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Introduction. The etiology of male infertility characterized by non-obstructive azoospermia is largely unknown, especially at the
molecular level. Identifying dysregulated microRNAs (miRNAs) in male infertility would be useful to achieve a more profound
understanding of its pathogenesis. Methods. Small RNA sequencing was performed on the testicular tissues of 10 nonobstructive
azoospermic patients with the Sertoli cell only syndrome (SCOS) and 8 obstructive azoospermic individuals with normal
spermatogenesis. The expressions of two dysregulated miRNAs were validated by quantitative real-time polymerase chain
reaction, confirming the results obtained by sequencing analysis. Bioinformatic analysis was undertaken to identify the main
pathways impaired in complete spermatogenic failure. Results. A total of 136 miRNAs were detected to be differentially
expressed in the Sertoli cell only syndrome group in comparison with the obstructive azoospermia group. Bioinformatic analysis
suggested that the altered miRNAs were substantially involved in pathways related to spermatogenesis. Conclusions. Our study
investigates the entire profile of miRNAs with emphasis on the crucial role of miRNAs in idiopathic Sertoli cell only syndrome,
suggesting potential targets for employing molecular therapeutic strategies in the treatment of spermatogenic failure.

1. Introduction

Infertility affects nearly 15% of couples as a worldwide
health problem, and half of the cases are attributable to male
factors [1]. Around 30-40% of male infertility cases remain
idiopathic, which also includes nearly 15% of azoospermic
cases [2, 3]. The etiology of azoospermia is largely unknown,
especially at the molecular level. Spermatogenesis is an intri-
cately organized and complex process, which is accomplished
in three successive phases: consecutive mitotic divisions of
spermatogonia, reductive meiotic division of spermatocytes,

and differentiation of spermatids [4]. Several protein media-
tors are involved in the regulation of this complicated pro-
cess; however, microRNAs (miRNAs) play critical roles at
the posttranscriptional stage [5–7]. miRNAs are small (18-
22 nucleotides long) noncoding RNAs, which can negatively
and selectively modulate gene expression. miRNAs have been
described as the molecular regulators of various cellular bio-
logical events such as growth, proliferation, differentiation,
and programmed cell death [8–10]. Hence, alterations in
the molecular signaling in the testis may result in impaired
spermatogenesis and male infertility. Identification of the
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molecular players dysregulated in azoospermia/infertility
would pave the way to the development of new therapeutic
approaches in the future. Since miRNAs regulate a large
number of genes, identification of dysregulated miRNAs in
infertility would be useful in the diagnosis and treatment of
infertility [11].

So far, a few studies have analyzed the miRNAs’ expres-
sion levels in testicular biopsies obtained from azoospermic
patients and normal individuals [12–17]. In the first study,
Lian et al. performed microarray and identified altered
expression of miRNAs in nonobstructive azoospermic
(NOA) patients, with 19 and 154 up- and downregulated
miRNAs, respectively [14]. Subsequently, another study ana-
lyzed 48 testicular biopsy samples obtained from patients
with various degrees of spermatogenic impairment (germ
cell arrest, mixed atrophy, and Sertoli cell only) and com-
pared them with normozoospermic controls [12]. A number
of dysregulated miRNAs were identified in the infertile
group. Based on these results, Abu-Halima et al. selected a
set of five miRNAs and analyzed them in a large set of infer-
tile biopsy samples, emphasizing their value as diagnostic
biomarkers of male infertility [13]. Munoz et al. screened
623 miRNAs in testicular samples of men with spermato-
genic failure and identified a set of three miRNAs, including
miR-122, miR-34c-5p, and miR-449a, with high predictive
value for the presence of mature spermatozoa in the testis
[15]. Noveski et al. analyzed testicular biopsies of infertile
men with hypospermatogenesis, maturation arrest, hypos-
permatogenesis with azoospermia factor c (AZFc) deletion,
and Sertoli cell only syndrome (SCOS), while men with nor-
mal spermatogenesis served as the control group [16]. They
found some dysregulated miRNAs common among different
histopathological groups. In addition, miRNA-mRNA net-
work analysis revealed the role of several genes involved in
the tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) pathway. Recently, Zhang et al. used microarray
to study the miRNA profile of testicular biopsies from
NOA patients, finding that 129 miRNAs were aberrantly
expressed in comparison to the controls [17]. In particular,
this study reported that a panel composed of miR-10b-3p
and miR-34b-5p may be used to predict the existence of
testicular sperm in azoospermic patients.

Most of the above studies have laid the foundation for
the identification of miRNA-based diagnosis of the patho-
genesis that can unveil the path to therapy. Independent
investigations in different populations would not only fur-
ther strengthen these initial findings but also provide a way
to finding consistent miRNAs that are critical to spermato-
genesis and fertility. Therefore, in the current work, we per-
formed small RNA sequencing in a selected set of patients
with SCOS to uncover the global microRNA dysregulation
in comparison to obstructive azoospermia (OA) individuals
with normal spermatogenesis.

