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Diabetes can cause erectile dysfunction (ED) in more than half of male patients. However, the mechanisms underlying diabetes-
induced erectile dysfunction (DED) remain unknown. This study is aimed at systematically analyzing the cellular and molecular
mechanisms leading to DED using bioinformatic analysis and providing molecular targets for predicting and treating DED. In
total, we identified 800 DEGs in the DED samples compared with those in the control group. The 407 upregulated DEGs were
mainly enriched in glucose and lipid metabolism-related pathways, and the 393 downregulated DEGs were primarily enriched
in tissue development and structure. Dysregulated extracellular matrix genes (especially collagen and elastin) may be closely
related to damage to the erectile function of the corpus cavernosum. Sixteen hub genes and 24 modules were detected with
hub genes and MCODE analysis. The consensus sequence AAA (G/C) AAA was observed at the promoter sites of most genes
that were enriched in the “posttranslational protein phosphorylation” pathway. These genes had abundant phosphorylation
sites. Furthermore, 20 TFs targeting DEGs were identified using ChEA3 tool. In conclusion, our research comprehensively
and systematically describes the molecular characteristics of DED and suggests that dysregulated extracellular matrix genes
and protein phosphorylation may play critical roles in DED. Therefore, they may be potential markers for diagnosing and
treating DED.

1. Introduction

Diabetes mellitus is a chronic, noncommunicable disease
associated with multiple organ and system complications
[1]. In recent decades, the global incidence of adult diabetes
has increased at an accelerated growth rate. The number of
patients with diabetes aged 20-79 years is expected to
increase to 642 million by 2040 [2]. Diabetes can cause
several health problems, including sexual dysfunction [3].
In male patients, sexual dysfunction is mainly manifested
as erectile dysfunction (ED), with a global prevalence of
52.5% (type I diabetes, 37.5%; type II diabetes, 66.3%) [4].
Due to the high incidence of type II diabetes mellitus
(T2DM), research on diabetes-induced ED has also focused

on T2DM. However, T1DM incidence is increasing world-
wide, and the reasons for this are incompletely understood
[5]. T1DM-induced ED should also receive the attention of
researchers. Therefore, we conducted this study to deter-
mine the molecular features of T1DM-induced ED.

The etiology of diabetic erectile dysfunction (DED) is
complicated and may be related to endothelial dysfunction,
smooth muscle injury, vascular disease, neuropathy, abnor-
mal hormone levels, inflammation, and cavernous fibrosis
[6]. DED has always been a challenge for endocrinologists
and urologists, who have used oral phosphodiesterase type
5 inhibitors (PDE5i) as the first-line treatment for ED,
including DED. However, DED is often resistant to PDE5i
treatment [7]. Intracavernous administration of vasoactive
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drugs, commonly used as a second-line medical treatment
when PDE5i fails, often induces unavoidable complications,
including penile pain, hydrocephalus, priapism, and fibrosis
[7]. Consequently, patients often choose to undergo penile
prosthesis implantation. Therefore, although great progress
has been made in recent decades, medical treatment for
DED remains difficult [8]. In addition, many studies have
evaluated the mechanism of DED [9–12], but there is a lack
of understanding at the cellular and molecular levels.

Here, we systematically analyzed the molecular corre-
lates of ED in diabetes using bioinformatics. Differentially
expressed genes (DEGs) were identified in a diabetes-
induced ED rat model. We analyzed the function and inter-
action pathways of the DEGs and performed hub gene and
module analyses. Conserved motifs in the promoter regions
and their posttranslational phosphorylation modifications
were studied. In addition, we searched for transcription fac-
tors (TFs) that may target DEGs.

