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Background. Our previous works revealed Yangjing capsule (YC) could inhibit cell apoptosis and promote testosterone production
in Leydig cells. SET protein has been reported to be important in regulating testosterone synthesis and apoptosis. The purpose of
this study was to investigate whether the steroidogenic and antiapoptotic effects of YC are mediated in part by the SET/PI3K/Akt
pathway in Leydig cells. Methods. MLTC-1 cells were treated with YC-medicated serum. si-RNA was used to knockdown SET
expression in MLTC-1 cells. The elderly BALB/c mice were treated with different doses of YC extract. Flow cytometry and TUNEL
staining were used to assess apoptosis in MLTC-1 cells and mouse testes. HE staining was conducted to detect the morphological
changes in mouse testes. Testosterone levels in cell culture medium and serum were measured by ELISA kit. Quantitative real-time
reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot were used to detect the expression levels of key
molecules. Results. YC-medicated serum could significantly increase the expression of SET and StAR, P450scc, HSD17B, and
testosterone production in MLTC-1 cells. YC-medicated serum could increase Akt phosphorylation and Bcl-2/Bax ratio to
suppress apoptosis in MLTC-1 cells. SET knockdown significantly inhibited YC-medicated serum-induced steroidogenic and
antiapoptotic effects in MLTC-1 cells. In vivo experiments revealed the YC extract could enhance SET expression, trigger Akt
phosphorylation, and suppress apoptosis in mouse testis to raise serum testosterone levels. Conclusions. A possible mechanism of
promoting testosterone production induced by YC in Leydig cell was by triggering SET/PI3K/Akt pathway.

1. Introduction

Testosterone, the major circulating functional androgen
secreted by Leydig cells, is essential for various physiological
processes [1]. A large longitudinal study has shown that most
men experience a gradual decline in serum testosterone levels
with aging even in the absence of disease [2]. Approximately
30% of middle-aged or older men exhibit varying degrees of
clinical symptoms, such as low sexual desire, erectile dysfunc-
tion, insomnia, and depression, known as late-onset hypogo-
nadism (LOH) [3].

Previous studies have shown that the number of Leydig
cells rarely changed with age in both rats and humans [4, 5].
These findings suggest that the age-related decline in

testosterone production may be mainly related to Leydig cell
dysfunction. However, recent research in human testes has
observed that testes of the same weight contained fewer Leydig
cells during aging, suggesting that the age-related disturbance
in testosterone synthesis was more likely due to decreased Ley-
dig cells [6]. Up to date, the molecular mechanisms associated
with age-related Leydig cell loss remain elusive. With aging,
chronic inflammation, and oxidative stress lead to excessive
apoptosis in Leydig cells. Accumulating evidence supports
the notion that apoptosis may cause a decrease in Leydig cell
numbers and testosterone production [7, 8].

SET protein, as an inhibitor of protein phosphatase 2A,
was first reported in a leukemia patient [9]. An earlier study
showed that SET protein was highly expressed in mouse
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Leydig cells [10]. A subsequent study showed that SET over-
expression or knockdown could significantly promote or
decrease testosterone production [11]. These results con-
firmed the relationship between SET and testosterone pro-
duction in Leydig cells. The activated PI3K/Akt pathway can
trigger the phosphorylation of various substrates or enhance
the activity of numerous enzymes to control cell cycle and
apoptosis [12]. In many human malignancies, SET can bind
to PP2A to play an important role in cell apoptosis through
the PI3K/Akt and Bcl-2 survival pathways [13, 14]. However,
the specific mechanism by which SET that regulates testos-
terone synthesis in Leydig cells remains unclear.

Yangjing capsule (YC), which has been used clinically for
many years, is a compound preparation composed of herbs
including Epimedii Brevicornus, Placenta Hominis, Rehman-
nia glutinosa, Astragalus mongholicus, Lycium barbarum, and
other components [15]. Our previous studies showed that the
YC can promote testosterone production through upregulat-
ing the expression of steroidogenic enzymes and reducing cell
apoptosis in Leydig cells [16, 17]. However, the mechanism
underlying YC to reduce cell apoptosis and upregulate the
expression of steroidogenic enzymes to promote testosterone
production in Leydig cells remains unclear.

In this paper, based on previous studies, we propose that
YC can regulate SET both in vitro and in vivo to induce
phosphorylation of the PI3K/Akt pathway and then reduce
cell apoptosis. These findings may explain by which YC pro-
motes testosterone production, and provide strong evidence
for the treatment effect of YC on LOH.