2. Material and Methods

2.1. Sample Collection. Azoospermic infertile men referred to
the Royan Institute (Tehran, Iran) were recruited in this
study after receiving their informed consent. Idiopathic

NOA individuals (n = 10) characterized by SCOS consti-
tuted the case group while individuals with OA constituted
the control group (n = 8). Testicular specimens of these indi-
viduals were obtained by testicular sperm extraction (TESE)
procedure, performed as diagnostic biopsy for histopatholo-
gical examination and sperm extraction for assisted repro-
ductive treatment. Azoospermia was defined according to
the WHO 2010 criteria [18]. No ejaculated spermatozoa
were seen in two sequential semen analyses. SCOS was con-
firmed upon finding no spermatozoa within the testes and/
or epididymis upon microscopic examination of at least 50
tiny foci in biopsy specimens. OA was specified as contain-
ing a notable number of mature spermatozoa retrieved by
TESE. The diagnosis was supported by the histological
reports as well as hormonal findings for the two groups.
All patients enrolled in this study had primary infertility.
The NOA and OA groups were age- and body mass index
(BMI) matched. They were nonsmokers and did not con-
sume alcohol regularly.

Individuals with infertility related to defined medical
conditions, such as pathologies involving vas deferens or
epididymis, undescended testes (UDT), cryptorchidism, var-
icocele, a positive history of hormone therapy, retrograde
ejaculation, current or previous infection with mumps, chro-
mosome abnormalities, and AZF microdeletions were
excluded from the study. After collecting, testicular samples
were stored in RNALater® Solution (Behnogen, Iran) over-
night at 4°C and placed at -80°C until further processing.

2.2. RNA Extraction. The total RNA was isolated from each
sample using RiboEx reagent (GeneAll, Korea), following
the manufacturer’s recommendations. The elution was
made in 30μL of nuclease-free water. The quality and
quantity of all RNA samples were evaluated by denaturing
agarose gel electrophoresis and NanoDrop™ 1000 spectro-
photometer, respectively.

2.3. Small RNA Library Preparation and Sequencing. To
undertaken sequencing, equal amounts of RNA samples
were pooled to obtain 2 OA (4 samples each) and 3 NOA
(4 : 3 : 3 samples each) groups. RNA integrity (RIN) of sam-
ples was tested using Agilent 2100 Bioanalyzer (Agilent
RNA 6000 Nano Kit, USA), and samples with RIN values
> 7 were considered acceptable for sequencing. BGISEQ-
500 small RNA (sRNA) sample preparation kit was used to
prepare the sRNA libraries. RNA (18-30 nt) molecules were
ligated with adaptors; reverse transcribed and unique indices
were incorporated during PCR amplification. After poly-
acrylamide gel electrophoresis (PAGE), the PCR amplicons
were purified and dissolved in EB solution. The samples
were loaded on the BGISEQ-500 platform at Yingbioteck
(Shanghai, China), and sequencing by synthesis was con-
ducted to generate single-end 50 base-pair reads [19].

2.4. Mapping Reads. After trimming the adaptors and
removing the contamination, the clean reads ≥ 18 nucleo-
tides were mapped to themiRBase version 21 and Rfam data-
bases. We used Bowtie2 [20] and cmsearch [21] to map
filtered reads to the reference genome as well as other sRNA
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databases. Differentially expressed miRNA analysis was per-
formed by DESeq2 algorithm, with a cutoff of log2FC > 1.

2.5. Bioinformatic Analyses for Differentially Expressed
miRNAs. In order to annotate and categorize the target
genes attributed to cellular component (CC), biological pro-
cess (BP), and molecular function (MF), Gene Ontology
(GO) analysis (http://geneontology.org) was performed.
Moreover, the KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathway enrichment analysis was used to catego-
rize the genes targeted by the differentially expressed small
RNAs (DESs) on the basis of the metabolic or signal trans-
duction pathways they were involved in. Softwares including
Miranda [22] and TargetScan (http://www.targetscan.org/
mmu_61/) [23] were used for predicting the targets. The
default parameters were as follows: cutoff score ≥ 140 and
energy ≤ −20 kcal/mol for Miranda and energy < −25 for
TargetScan. The common targets identified by the two data-
bases were used as the final miRNA target prediction results.
We excluded the genes targeted by both low (<10 RPM) and
highly (>100 RPM) abundant miRNAs to overcome the
dominant contribution of these miRNA families leading to
targeted gene downregulation as compared to those
expressed at a moderate levels.