2. Materials and Methods

2.1. Data Collection. We used “diabetes” and “erectile dys-
function” to search the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/) and selected
the GSE2457 gene expression dataset for the next analysis
[13]. Considering the ethical principles and difficulty of
obtaining penile tissue samples from patients with DED,
microarray experiments were performed on the cavernous
tissue of a diabetes-induced ED rat model. In their study,

the two-month rats were intraperitoneally injected with
35mg streptozotocin (STZ) per kg body weight in sterile cit-
rate buffer to induce diabetes. The body weight and glucose
levels of each animal were monitored weekly over the course
of the study (10 weeks). Diabetes is a blood glucose level of
>300mg/dL. The response of intracavernous pressure
(ICP) to cavernous nerve stimulation was measured ten
weeks after the induction of diabetes in all rats. Finally,
blood glucose was significantly higher in diabetic rats than
in control rats (386 ± 8 vs. 94 ± 5mg/dL, P < 0:0001), and
glucose levels in the STZ group were maintained at
300mg/dL or above throughout the course of the study.
The mean ΔICP/MAP was lower at all voltages in the dia-
betic rats than in the controls. More detailed information
can be found in PMID: 16118269.

2.2. Identification of Differentially Expressed Genes. GEO2R
tool (https://www.ncbi.nlm.nih.gov/geo/geo2r/) was used
to extract differentially expressed genes (DEGs). P < 0:05
and fold change > 1:5 (or <0.67) were chosen as the cutoff
criteria.

2.3. Gene Annotation and Enrichment Analysis of DEGs.
Metascape (http://metascape.org) is a web-based tool that
can provide automated gene list annotation and enrich-
ment analysis [14]. Enrichment analysis was based on
the following ontology sources: Gene Ontology (GO) pro-
cesses, KEGG pathways, canonical pathways, Reactome gene
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Figure 1: Heatmap of enriched terms across input gene lists.
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sets, PaGenBase, and CORUM. In addition, we used this tool
to produce a heatmap and network of enriched terms.

2.4. PPI Network, Hub Gene, and Module Analysis. The
Search Tool for the Retrieval of Interacting Genes (STRING,
https://string-db.org/) was applied to detect the interactions
of the DEGs and construct the PPI network [15]. Cytoscape
software was used to optimize the PPI network [16]. Two
Cytoscape software plug-ins, cytoHubba and Molecular
Complex Detection (MCODE), were used to identify the
hub genes and screen modules of the PPI network.

2.5. Identification of Conserved Motifs in Promoter Site.
Ensembl (https://ensembl.org/) was used to obtain the
promoter site (2000 bp upstream of the transcription start
site) [17]. Gapped Local Alignment of Motifs (GLAM2)
was used to discover common conserved motifs in the gene
of interest [18].

2.6. Prediction of the Phosphorylation Sites. Protein
sequences were retrieved from the National Center for Bio-
technology Information website (https://www.ncbi.nlm.nih

.gov/protein). NetPhos 3.1 server (http://www.cbs.dtu.dk/
services/NetPhos/) was used to predict serine, threonine,
and tyrosine phosphorylation sites in the selected pro-
teins [19].

2.7. Prediction of TFs Associated with DEGs. ChEA3 (https://
maayanlab.cloud/chea3/) is an online tool that can be used
for transcription factor (TF) enrichment analysis by orthog-
onal omics integration [20]. We used this tool to identify
TFs that target DEGs.

2.8. Statistical Analysis. All statistical analyses were con-
ducted using SPSS version 20.0 (SPSS Inc., Chicago, IL,
USA) and GraphPad Prism version 8.0 (GraphPad Soft-
ware, San Diego, CA, USA). P < 0:05 indicated statistical
significance.

3. Results

3.1. Identification and Enrichment Analysis of DEGs. The
array analysis was based on a > 1:5 (or <0.67)-fold change
in expression and P < 0:05. According to these criteria,

Table 1: Top 20 clusters with their representative enriched terms.