2. Materials and Method

2.1. Preparation of YC-Medicated Serum. Experiments with
animals were conducted in accordance with the Guide for the
Care and Use of Laboratory Animals (NIH Publications
Number 85–23, revised 1996), and were approved by the
Ethics Committee of Southeast University (Nanjing, China).

Forty Sprague-Dawley rats (250–300 g) were purchased
from Charles River (Beijing, China). All animal experiments
in this study were in accordance with the Chinese Guide for
the Care and Use of Laboratory Animals. They were ran-
domly divided into four groups (10 rats per group): YC low-
dose group (received intragastric administration of 7.14 g/kg
YC extract), YC medium-dose group (received intragastric
administration of 14.28 g/kg YC extract), YC high-dose
group (received intragastric administration of 28.56 g/kg
YC extract), and control group (received the same volume of
physiological saline). The administrations were carried out
twice a day for 7 days. Rats were anesthetized with 10% pento-
barbital sodium 2hr after the last administration. Blood was
collected from the abdominal aorta and centrifuged at
3000 rpm for 15min at 4°C. Serum samples were collected,
filtered with 0.22 μm filters, inactivated at 56°C for 30min
and then stored at −80°C.

2.2. Culture and Treatment of Leydig Cell Line.MLTC-1 cells
were obtained from American Type Culture Collection
(ATCC). They were cultured in RPMI-1640 (Gibco, NY,
USA) containing 10% FBS (Sciencell, San Diego, USA), 1%

penicillin/streptomycin (Beyotime, Shanghai, China) in 5%
CO2 at 37°C. MLTC-1 cells were cultured at a density of
3× 105/well in six-well plates and divided into four groups,
control serum (CS), low-dose YC-medicated serum (LS)
group, medium-dose YC-medicated serum (MS) group,
and high-dose YC-medicated serum (HS) group. When cell
density reached 70%, they were treated with medium con-
taining 10% CS, LS, MS, and HS, respectively, for 48 hr.

2.3. si-RNAs and Transfection. si-RNAs and riboFECT™ CP
were obtained from RIBOBIO (Guangzhou, China). The
sequences of si-RNAs for SET are shown as follows: si-
SET-1 GGT TTA CTG ACC ATT CTG A, si-SET-2 CGC
AGG TGC TGA TGA GTT A, and si-SET-3 GTC ATC AAA
GAT GAC ATC T. They were mixed to transfect cells to
ensure efficiency. MLTC-1 cells were divided into four
groups, CS group, HS group, CS+ SET knockdown (CS
+ si-SET) group, and HS+ SET knockdown (HS+ si-SET)
group. MLTC-1 cells were cultured at a density of 2× 105/
well in six-well plates. When the cell density reached 50%,
cells in CS+ si-SET and HS+ si-SET were treated with si-
RNAs. After 36 hr, cells in the CS and CS+ si-SET groups
were treated with medium containing 10% CS, while cells in
the HS and HS+ SET groups were treated with medium
containing 10% HS for another 48 hr.

2.4. RNA Isolation and Real-Time Polymerase Chain
Reaction (PCR). Total RNA was isolated using Trizol reagent
(Invitrogen, Carlsbad, USA). The concentration and purity
of the extracted RNA were then measured by spectrometry
(NanoDrop, USA). PrimeScript RT Master Mix (TaKaRa,
Dalian, China) was used to synthesize cDNA from 1mg of
total RNA. Primers used in this study were SET, forward: 5ʹ-
GTC CAC CGA AAT CAA ATG GAA ATC-3ʹ, and reverse:
5ʹ-GTC CAC CGA AAT CAA ATG GAA ATC-3ʹ, and
reverse: 5ʹ-GCA CCT GCA TCA GAA TGG TCA-3ʹ; StAR,
forward: 5ʹ-CCA CCT GCA TGG TGC TTC A-3ʹ, and
reverse: 5ʹ-TTG GCG AAC TCT ATC TGG GTC TG-3ʹ;
P450scc: forward: 5ʹ- AGG TCC TTC AAT GAG ATC
CCT T-3ʹ, and reverse: 5ʹ- TCC CTG TAA ATG GGG
CCA TAC-3ʹ; HSD17B: forward: 5ʹ- TCT CTG CCA TGT
GGA TAA CCC-3ʹ, and reverse: 5ʹ- GGT CGG TAG CGT
ATT TGG AAG-3ʹ; β-actin, forward: 5ʹ-GCT ACA GCT
TCA CCA CCA CAG-3ʹ, and reverse: 5ʹ-GGT CTT TAC
GGA TGT CAA CGT C-3ʹ. cDNA amplification was per-
formed out at 95°C for 30 s and 60°C for 60 s for 5min,
followed by 40 cycles. The final step was the melt curve
analysis. The relative abundance of the target gene expres-
sion was calculated according to the 2−ΔΔCt method.