2.6. cDNA Synthesis and Quantitative Reverse Transcription
PCR. To validate the expression level of selected miRNAs
in the testis samples, cDNA synthesis for the same individual
samples (n = 18) was performed with 1μg of total RNA, uti-
lizing TaKaRa PrimeScript II 1st strand cDNA synthesis kit
(Takara Bio, Japan). The primers were designed according to
the stem-loop RT method introduced by Chen et al. [24],
and the details are described in Table 1. Quantitative real-
time polymerase chain reaction (qRT-PCR) was conducted
using SYBR green (Exiqon, Denmark) on StepOnePlus™
Real-Time PCR thermal cycler (Applied Biosystems™,
USA). PCR were run in triplicate, and reverse transcriptase
reactions, including RT minus controls and nontemplate
controls, were run in duplicate. The values of cycle threshold
(Ct) were computed, and the data were analyzed using
theΔΔCt method. As there are no reliable miRNAs as refer-
ence genes for the testis, U6 snRNA was used as an endoge-
nous reference based on previous reports. The detailed
methods are provided in our previous paper [25].

2.7. Statistical Analyses. Statistical analyses were performed
utilizing SPSS v. 18.0.1 (SPSS Inc., Chicago, IL). The Stu-
dent’s t-test was used to compare the average expression
level of chosen miRNAs between the NOA and OA groups.
P values < 0.05 were considered statistically significant.

Table 1: Primer sequences for qRT-PCR of selected miRNAs and U6.

miRNA ID Primer Sequence

miR-449a-5p (MIMAT0001541)
RT 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACCAGC-3′
F 5′-AGGCGTGGCAGTGTATTGTT-3′

miR-888-5p (MIMAT0004916)
RT 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTGACTG-3′
F 5′-GGCGCGTACTCAAAAAGCTG-3′

U6 (gene ID: 26827)

RT 5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAATATG-3′
F 5′-ATGACGCAAATTCGTGAAGC-3′
R 5′-CAGTGCAGGGTCCGAGGTA-3′

Abbreviation: RT: reverse transcription; F: forward; R: universal reverse.

Table 2: Demographic characteristics of subjects diagnosed with azoospermia.

Study groups Number of subjects Average age (years) Average weight (MBI) FSH (mIU/mL) LH (mIU/mL) Testosterone (ng/mL)

NOA 10 34:8 ± 5:20 24:69 ± 2:8 24:43 ± 13:30 13:40 ± 8:93 2:47 ± 0:31
OA 8 36:1 ± 5:64 24:18 ± 2:40 7:57 ± 3:62 7:07 ± 2:54 4:59 ± 2:47
Abbreviation: FSH: follicle stimulating hormone; LH: luteinizing hormone; OA: obstructive azoospermia; NOA: nonobstructive azoospermia.

Table 3: Summary of sequencing data for each sample.

Sample name Known miRNA count Sequence type Raw tag count Clean tag count Percentage (%) Mapped tag Mapping rate (%)

NOA1 1330 SE50 23968286 21664941 90.39 20430103 94.30

NOA2 1323 SE50 23886191 22100843 92.53 21279937 96.29

NOA3 1301 SE50 23245544 203391 63 87.50 19370664 95.24

OA1 1403 SE50 24604847 22857389 92.90 21942492 96.00

OA2 1238 SE50 23072834 21066578 91.30 20318453 96.45
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Figure 1: A heatmap of miRNA expression values depicting miRNA clustering between NOA and OA samples based on differentially
expressed miRNAs in all pairwise of cluster plan (Padj < 0:05). Positive and negative numbers indicate upregulation and
downregulation, respectively.
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Table 4: Expression of differentially expressed miRNAs in testicular samples of SCOS patients compared to that of OA individuals.

miRNA ID log2FoldChange (case/control) P value Padj Up-/downregulation Genome location