Gene list Terms Category Description Count % Log10 (P) Log10 (q)

R-RNO-1474244 Reactome gene sets Extracellular matrix organization 24 6.78 -11.15 -6.90

GO:0032787 GO biological processes Monocarboxylic acid metabolic process 61 8.43 -10.44 -6.16

R-RNO-397014 Reactome gene sets Muscle contraction 20 5.65 -10.23 -6.90

GO:1901652 GO biological processes Response to peptide 63 8.70 -9.72 -5.74

GO:0043269 GO biological processes Regulation of ion transport 68 9.39 -9.36 -5.74

GO:0019395 GO biological processes Fatty acid oxidation 16 4.31 -9.27 -6.06

GO:0048871 GO biological processes Multicellular organismal homeostasis 53 7.32 -9.25 -5.74

GO:0009611 GO biological processes Response to wounding 61 8.43 -9.05 -5.73

GO:0050708 GO biological processes Regulation of protein secretion 28 7.55 -7.56 -4.84

GO:0032870 GO biological processes Cellular response to hormone stimulus 64 8.84 -7.51 -4.65

GO:0009150 GO biological processes Purine ribonucleotide metabolic process 45 6.22 -7.47 -4.63

GO:0002931 GO biological processes Response to ischemia 15 2.07 -7.31 -4.52

ko04152 KEGG pathway AMPK signaling pathway 20 2.76 -7.02 -4.33

GO:0001501 GO biological processes Skeletal system development 30 8.47 -6.70 -4.12

GO:0045922 GO biological processes
Negative regulation of fatty acid

metabolic process
8 2.16 -6.63 -4.10

GO:0010038 GO biological processes Response to metal ion 45 6.22 -6.34 -3.84

GO:0070848 GO biological processes Response to growth factor 60 8.29 -5.97 -3.54

GO:0032526 GO biological processes Response to retinoic acid 14 3.95 -5.92 -3.54

GO:0070542 GO biological processes Response to fatty acid 19 2.62 -5.87 -3.47

GO:0001659 GO biological processes Temperature homeostasis 23 3.18 -5.78 -3.39

Abbreviations: : upregulated genes; : downregulated genes; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; AMPK: adenosine
5′-monophosphate-activated protein kinase.
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Figure 2: Visualizations of functional enrichment and interactome analysis results of the DEGs. Network of enriched terms: (a) colored by
enriched terms and five groups formed; (b) colored by the P value; (c) color-coded based on the identities of the gene lists. Abbreviations:
DEGs: differentially expressed genes; GO: Gene Ontology; AMPK: adenosine 5′-monophosphate-activated protein kinase.
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800 DEGs (407 upregulated and 393 downregulated) were
detected (Table S1).

We used Metascape to perform annotation and enrich-
ment analyses of these genes. Figure 1 displays the Metascape
enrichment analysis results as a clustered heatmap. In the top
100 enriched clusters (Figure S1), the upregulated and
downregulated genes were mostly different, and only a
small portion of the results overlapped. When the results
were limited to the top 20 clusters, the overlap probability
of enrichment results increased. However, the main
functions of the upregulated and downregulated genes
differed significantly. The upregulated DEGs were enriched
in glucose and lipid metabolism-related pathways: “fatty
acid oxidation”, “monocarboxylic acid metabolic process”,
“negative regulation of fatty acid metabolic process”, and
“AMPK signaling pathway”. The downregulated DEGs

were primarily enriched in tissue development and
structure: “extracellular matrix organization”, “muscle
contraction”, and “skeletal system development”. Table 1
illustrates the top 20 clusters with their representative
enriched terms, the number of genes enriched in each term,
and the percentage of genes that are found in the given
ontology term.

We built an enrichment network to demonstrate the
relationships between the top 20 terms. In the network, each
node represented an enriched cluster and was first colored
by its cluster ID (Figure 2(a)) and then by its P value
(Figure 2(b)). From the network, there were mainly five-
term groups formed: group 1: “extracellular matrix organiza-
tion” and “skeletal system development”; group 2: “response
to peptide,” “cellular response to hormone stimulus,” and
“response to fatty acid”; group 3: “monocarboxylic acid
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Figure 3: (a) PPI network of the DEGs. The edge color reflects the combined score of the genes (green→red = low score→high score).
(b) PPI network of 16 hub genes and enrichment analysis of these genes (c). Abbreviations: DEGs: differentially expressed genes; GO:
Gene Ontology; PPI: protein-protein interaction.
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metabolic process,” “purine ribonucleotide metabolic pro-
cess,” “negative regulation of fatty acid metabolic process,”
and “fatty acid oxidation”; group 4: “regulation of protein
secretion”; and group 5: “regulation of ion transport” and
“muscle contraction.” In Figure 2(c), the network of
enriched terms is represented as pie charts, and the colors
represent the identities of the gene lists (upregulated or
downregulated). Groups 1 and 5 (related to tissue develop-
ment and structure) mainly represented downregulated

DEG pathways, while groups 3 and 4 (related to metabolism
pathways) were mainly derived from upregulated DEGs.
This is consistent with the results of the clustered heatmap
(Figure 1).