2.5. Protein Extraction and Western Blot Analysis. After the
cells were treated as described above, the total cell lysate was
collected by RIPA buffer containing 1% Halt™ protease
inhibitor cocktail (Thermo, Shanghai, China). The cell lysate
was placed at 4°C for 15 min, and then centrifuged at
12,000 rpm for 15min to retain the supernatant. The same
volume of 2× loading buffer (BIO-RAD, USA) was added to
the supernatant, and then denatured the protein was dena-
tured at 95°C for 10min. Equal amounts of total protein
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(40 μg) were separated via SDS-PAGE and then transferred onto
polyvinylidene flouride (PVDF) membranes (BIO-RAD, USA).
After the transfer, 5% nonfat milk was used to block the binding
sites of the membranes for 1hr, and then the membranes were
incubated with primary antibodies against SET (Abcam,
ab181990, 1:10000), Bcl-2 (Abcam, ab182858, 1:2000), Bax (Pro-
teintech, 60267-1-Ig, 1:5000), StAR (Proteintech, 12225-1-AP,
1:1000), P450scc (Proteintech, 67264-1-Ig, 1:5000); HSD17B
(Proteintech, 14854-1-AP, 1:500); β-actin (Proteintech, 20536-
1-AP, 1:1000), Akt (CST, C67E7, 1:1000), p-Akt (CST, D9E,
1:1000), and caspase-3 (CST, D3R6Y, 1:1000) on a shaking table
at 4°C overnight. The membranes were incubated for 1hr at
room temperature with goat antirabbit IgG (Abcam, ab6721,
1:4000) or goat antimouse IgG (Proteintech, SA00001-1,
1:2000). The membranes were exposed by an enhanced chemi-
luminescence solution (Thermo, Shanghai, China), and band
intensities were semiquantified using Image J software. In addi-
tion, β-actin was selected to normalize relative protein expression.

2.6. Flow Cytometry. After cells were treated as described
above, they were harvested and washed with Phosphate Buff-
ered Saline (PBS). The Annexin V-FITC/PI Apoptosis Detec-
tion Kit (Vazyme, Nanjing, China) was then used to detect cell
apoptosis according to the protocol. Apoptosis rates were
measured by flow cytometry. Cells exhibiting FITC+/PI−
were considered early apoptotic cells, while those exhibiting
FITC+/PI+were considered late apoptotic cells.

2.7. Animals and YC Extract Intragastric Administration. Fifty
18-month-old and ten 3-month-old male BALB/c mice were
purchased from Charles River (Beijing, China). These mice
were randomly divided into five groups (10mice per group):
low-dose group (mice received intragastric administration of
0.63 g/kg of YC extract), medium-dose group (mice received
intragastric administration of 1.26 g/kg of YC extract), high-
dose group (mice received intragastric administration of
2.52 g/kg of YC extract), sham group and control group
(mice received the same volume of physiological saline). The
administrations were carried out twice a day for 30 days. The
mice were anesthetized with 10% pentobarbital sodium 2hr
after the last administration. Blood was then collected from the
medial canthus and centrifuged at 3,000 rpm for 15min at 4°C.
Serum samples were collected and stored at −80°C. Testes
were collected after the mice were killed. One testis was placed
in tissue fixative and the other was stored at −80°C.

2.8. Hormone Assessment Assays. The mouse testosterone
ELISA kit was purchased from Jining Biotechnology (Shanghai,
China). Cell culture medium and serum were collected from
different groups described above for testosterone level detection
using mouse testosterone ELISA kit following protocol.

2.9. HE Staining. Testicular tissue was routinely embedded
with paraffin. The wax blocks were sliced into 4–8 µm sec-
tions. The tissue sections were placed on the glass slide,
stretched in warm water at 40°C, and then dried in an
oven at 80°C for 1 hr. Paraffin was dissolved from the tissue
sections with xylene, and then the sections were fully
hydrated with ethanol. After hydration, the sections were
stained hematoxylin, and then differentiated them using

1% hydrochloric acid ethanol. The differentiated sections
were then stained with an eosin dye solution. After staining,
the sections were completely dehydrated with ethanol and
patched with neutral gum. Finally, the tissue sections were
observed and photographed under a microscope.