1 hsa-miR-449a -8.95712 8.55E-66 1.56E-62 Down Chr5

2 hsa-miR-34c-3p -5.42921 8.53E-30 5.19E-27 Down Chr11

3 hsa-miR-375 -5.76047 4.47E-28 1.63E-25 Down Chr2

4 hsa-miR-517b-3p -9.10218 1.50E-26 4.57E-24 Down Chr19

5 hsa-miR-512-3p -8.37851 1.51E-25 3.44E-23 Down Chr19

6 hsa-miR-34c-5p -5.15346 9.05E-24 1.84E-21 Down Chr11

7 hsa-miR-520c-3p -8.11517 1.25E-23 2.29E-21 Down Chr19

8 hsa-miR-516b-5p -6.93696 2.19E-23 3.63E-21 Down Chr19

9 hsa-miR-1323 -7.97416 9.51E-23 1.45E-20 Down Chr19

10 hsa-miR-34b-3p -5.32971 9.42E-22 1.23E-19 Down Chr11

11 hsa-miR-7-5p -4.68621 6.21E-21 7.09E-19 Down Chr9

12 hsa-miR-449b-3p -7.00788 1.09E-19 1.16E-17 Down Chr5

13 hsa-miR-519d-3p -7.51046 1.47E-19 1.49E-17 Down Chr19

14 hsa-miR-517-5p -7.92481 6.45E-19 6.20E-17 Down Chr19

15 hsa-miR-182-5p -4.76507 1.21E-17 1.00E-15 Down Chr7

16 hsa-miR-891a-5p -5.35565 5.57E-16 4.42E-14 Down ChrX

17 hsa-miR-34b-5p -4.84987 8.12E-16 6.18E-14 Down Chr11

18 hsa-miR-518b -6.39722 1.15E-15 8.04E-14 Down Chr19

19 hsa-miR-515-3p -6.46087 1.25E-15 8.46E-14 Down Chr19

20 hsa-miR-522-3p -6.18912 1.41E-15 9.19E-14 Down Chr19

21 hsa-miR-3663-5p -5.72328 1.53E-15 9.64E-14 Down Chr10

22 hsa-miR-517a-3p -5.86253 2.84E-15 1.73E-13 Down Chr19

23 hsa-miR-7161-5p -6.70005 5.67E-15 3.34E-13 Down Chr6

24 hsa-miR-449c-5p -6.24951 1.12E-14 6.36E-13 Down Chr5

25 hsa-miR-96-5p -3.51773 1.48E-14 8.20E-13 Down Chr7

26 hsa-miR-516a-5p -7.06944 2.63E-14 1.41E-12 Down Chr19

27 hsa-miR-498 -5.88303 1.48E-12 7.70E-11 Down Chr19

28 hsa-miR-522-5p -6.59192 2.33E-12 1.18E-10 Down Chr19

29 hsa-miR-1283 -5.5631 2.46E-12 1.21E-10 Down Chr19

30 hsa-miR-1299 -4.89852 3.20E-12 1.53E-10 Down Chr9

31 hsa-miR-520a-5p -6.62105 3.50E-12 1.64E-10 Down Chr19

32 hsa-miR-520g-3p -6.41133 2.16E-11 9.88E-10 Down Chr19

33 hsa-miR-1269a -6.41876 2.85E-11 1.27E-09 Down Chr4

34 hsa-miR-520f-3p -5.94296 3.26E-11 1.42E-09 Down Chr19

35 hsa-miR-7154-5p -6.35628 3.71E-11 1.57E-09 Down Chr11

36 hsa-miR-520d-5p -5.54841 4.33E-11 1.79E-09 Down Chr19

37 hsa-miR-3529-3p -2.86549 5.13E-11 2.08E-09 Down Chr15

38 hsa-miR-520b -5.98042 6.80E-11 2.70E-09 Down Chr19

39 hsa-miR-122-3p -5.83444 1.26E-10 4.89E-09 Down Chr18

40 hsa-miR-517c-3p -6.17555 1.98E-10 7.51E-09 Down Chr19

41 hsa-miR-888-5p -4.62783 2.69E-10 1.00E-08 Down ChrX

42 hsa-miR-7161-3p -6.21697 2.76E-10 1.01E-08 Down Chr6

43 hsa-miR-518e-3p -6.09464 3.98E-10 1.43E-08 Down Chr19

44 hsa-miR-183-5p -3.26591 4.81E-10 1.69E-08 Down Chr7

45 hsa-miR-31-5p -3.61452 8.69E-10 2.99E-08 Down Chr9

46 hsa-miR-124-3p -3.03982 9.42E-10 3.13E-08 Down Chr8

47 hsa-miR-519b-5p -5.69616 9.35E-10 3.13E-08 Down Chr19

48 hsa-miR-25-5p -3.09462 2.03E-09 6.62E-08 Down Chr7
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Table 4: Continued.

miRNA ID log2FoldChange (case/control) P value Padj Up-/downregulation Genome location