3.2. PPI Network, Hub Gene, and Module Analysis. STRING
and Cytoscape software were used to detect interactions
between the DEGs and construct the PPI network
(Figure 3(a)). Considering many DEGs, we set the minimum
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Figure 4: Module analysis of DEGs. Top five modules screened from the PPI network. The genes of the top three modules were performed
with enrichment analysis. Nodes are color-coded based on the expression of DEGs (red = upregulated; blue = downregulated).
Abbreviations: DEGs: differentially expressed genes; PPI: protein-protein interaction; GO: Gene Ontology.
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required interaction score to 0.7 to avoid the network being
too bloated. In the PPI network, edge color reflects the
combined score of the DEGs.

Then, the top 20 hub genes were detected with the cyto-
Hubba plug-in using 12 different algorithms (Table 2).
Finally, 16 hub genes, detected by more than six algo-
rithms, were selected to build the hub gene PPI network
(Figure 3(b)). Most of the hub genes had a high degree
of connectivity. These genes were enriched in “posttransla-
tional protein phosphorylation” and tissue development-
related terms (e.g., tissue remodeling, extracellular matrix
organization, and skeletal system development) (Figure 3(c)).

MCODE plug-in was used to identify 24 significant
modules in PPI network of DEGs. The top five modules were
selected for analysis using Metascape. We found that all 14
genes in module 1 belonged to hub genes. Furthermore,
module 1 was enriched in posttranslational protein
phosphorylation and tissue development-related terms
(Figure 4(a)). Notably, the same 11 genes were enriched in
“posttranslational protein phosphorylation” term: Fstl3, C3,
Apob, Men1, Fam20c, Mepe, Fbn1, Igfbp5, Tnc, Msln, and
Timp1. Thirteen genes belonging to module 2 were enriched
in “protein digestion and absorption” and “collagen
metabolic remodeling” terms (Figure 4(b)). Module 3 (11
genes) was enriched for the protein ubiquitination process
(Figure 4(c)). Genes belonging to module 4 regulated signal-
ing pathways involving G proteins (Figure 4(d) and
Figure S2). Module 5 (9 genes) was mainly enriched in
“glutathione metabolism” terms (Figure 4(e) and Figure S3).

3.3. Identification of Conserved Motifs in Promoter Site of
Genes and Prediction of the Phosphorylation Sites of
Protein. Through hub gene and module analysis, we found
that the same 11 genes were enriched in the “posttransla-
tional protein phosphorylation” pathway. We speculated
that this pathway might play an important role in DED
and that these genes may have similar regulatory patterns.
Therefore, we used GLAM2 tool to identify common con-
served motif upstream of these genes. The consensus
sequence AAA (G/C) AAA was observed in the promoter
sites of most studied genes (Figure 5). We explored whether
the proteins transcribed by these genes had abundant phos-
phorylation sites. According to the prediction results of
NetPhos 3.1 server, most genes, especially Tnc, Fbn1, C3,
and Apob, have abundant phosphorylation sites (Figure 6).

3.4. Prediction of TFs Associated with DEGs. TFs are impor-
tant regulators of gene expression. Using ChEA3 tool, we
identified 20 TFs that targeted upregulated genes or down-
regulated genes (Figures 7(a) and 8(a)). The results revealed
that TFs related to the upregulated genes were mainly
concentrated in “adipose tissue” (Figure 7(b)), “thyroid
hormone generation,” and “positive regulation of wound
healing” (Figure 7(c)). Furthermore, TFs related to down-
regulated genes were mainly concentrated in “muscle”
(Figure 8(b)) and “regulation of skeletal muscle tissue
development” (Figure 8(c)).