2.10. Immunohistochemical Staining. Tissue section prepara-
tion, dewaxing, and hydration were described above. 0.01M
sodium citrate buffer solution, pH 6.0, was heated to boiling
in a microwave oven for 4min. The sections were then
placed in the boiled buffer solution for 15min to repair the
antigen. The sections were then washed 3 times with PBS.
Nonspecific binding sites were blocked with serum at 37°C
for 30min. 20μl anti-SET (Abcam, ab181990, 1:250) was
added to the tissue on the section and incubated overnight
at 4°C. The sections were then washed 3 times with PBS. A
second antibody (20 μl) was added to the tissue on the sec-
tion and incubated at 4°C for 1 hr. The sections were stained
with DAB-H2O2 for 10min and then rinsed with distilled
water. Slices were dehydrated and dewaxed with ethanol and
xylene, respectively, and then patched with neutral gum.
Finally, the tissue sections were observed under the micro-
scope and photographed.

2.11. TUNEL Staining. TUNEL BrightRed Apoptosis Detec-
tion Kit (Vazyme, Nanjing, China) was used to detect cell
apoptosis in tissue sections according to the protocol. Scan-
ning and imaging with the confocal microscope. Semiquan-
titative analysis of fluorescence intensity using Image Pro
Plus 6 software.

2.12. Statistical Analysis. Data are presented as the meanÆ SD
of values from at least three independent experiments. Differ-
ences between groups were assessed by one-way analysis of
variance (ANOVA) followed by least significant difference
(LSD). P<0:05 were considered statistically significant.

3. Results

3.1. YC-Medicated Serum Upregulated SET Expression and
Promoted Testosterone Production in MLTC-1 Cells. To eval-
uate the effects of YC-medicated serumon the expression of SET
and changes in testosterone production, MLTC-1 cells were
treated with 10% control serum, low, medium, and high doses
of YC-medicated serum, respectively. As shown in Figure 1(a),
testosterone production was significantly increased in the MS
and HS groups (P<0:05). SET expression was rapidly induced
by YC-medicated serum both at the mRNA (Figure 1(b)) and
protein (Figures 1(c) and 1(d)) levels in the HS group (P<0:05).
In addition, (Figure 1(b), 1(c), and 1(d)) showed the mRNA and
protein expression levels of StAR, P450scc, and HSD17B were
significantly increased in the HS group (P<0:05).

3.2. YC-Medicated Serum Reduces Apoptosis in MLTC-1 Cells
through PI3K/Akt Signal Pathway. Flow cytometry analysis
(Figures 2(a) and 2(b)) revealed that the apoptosis of MLTC-
1 cells was significantly decreased by YC-medicated serum in
a dose-dependent manner, and the difference was significant
in the HS group compared with the CS group (P<0:05).
Western blot (Figures 2(c) and 2(d)) showed that the protein
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expression of P-Akt and Bcl-2 were significantly increased,
while cleaved-caspase-3 and Bax were significantly reduced
in the HS group (P<0:05).

3.3. SET Knockdown Blocks YC-Medicated Serum-Induced
Testosterone Production and Upregulated Steroidogenic
Enzymes in MLTC-1 Cells. Our results presented above dem-
onstrated that YC-medicated serum could upregulate SET
expression to trigger the PI3K-Akt signaling pathway, reduce
MLTC-1 cells apoptosis, and then promote testosterone pro-
duction. To obtain further evidence for our inference, SET
expression was knocked down to evaluate the effects of YC-
medicated serum. As shown in Figure 3(a), testosterone pro-
duction was markedly suppressed when SET was knocked

down compared to the control group (P<0:05). SET knock-
down significantly inhibited YC-medicated serum-induced
testosterone production (P<0:05). PCR and Western blot
results (Figures 3(b), 3(c), and 3(d)) showed that the relative
mRNA and protein expression levels of StAR and HSD17B
were reduced when SET knockdown was performed compared
to the control group (P<0:05). Additionally, SET knockdown
significantly suppressed YC-medicated serum-induced upre-
gulated mRNA and protein expressions of StAR and HSD17B.