49 hsa-miR-122-5p -4.46093 2.12E-09 6.80E-08 Down Chr18

50 hsa-miR-520f-5p -5.88763 2.37E-09 7.45E-08 Down Chr19

51 hsa-miR-524-5p -5.87427 2.74E-09 8.48E-08 Down Chr19

52 hsa-miR-515-5p -5.41886 3.00E-09 9.11E-08 Down Chr19

53 hsa-miR-518c-3p -5.24506 3.34E-09 1.00E-07 Down Chr19

54 hsa-miR-523-3p -5.85544 4.30E-09 1.27E-07 Down Chr19

55 hsa-miR-520h -5.74672 8.56E-09 2.48E-07 Down Chr19

56 hsa-miR-7162-3p -5.73587 1.38E-08 3.94E-07 Down Chr10

57 hsa-miR-891b -4.21921 1.44E-08 4.04E-07 Down ChrX

58 hsa-miR-374c-3p 3.487852 1.94E-08 5.38E-07 Up ChrX

59 hsa-miR-27a-3p -5.62798 2.81E-08 7.65E-07 Down Chr19

60 hsa-miR-520d-3p -5.57633 3.40E-08 9.12E-07 Down Chr19

61 hsa-miR-519b-3p -5.57408 3.60E-08 9.53E-07 Down Chr19

62 hsa-miR-526b-5p -5.51974 4.80E-08 1.25E-06 Down Chr19

63 hsa-miR-520c-5p -5.48718 5.46E-08 1.40E-06 Down Chr19

64 hsa-miR-523-5p -5.54306 7.26E-08 1.84E-06 Down Chr19

65 hsa-miR-891a-3p -4.74652 8.79E-08 2.20E-06 Down ChrX

66 hsa-miR-890 -4.23732 1.05E-07 2.58E-06 Down ChrX

67 hsa-miR-518a-3p -5.3572 1.39E-07 3.32E-06 Down Chr19

68 hsa-miR-9-3p -2.49706 1.40E-07 3.32E-06 Down Chr1

69 hsa-miR-216b-5p -5.34256 1.54E-07 3.60E-06 Down Chr2

70 hsa-miR-512-5p -5.32522 1.74E-07 4.01E-06 Down Chr19

71 hsa-miR-520a-3p -5.28657 2.28E-07 5.21E-06 Down Chr19

72 hsa-miR-224-5p -2.37211 2.66E-07 5.98E-06 Down ChrX

73 hsa-miR-518f-3p -5.27129 3.19E-07 7.10E-06 Down Chr19

74 hsa-miR-449b-5p -4.28293 5.69E-07 1.25E-05 Down Chr5

75 hsa-miR-519a-5p -5.251 1.03E-06 2.23E-05 Down Chr19

76 hsa-miR-552-5p -5.05373 1.09E-06 2.34E-05 Down Chr1

77 hsa-miR-519c-3p -5.04066 1.34E-06 2.83E-05 Down Chr19

78 hsa-miR-10a-3p -4.91927 2.64E-06 5.46E-05 Down Chr17

79 hsa-miR-138-5p -2.53821 2.65E-06 5.46E-05 Down Chr16

80 hsa-miR-31-3p -3.10722 2.66E-06 5.46E-05 Down Chr9

81 hsa-miR-519a-3p -4.90331 3.06E-06 6.21E-05 Down Chr19

82 hsa-miR-3663-3p -4.18958 4.91E-06 9.84E-05 Down Chr10

83 hsa-miR-139-3p -2.69096 5.79E-06 0.000115 Down Chr11

84 hsa-miR-935 -2.36926 8.48E-06 0.000166 Down Chr19

85 hsa-miR-20b-3p -3.63398 1.39E-05 0.000271 Down ChrX

86 hsa-miR-302c-3p -2.57249 1.45E-05 0.000278 Down Chr4

87 hsa-miR-18b-5p -2.66115 1.83E-05 0.000347 Down ChrX

88 hsa-miR-106a-5p -3.00341 2.22E-05 0.000413 Down ChrX

89 hsa-miR-92a-2-5p -4.50185 2.74E-05 0.000505 Down ChrX

90 hsa-miR-3923 -2.46461 3.83E-05 0.000699 Down Chr3

91 hsa-miR-3180-3p -2.72251 4.28E-05 0.000774 Down Chr16

92 hsa-miR-619-5p -2.49174 4.40E-05 0.000788 Down Chr12

93 hsa-miR-181b-5p -3.40787 5.23E-05 0.000926 Down Chr9

94 hsa-miR-371a-3p -1.87004 6.39E-05 0.001121 Down Chr19

95 hsa-miR-525-5p -3.98509 7.77E-05 0.00135 Down Chr19

96 hsa-miR-7159-5p -4.2429 9.71E-05 0.001656 Down Chr6
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3. Results

3.1. Patients’ Characteristics. The demographic characteris-
tics of NOA and OA patients are presented in Table 2. The
serum levels of follicle stimulating hormone (FSH) and
luteinizing hormone (LH) in NOA patients were higher than
those in OA patients, whereas the testosterone level in the
NOA group was lower than that in the OA group.

3.2. Small RNA Sequencing and Mapping of Reads to Human
Reference Genome. Before carrying out data analysis, low-
quality tags were removed, and after trimming, over 20million
reads were detected in each sample. The sequencing data for
each sample, including the mapping ratio, are summarized in
Table 3. The legnth distribution analysis showed that sRNAs
had length between 18 and 30 nucleotides. The coverage
percentage after cleaning was more than 90% in 4 samples.

