be greater at lower rake angles than at
higher rake angles. Worktable vibration gets minimum at
a rake angle of 15°–17° and a radial depth of 0.70–0.80mm.
Figures 4(e)–4(g) provide less signifcant graphs of the
worktable vibration efects of the axial depth and rate of feed,
radial depth and rate of feed, radial rake angle and rate of
feed, and axial depth and radial depth, respectively. More
radial depth produces a signifcant increase in worktable
vibration at higher rake angles because of more contact
between the tool and the workpiece, resulting in increased
chatter. Figure 4(h) displays a plot of predicted vs. actual
worktable vibration responses.

6. Multiobjective Optimization

Te objective of the function needs to be a minimum for
optimizing spindle and worktable vibration. As a result, the
process becomes complex, and in order to fnd the optimal
solution, one must consider a multiobjective function [29].
To optimize spindle and worktable vibration, the
nondominant-based genetic algorithm (NSGA-II) is
employed.
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Figure 4: Interaction efect for worktable vibration of (a)N vs. fz overAWTV, (b)N vs. ap overAWTV, (c)N vs. ae overAWTV, (d)N vs. c over
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6.1. Nondominant-Based Genetic Algorithm
(NSGA-II). NSGA-II is an efective search strategy. It is
driven by natural selection, which is based on Darwin’s
theory. Te NSGA-II approach expands the scope of the
search procedure. Tis approach intended to identify
a collection of optimal solutions known as nondominated
solutions, also known as the Pareto set. A nondominated

solution is one that delivers an appropriate balance between
all objectives without degrading any of them.

NSGA-II was used in this work to achieve multiobjective
optimization with parameter constraints. Te constructed
regression model is used by a genetic algorithm to anticipate
the ideal relationship between cutting parameters. Te
output responses are spindle vibration and worktable
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Figure 5: Performance of ftness value generation and the best andmost consistent variable performances in structured form: (a) distance of
individuals, (b) average spread of generations, (c) rank histogram of individuals, and (d) GA optimization tool interface.
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Figure 6: Chart of the Pareto-optimum frontier.

Table 7: Pareto-optimum solutions (NSGA-II).

Sl. no. N fz ap ae c
Spindle vibration: predicted
by NSGA-II ASV(NSGA-II)

Worktable vibration: predicted
by NSGA-II AWTV(NSGA-II)

1 2326.98 0.11 0.89 0.89 12.06 0.02404 0.00167
2 2324.31 0.12 0.89 0.89 12.06 0.02388 0.00165
3 2300.28 0.12 0.70 0.79 12.23 0.01450 0.00264
4 2288.40 0.17 0.70 0.69 12.47 0.01339 0.00284
5 2308.64 0.12 0.81 0.78 12.35 0.01599 0.00226
6 2320.46 0.12 0.88 0.85 12.07 0.02120 0.00177
7 2295.81 0.12 0.70 0.70 12.39 0.01336 0.00281
8 2316.22 0.12 0.84 0.78 12.24 0.01696 0.00214
9 2321.88 0.12 0.88 0.86 13.07 0.02199 0.00191
10 2299.54 0.12 0.79 0.76 12.26 0.01510 0.00231
11 2306.80 0.12 0.82 0.79 12.20 0.01670 0.00212
12 2289.54 0.12 0.70 0.70 12.40 0.01337 0.00282
13 2313.43 0.12 0.81 0.85 12.46 0.01866 0.00207
14 2322.56 0.12 0.85 0.84 12.07 0.01926 0.00190
15 2325.76 0.12 0.89 0.80 12.04 0.02391 0.00166
16 2318.48 0.12 0.87 0.82 12.57 0.01950 0.00198
17 2320.19 0.12 0.85 0.86 12.08 0.02034 0.00187
18 2300.56 0.12 0.76 0.73 12.24 0.01421 0.00247
19 2305.43 0.11 0.83 0.81 12.62 0.01761 0.00210
20 2319.12 0.12 0.77 0.76 12.12 0.01467 0.00239
21 2307.26 0.12 0.74 0.71 12.19 0.01367 0.00263

Table 8: Validation of the model.

Trail
no.