3.4. SET Knockdown Blocks YC-Medicated Serum-Induced
Akt Phosphorylation and antiapoptotic Effect in MLTC-1
Cells. Flow cytometry analysis (Figures 4(a) and 4(b))
revealed that the apoptosis rate of SET-knockdown MLTC-
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1 cells was significantly increased compared to the control
group (P<0:05). Meanwhile, SET knockdown significantly
inhibited the antiapoptotic effect induced by YC-medicated
serum in MLTC-1 cells (P<0:05). Western blot (Figures 4(c)

and 4(d)) revealed that SET inhibition suppressed Akt phos-
phorylation and the expression of Bcl-2, increased the
expression of Bax and cleaved-caspase-3 compared to the
control group (P<0:05). Additionally, SET knockdown
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significantly suppressed YC-medicated serum-induced Akt
phosphorylation, upregulated the expression of Bcl-2, and
decreased expression of Bax and cleaved-caspase-3.

3.5. YC Extract Increased Serum Testosterone Levels and
Upregulated Testicular Steroidogenic Enzymes in Mice. HE
staining was used to examine the histologic structures of
the testes. The testes in the sham group exhibited complete
seminiferous tubules and normal interstitial space. Com-
pared with sham mice, control mice showed a reduced testis
size, increased vacuolation in seminiferous tubules and tes-
ticular interstitial, and a reduced number of spermatogenic and
Leydig cells. Abnormalities in the testis size, testicular struc-
tures, and number of spermatogenic and Leydig cells in the YC
extract-treated groups showed varying degrees of amelioration
compared with control mice (Figure 5(a)). Consistent with
previous findings, immunohistochemical staining revealed
that SET was mainly expressed in spermatogenic and Leydig
cells in the testis. The immunohistochemical staining intensity
of SET in the control group was significantly reduced com-
pared with that in the sham group. YC extract could upregulate
the staining intensity SET in the testis (Figure 5(b). Serum
ELISA data showed that testosterone levels of control mice
were significantly reduced compared to sham mice. Serum
testosterone levels were induced by YC extract in a dose-
dependent manner and significantly increased in high-dose
mice compared to control mice (Figure 5(c)). Western blot
results showed that the relative protein expression levels of
SET, StAR, P450scc, and HSD17B were reduced in control
testes compared to sham testes. YC extract could upregulate
the expression of SET, StAR, P450scc, and HSD17B in
testicular tissue compared to control mice (Figure 5(d)–5(f)).

3.6. YC Extract Reduces Apoptosis of Leydig Cells in Mice
through PI3K/Akt Signal Pathway. Cell apoptosis in the testis
was detected by TUNEL staining. DAPI-stained nuclei (blue)
colocalized with TUNEL (red) in apoptotic cells. TUNEL
staining results revealed that positive staining was mainly
located in Leydig cells in the testicular interstitial and the
spermatogenic cells in the periphery of the seminiferous
tubules (Figure 6(a)). The average fluorescence intensity (AFI)
was significantly increased in high-dose mice compared with
control mice. YC extract could alleviate AFI in the treated
groups to varying degrees (Figure 6(b). Western blot results
showed that the relative protein expression levels of P-Akt and
Bcl-2 were decreased, while Bax and cleaved-caspase-3
expression were increased in control testes compared with
sham testes. YC extract could upregulate the expression of
P-Akt and Bcl-2, and suppress the expression of Bax and
cleaved-caspase-3 in testicular tissue compared to control mice
(Figures 6(c) and 6(d)).

4. Discussion

YC has been used clinically for years in patients with male
infertility, LOH, and sexual dysfunction. It may act to
improve sexual and reproductive function in part by promot-
ing steroidogenesis [18]. However, the cell-inrinsic mechan-
isms by which YC promotes steroidogenesis in Leydig cells

are poorly understood. In the present study, we found that
YC could decrease apoptosis by upregulating SET expression
to stimulate testosterone production in Leydig cells.

SET is reported to be a phosphorylated protein that is
ubiquitously expressed in various tissues, particularly in ste-
roidogenic cells within the adrenal gland and gonad, suggest-
ing that it may be closely assiciated with steroidogenesis
[19, 20]. Previous work has shown that human chorionic
gonadotropin (hCG) increased SET mRNA and protein
expression through the cAMP/PKA signaling pathway to
stimulate steroidogenic enzyme expression, which then pro-
motes testosterone production in Leydig cells [11]. In the
present study, we found that YC could paly a similar role
to hCG in upregulating the expression of SET, StAR,
P450scc, and HSD17B to stimulate steroidogenesis in Leydig
cells both in vitro and in vivo. It is well known that the
LH/LHR signaling pathway is crucial for steroidogenesis in
Leydig cells. Binding of LH or hCG to LHR has both acute
and chronic impacts on Leydig cells. The acute effect means
LH or hCG can stimulate the cAMP/PKA cascade to pro-
mote testosterone synthesis. In its chronic action, LH expo-
sure can upregulate steroidogenic enzymes expression via the
cAMP/PKA signaling pathway [21]. In our previous study,
H89, an inhibitor of the PKA pathway, was used to observe
its effect on YC-induced steroidogenesis. The results showed
that H89 could significantly reduce the expression of ste-
roidogenic enzymes and testosterone production induced
by YC extract in Leydig cells [15]. Polysaccharide, as a struc-
tural molecular form, is involved in intermolecular recogni-
tion and connection. Some structural polysaccharides of YC
share the similar ability to LH/hCG to activate LH/LHR
signaling pathway in Leydig cells. These investigations indi-
cated that YC-induced steroidogenesis is due in part to reg-
ulating SET expression via the cAMP/PKA signaling
pathway in Leydig cells.