Table 4: Continued.

miRNA ID log2FoldChange (case/control) P value Padj Up-/downregulation Genome location

97 hsa-miR-885-3p -4.2429 9.71E-05 0.001656 Down Chr3

98 hsa-miR-3180 -2.54454 0.000124 0.002094 Down Chr16

99 hsa-miR-10a-5p -1.79915 0.00022 0.003683 Down Chr17

100 hsa-miR-766-3p 2.208073 0.000223 0.003698 Up ChrX

101 hsa-miR-105-5p -2.88496 0.000231 0.003802 Down ChrX

102 hsa-miR-5698 -3.71593 0.000345 0.005509 Down Chr1

103 hsa-miR-205-5p -3.65805 0.000391 0.006046 Down Chr1

104 hsa-miR-373-3p -2.62875 0.000389 0.006046 Down Chr19

105 hsa-miR-95-3p -1.51027 0.000391 0.006046 Down Chr4

106 hsa-miR-1228-3p 3.219571 0.000463 0.007105 Up Chr12

107 hsa-miR-let-7a-3p -1.77104 0.000495 0.007533 Down Chr22

108 hsa-miR-216a-5p -3.30972 0.00052 0.007847 Down Chr2

109 hsa-miR-526a -3.83598 0.00057 0.008526 Down Chr19

110 hsa-miR-892b -3.83139 0.000605 0.008977 Down ChrX

111 hsa-miR-524-3p -3.60166 0.000611 0.008987 Down Chr19

112 hsa-miR-518d-5p -3.81687 0.000616 0.008999 Down Chr19

113 hsa-miR-1298-5p -3.55837 0.000649 0.009403 Down ChrX

114 hsa-miR-940 1.860381 0.000766 0.01101 Up Chr16

115 hsa-miR-6718-5p -2.77769 0.000941 0.013423 Down Chr18

116 hsa-miR-217 -3.71504 0.000957 0.013542 Down Chr2

117 hsa-miR-139-3p -1.49141 0.001097 0.015399 Down Chr11

118 hsa-miR-3591-5p -3.64572 0.001207 0.016811 Down Chr18

119 hsa-miR-521 -3.61742 0.00132 0.018256 Down Chr19

120 hsa-miR-199b-3p 2.152197 0.001346 0.018465 Up Chr9

121 hsa-miR-527 -3.62189 0.001436 0.019552 Down Chr19

122 hsa-miR-519d-5p -3.57545 0.001548 0.02092 Down Chr19

123 hsa-miR-20b-5p -1.48311 0.001842 0.024713 Down ChrX

124 hsa-miR-518a-5p -3.50258 0.001966 0.026189 Down Chr19

125 hsa-miR-548ad-5p -2.61279 0.002084 0.027561 Down Chr2

126 hsa-miR-125b-1 -1.54534 0.002191 0.028763 Down Chr11

127 hsa-miR-372-3p -1.55022 0.002313 0.030151 Down Chr19

128 hsa-miR-1343-5p 3.178463 0.002607 0.033748 Up Chr11

129 hsa-miR-1268a 2.390785 0.0027 0.034697 Up Chr15

130 hsa-miR-302a-3p -2.19397 0.003068 0.039153 Down Chr4

131 hsa-miR-892a -2.80124 0.003278 0.041539 Down ChrX

132 hsa-miR-1268b 2.381553 0.003613 0.045472 Up Chr17

133 hsa-miR-4433a-5p 2.533323 0.00378 0.047246 Up Chr2

134 hsa-miR-3660 -3.29753 0.003885 0.048236 Down Chr5

135 hsa-miR-187-5p 1.909446 0.003939 0.048566 Up Chr18

136 hsa-miR-9-5p -1.29072 0.003965 0.04857 Down Chr1
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3.3. Global miRNA Profiles between Azoospermia and
Normozoospermia. Using the pheatmap function, hierarchi-
cal clustering analysis of the miRNA’s expression variation
illustrated a set of aberrantly expressed miRNAs in the
NOA patients (Figure 1). In total, 136 known miRNAs
showed significant differential expression in the testis tissue
between the NOA and OA individuals. Specifically, we
observed that 120 miRNAs were downregulated in NOA
patients in comparison to OAmen, whereas 10miRNAs were
upregulated (adjusted P < 0:05, using fold change threshold
values of ≥1 and ≤−1). The altered miRNAs were distributed
across all chromosomes, except chromosomes 13, 14, 20, 21,
22, and Y. The maximum numbers of dysregulated miRNAs
were mapped to chromosomes 11, 19, and X (Table 4).

3.4. Validation of Small RNA Sequencing Results by Real-
Time PCR. To validate the small RNA sequencing findings,
qRT-PCR was conducted for two miRNAs; namely, miR-
449a and miR-888, in individual tissue samples from NOA
(n = 10) and OA (n = 8) patients. These miRNAs were
chosen according to the fold change (FC). Both of these
miRNAs were significantly downregulated in NOA samples
(P < 0:05) (Figure 2). These findings were fully concordant
with the differential expression observed by sequencing.

3.5. GO and Pathway Analyses for Targets of Differentially
Expressed miRNAs. To explore the functions of the genes reg-
ulated by the differentially expressedmiRNAs, the target genes
were subjected to Gene Ontology (GO) and pathway analyses.
The GO analysis demonstrated the target genes to be enriched
in GO terms of 25 biological processes, 18 molecular func-
tions, and 16 cellular components (Figure 3). Cellular process,
cell and cell part, and binding were the most enriched terms in
the main categories of cellular components, biological pro-
cesses, and molecular functions, respectively.