Machine
spindle
speed

Rate
of
feed

Depth of
cut

(axial)

Depth of
cut

(radial)

Radial
tool rake
angle

Spindle
vibration

(optimized)

Spindle
vibration
(observed)

Error
%

Worktable
vibration

(optimized)

Worktable
vibration
(observed)

Error
%

1 2300 0.1 0.6 0.5 21 0.01631 0.016 1.90 0.00301 0.0030 0.33
2 2200 0.12 0.7 0.6 18 0.01789 0.018 −0.61 0.00367 0.0036 1.90
3 2600 0.04 0.5 0.5 12 0.01422 0.014 1.54 0.00326 0.0033 −1.23

12 Advances in Materials Science and Engineering



vibration; the MATLAB 2013a software was used for opti-
mization purposes to optimize the vibration. Te input
objective function utilizes the MOGAmethodology [33, 34]:

tominimize: spindle vibration ASV( : ASV N, fz, ap, ae, c ,

tominimize: worktable vibration AWTV( : AWTV N, fz, ap, ae, c  subject to constraints: ASV ≤ASV limit, AWTV ≤AWTVlimit,

(5)

where ASV and AWTV limitations defne the lower and upper
limits that must be fulflled. Among parameter ranges,

1500≤ spindle speed of themachine(N)≤ 3500rpm,

0.04≤ rate of feed fz( ≤ 0.12
mm
rev

,

0.5≤ depth of cut(axial) ap ≤ 0.9mm,

0.5≤ depth of cut(radial) ae( ≤ 0.9mm,

12≤ radial rake angle of tool(c)≤ 24 degree.

(6)

To achieve the best results, the following conditions were
used:

(i) A population size of 100
(ii) A population-type vector
(iii) A scaling function rank of function
(iv) Stochastic uniform crossover,
(v) A Gaussian mutation function
(vi) A mutation rate of 0.1
(vii) A scattered mutation function
(viii) A crossover rate of 1.0
(ix) A generation size of 1000

Figure 5 displays in coded form the performance of ftness
value creation and the best individual variable performances.
Figure 6 displays the Pareto-optimal frontier scattered points
for their results as a consequence of NSGA-II optimization
conducted using MATLAB software. Te input parameter
grouping of twenty-one sets of nondominated Pareto-optimal
solutions based on the NSGA-II analysis is shown in Table 7.
Te spindle vibration ranged from 0.02404 to 0.01336mm/s2,
while the worktable vibration ranged from 0.00284 to
0.00165mm/s2. Table 6 shows that all of theNSGA-II generated
solutions have an equal high level of agreement. According to
the research results, all of the solutions created by NSGA-II are
equally good. Te selection of Pareto-optimal solutions helps
the manufacturing engineer’s and researchers’ expectations.

7. Validation of the Model

Table 8 demonstrates that a regression model developed
through RSM of DoE utilizing CCD was validated using
a confrmatory test. Vibration of both the spindle speed and

the worktable is compared between values predicted by
NSGA-II and experimental values.Te percentage of error is
determined to be within ±2%, confrming the model’s
validity.

8. Conclusion

Based on the designed experiments, utilizing central com-
posite design, the spindle vibration, and worktable vibration
in terms of acceleration amplitude, the experiment is per-
formed on aluminium 6063 using an HSS tool in a CNC
milling machine. Te ANOVA technique was used to ex-
amine performance characteristics. Te machining variables
and their responses are optimized by NSGA-II.

Spindle speed is an important factor in increasing
spindle vibration amplitude. To ensure lesser vibration, the
spindle speed should be between 2000 and 2800 rpm. In
addition to spindle speed, the axial depth of the cut is an
important element that contributes to vibration. Te axial
depth of the incision should be between 0.7 and 0.8mm to
guarantee low vibration. Te cut’s radial depth should be
between 0.7 and 0.8mm. Te radial rake angle should be
between 12° and 18° for low vibration, and the feed rate
should be between 0.04 and 0.08mm/rev.

Te smallest worktable vibration was achieved by
using spindle speeds ranging from 2000 to 3000 rpm, feed
rates ranging from 0.1 to 0.12mm/rev, axial depth of cut
ranging from 0.5 to 0.7 mm, radial depth of cut ranging
from 0.6 to 0.8mm, and radial rake angles ranging from
15° to 18°.

MATLAB provided 21 nondominated Pareto-optimal
solutions based on multiobjective optimization using the
nondominated sorted genetic algorithm (NSGA-II). Te
result obtained from NSGA-II is reasonably excellent. Te
suggested hybrid approachminimizes the cost and reduction
of vibration amplitude prediction for real-world machining
conditions.

Te future direction of this research will be use of
a carbide-cutting tool to conduct machining operations with
respect to tool wear and surface roughness, as well as
conducting the experiment based on measurement of the
cutting force.
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