The relationship between aging and apoptosis remains
unclear, but some features like oxidative stress, DNA dam-
age, and chronic inflammation associated with the aging
process have been confirmed to induce apoptosis [22–24].
Apoptosis is partially controlled by Bcl-2 family proteins.
Bcl-2, as the important antiapoptotic regulators, can function
as homodimers to promote cell survival via maintaining
mitochondrial stability, while proapoptotic members like
Bax can increase mitochondrial permeability to induce apo-
ptosis [25]. As a key serine/threonine phosphatase, the PP2A
complex is involved in a variety of cellular processes, includ-
ing apoptosis [26]. There is some evidence that PP2A can
dephosphorylate Bcl-2, thereby increasing mitochondrial
permeability, and leading to cell apoptosis [27]. The binding
of SET to PP2A inhibits approximately 50% of the phosphor-
ylation activity of PP2A, thereby exerting an antiapoptotic
effect [13, 19, 28]. In the current study, we found that the
YC-medicated serum significantly increased the ratio of
Bcl-2 to Bax and reduced the number of apoptotic cells
which was accompanied with by upregulated SET expression
in the MLTC-1 cell line. In addition, we also demonstrated
YC extract could also stimulate SET expression, reduce the
positive rate of TUNEL staining and increase the ratio of Bcl-
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2 to Bax in mouse testis tissue. Our work showed that the
YC-induced antiapoptotic effect was partially achieved by
upregulating the expression of SET both in vitro and in vivo.

In the PI3K/Akt signaling pathway, phosphorylation of
Akt at T-308 and S-473 has been demonstrated to promote
proliferation via suppressing apoptosis in numerous cell
types [29]. Therefore, we further investigated whether the
PI3K/Akt signaling pathway is involved in the YC-induced
antiapoptotic effect in Leydig cells and found that the YC-
medicated serum significantly increased Akt phosphoryla-
tion with upregulated SET expression in MLTC-1 cell line.
In rat testis tissue, YC extract could also stimulate SET
expression and increase Akt phosphorylation. Evidence indi-
cated that PP2A, as an important Akt phosphatase, exerted
an inhibitory effect on Akt phosphorylation at T-308 [30].
Binding to SET could relieve the inhibitory effect of PP2A on
Akt phosphorylation [14]. Our results demonstrated that the
PI3K/Akt signaling pathway was involved in the YC-induced
antiapoptotic effect in Leydig cell.

Considering that YC upregulated SET expression, we fur-
ther investigated whether SET knockdown affected the ste-
roidogenic and antiapoptotic effects of YC. si-RNAs were
used to knockdown the SET expression in Leydig cells. Consis-
tent with previous reports, Akt phosphorylation, steroidogenic
enzyme expression, and testosterone production were signifi-
cantly suppressed in MLTC-1 cells with SET knockdown; SET
knockdown decreased the ratio of Bcl-2 and Bax and induced a
significant increase in cell apoptosis. Furthermore, SET knock-
down suppressed the YC-induced Akt phosphorylation, inhi-
bition of apoptosis, expression of steroidogenic enzymes, and
testosterone production, suggesting that the steroidogenic and
antiapoptotic effects of YC were exerted in part via the regula-
tion of SET expression.

5. Conclusions

In conclusion, the findings from our study provide evidence
that YC can effectively upregulate the expression of SET.
This, in turn, leads to the inhibition of Akt dephosphoryla-
tion, resulting in an increase in the levels of phosphorylated
Akt. As a consequence, there is a reduction in cell apoptosis,
which further promotes steroidogenesis (Figure 6(e)). These
results significantly contribute to the understanding of YC’s
potential clinical application as a therapeutic intervention.
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