In addition, pathway enrichment analysis of the DES tar-
get genes was performed based on the KEGG database, and
the results were reported as a bar plot for the statistics of

KEGG term types (Figure 4). The most enriched pathway
was signal transduction.

4. Discussion

In this study, we analyzed the miRNA expression profile in
the testicular tissues of idiopathic azoospermic patients with
SCOS and compared it with OA individuals with normal
spermatogenesis. Using small RNA sequencing, 136 miR-
NAs were recognized to be differentially expressed between
the two groups. Most of these miRNAs belonged to the
ascertained families, such as miR-515, miR-449, miR-34,
miR-891, miR-743, miR-25, and miR-302, which are widely
known and expressed as determined clusters. Specific or
preferential expression of a number of miRNAs in the testis
suggests their roles in spermatogenesis. In fact, some of the
GO terms and KEGG pathways obtained in this study relate
to sperm production, cell growth and death, signal transduc-
tion, replication and repair, energy metabolism, endocrine
system, hormone secretion, reproductive process, cell motil-
ity, cell junction, and antioxidant activity (Figures 3 and 4).

We found that a remarkable number of miR-515 family
members located on chromosome 13 were downregulated in
SCOS patients. These primate-specific miRNA family mem-
bers have been illustrated to significantly modulate several
biological processes and pathways, such as cell motility
(GO:0048870), cell proliferation (GO:0008283), cell death
(GO:0008219), apoptotic signaling pathways (GO:0097190),
mitotic cell cycle (GO:0000278), cell cycle arrest
(GO:0007050), DNA metabolic process (GO:0006259), G2/
M transition of the mitotic cell cycle (GO:0000086), response
to stress (GO:0006950), and the MAPK signaling pathway
(has04010) [26]. Among targeted genes of dysregulated miR-
NAs, some are implicated in male infertility. For example,
miR-520a-3p regulates a plenty of genes, such as CDKN1A,
CCND1,MAPK9,MAPK13, PIR3R1, AKT3,MDM2, FBXO25,
SOS2, and SMAD2 [27], some of which have been demon-
strated to be associated with impaired sperm production.
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Figure 2: The comparison of expression levels of selected differentially expressed miRNAs between testicular tissue samples of the NOA and
OA groups. ∗P < 0:05 and ∗∗P < 0:01.
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CDKN1A, targeted by both miR-520h and miR-519c-3p,
is found to be upregulated in undifferentiated spermatogo-
nia due to DNA damage [28]. Similarly, the overexpression
of CDKN1A has been reported in SCOS patients [29].
Down-regulations of its targetting miRNAs, miR-520h and
miR-519c-3p, in our study is an interesting corroborating
observation CCND1 is another gene, which is downregulated
in SCOS patients, and is targeted by miR-520a-3p, miR-
518a-5p, and miR-520c-3p. Strikingly, certain miR-515
family members also control the MAPK pathway genes
(Figure 5). Several studies have demonstrated that the
MAPK pathway is involved in the differentiation and matu-
ration of male germ cells. Specifically, cascade activation of

MAPKs is suggested to be involved in regulating transcription
and ectoplasmic specialization, flagellar motility of mature
spermatozoa, acrosome reaction, and hyperactivation. For
instance, p38δ (MAPK13) isoform of p38 mitogen-activated
protein kinase is predominantly expressed and activated in
XY germ cells [30]. Normal spermatogenesis is critically
dependent on the integrity and maintenance of the blood-
testis barrier (BTB) as well as the adhesion between germ
and Sertoli cells in the seminiferous tubules [31].

Accompanied by the ERK MAPK pathway activation,
p38 may lead to the loss of germ cells from the epithelium
by inducing the BTB disruption [32]. Moreover, p38 has
been evidenced to play an essential role in sperm motility
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[33]. Homozygous deletion ofPRKACA (Prkaca–), another
gene in this pathway, has been shown to result in substantial
malformations in head morphology and forward motility of
mature sperm in mice [34]. Two heat shock proteins (HSPs),
HSPA8 and HSPA1B, targeted by the miR-515 family mem-
bers, are involved in the MAPK pathway. HSPA8 is recog-
nized to contribute to the maintenance of TSSK6 structure
expressed in the late stages of spermiogenesis. Tssk6 disrup-
tion is linked with diminished sperm number, impaired
condensation of DNA, and abnormal sperm shape and
motility in male mice [35]. Rac1 in the Sertoli cells acts in
the progression of spermatogenesis. Conditional knockout
of Rac1 in adult mice results in spermatogenic arrest at the

round spermatids stage and severe polarity disruption and
increased apoptosis in the Sertoli cell [36]. The above infor-
mation suggests that the miR-515 family regulates spermato-
genesis through the MAPK pathway; however, the precise
role of each miRNA is yet to be unveiled as the functions of
many genes targeted by this family remain unknown. Dysreg-
ulation ofmiR-515,miR-518a-3p, miR-518d-5p,miR-518e-3p
and -5p, miR-518b, miR-517-5p, miR-519d-3p, miR-520a-
5p, miR-520f-5p, and miR-520h is consistent with their dys-
regulation in Klinefelter syndrome patients [37].

We observed that the miR-34 (miR-34b-3p, miR-34b-5p,
miR-34c-3p, and miR-34c-5p) and miR-449 (miR-449a,
miR-449b-3p, miR-449b-5p, and miR-449c-5p) family
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members located on chromosomes 5 and 11, respectively,
were significantly dysregulated in SCOS patients. In a previ-
ous study, drastic reductions in the expressions of both the
miR-34 and miR-449 families were observed in three
groups of patients with impaired spermatogenesis, includ-
ing SCOS, meiotic arrest, and mixed atrophy [12]. In
another study, altered expressions of some members of
the miR-449b and miR-34b/c families were observed even
in patients who carried AZF microdeletions [16]. Both the
above studies on testicular miRNAs were microarray based.
In contrast to Abu-Halima et al. [13], our study was on a
different population and used miRNA sequencing, which
is an advanced and more sensitive method of gene expres-
sion analysis. In comparison to Noveski et al. [16], our
samples were ruled out for Y-deletions.

The miR449 family members (miR-449b and miR-449c)
were not detectable in azoospermic patients with the Kline-
felter syndrome [37]. Consistent dysregulation of these
miRNAs across three studies signifies their role in spermato-
genesis, making them excellent candidates for further inves-
tigations. Yuan et al. demonstrated that male miR-34b/c- or
miR-449-knockout mice displayed normal spermatogenesis,
resulting in normal fertilization and consequently normal
preimplantation development, while miR-449 and miR-
34b/c double knockout (miR-dKO) mice developed infer-
tility in the form of severe spermatogenic impairment
and oligoasthenoteratozoospermia (OAT) syndrome [38].
All these miRNAs, except miR-449b-3p, are involved in
the regulation of hundreds of genes, which are parts of
common biological processes and pathways, including
mitotic cell cycle (GO:0000278), cell death (GO:0008219),
response to stress (GO:0006950), cell cycle (GO:0007049),
apoptosis (hsa04210), p53 signaling pathway (hsa04115),
fatty acid metabolism (hsa01212), and fatty acid biosyn-
thesis (hsa00061) [26]. Nonetheless, more investigations
on these two families are needed since aberrations of
single family did not lead to infertility. The miR-34 and
miR-449 families are involved in ciliogenesis and cell cycle

regulation through BMP and notch signaling, suggesting
their importance in spermatogenesis [39] (Figure 5).

Two other families, including miR-891 (hsa-miR-891a-
3p, hsa-miR-891a-5p, and hsa-miR-891b) and miR-743
(hsa-miR-888-5p, hsa-miR-890, hsa-miR-892a, and hsa-
miR-892b), are located on the X chromosome as their mem-
bers appear to express in the miR-888 cluster. No related GO
terms or KEGG pathways have yet been identified for these
miRNAs, although some roles in spermatogenesis have been
suggested. miR-891b, miR-890, miR-892a, and miR-892b
are speculated to be involved in sperm maturation inso-
much that their expressions are predominately observed
in the epididymis of human and other primates [40, 41],
indicating their contributionto sperm maturation
(Figure 5). miR-92a-2-5p and miR-25-5p, belonging to the
miR-25 family, act at the mitotic G1/S transition check-
point (GO:0044819). miR-92a-2-5p also plays a role in cell
motility (GO:0048870) and cell proliferation (GO:0008283)
[26]. miRNA-106a, located on chromosome X, is indispens-
able for self-renewal of the SSCs by targeting Ccnd1 and
Stat3 in mouse [42]. The miR-25 and miR-302 families
have been investigated for their roles in cell division and
apoptosis in cancer, which suggests their significant contri-
butions to the regulation of cell cycle and apoptosis in the
testis (Figure 5); however, further investigations are
required to understand their exact roles in spermatogenesis.

5. Conclusions

In summary, this is the first study analyzing the expression
profile of miRNAs through small RNA sequencing in the
testicular tissue of idiopathic SCOS patients. We detected
136 differentially expressed miRNAs. While the differences
in the germ cell composition in obstructive versus nonob-
structive azoospermia cases could be behind the alterations
identified in this study, irrespective of the reasons behind
these differences, the identification of the missing/downreg-
ulated miRNAs would put forth the miRNAs that are critical
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to infertility treatment in the future. These miRNAs may be
used as prognostic markers for the treatment of azoospermia
using stem cell therapy in the future. Further studies on
these miRNAs may be required to investigate their biological
functions in the testis. We admit the limitation of a limited
sample size in this study, which was due to the difficulty in
obtaining testicular biopsy samples.
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