4. Discussion

Penile erection, a complex neurovascular event, results from
the joint action of nerves, blood vessels, and smooth muscles
[21]. The main pathophysiology of ED is vascular insuffi-
ciency and neuropathy. Diabetes, a metabolic disorder
characterized by hyperglycemia, can cause neurological and
vascular diseases; therefore, men with diabetes are at risk
of ED. Approximately 52.5% of patients with diabetes have
ED. Although T2DM is the main type of diabetes, the
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incidence of T1DM is increasing worldwide [5, 22]. Existing
treatments for ED are not very effective in treating DED.
Considering the many diabetic patients, DED places a huge
burden on individuals, families, and society. The difficulty
of DED treatment is that the pathogenesis is complicated
and unclear. Hence, identifying the underlying cellular and
molecular mechanisms in DED is important for improving
diagnostic and therapeutic strategies.

Although previous studies [13, 23, 24] have reported
changes in the gene expression profile of DED cavernous
tissues, the methods used in these studies were relatively
simple. In this study, we systematically analyzed the molec-
ular correlates leading to DED using bioinformatics analysis.
Through the GEO2R tool, 800 DEGs were identified.
Changes in the expression of many genes indicate the
complexity of DED. To further explore the relationships
between them, we performed enrichment analysis, built a
PPI network, applied hub genes and module analysis, identi-
fied conserved motifs in promoter sites, and predicted the
phosphorylation sites. Finally, we predicted TFs associated
with DEGs.

The results demonstrated that the upregulated genes
were mainly involved in lipid metabolism-related pathways,

consistent with the fact that DED patients have diabetes. For
example, mitochondrial 3-hydroxy-3-methylglutaryl-CoA
synthase (Hmgcs2), which catalyzes the first reaction of keto-
genesis [25], presented the highest fold change (31.40) in
upregulated DEGs. Studies have demonstrated that Hmgcs2
is closely related to diabetes [26, 27], and inhibiting Hmgcs2
could alleviate DED [24]. Ceruloplasmin (Cp) increased in
diabetes [13, 28] and inhibited the activation of endothelial
nitric oxide synthase [29].

The downregulated DEGs were primarily enriched in
tissue development and structure: “extracellular matrix
organization,” “muscle contraction,” and “skeletal system
development.” “Extracellular matrix organization” was the
most statistically significant term in the enrichment analysis,
with 24 downregulated genes. Cellular extracellular matrix
plays a key role in developing human organs, maintaining
physiological functions, and the onset of disease. Collagen,
elastin, and proteoglycan constitute the extracellular matrix
of human and rat erectile tissues. The important pathologi-
cal changes in ED are the apoptosis of cavernous smooth
muscle cells, a change in the ratio of smooth muscle to col-
lagen, and atrophy of endothelial cells. Therefore, changes
in the composition and structure of the extracellular matrix
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caused by diabetes may impair erectile function. The down-
regulated genes included collagen types 1, 2, 3, 5, 6, 11, 14,
and 15. Collagen types 1, 2, 3, 5, and 11 were fibril-
forming collagen [30]. Collagen type 1 is the most abundant
form of collagen in the erectile tissues of humans and rats
and constitutes the framework of the cavernous matrix
structure. Collagen 1 is usually formed by two identical
a1(I)-chains (Col1a1) and one a2(I)-chain (Col1a2), which
provide tensile stiffness to most organs. In our analysis, both
Col1a1 and Col1a2 demonstrated decreased expression in
DED, which affects the erectile function of the penis. Fur-
thermore, the expression of genes associated with elastic
fibers (e.g., Lox [31] and Fbn1 [32]) also decreased. Extracel-
lular matrix mechanical microenvironment regulates cell
adhesion, migration, proliferation, and differentiation. Regu-
lating the extracellular matrix structure by stem cells and
exosomes is a promising therapeutic strategy for ED. To
the best of our knowledge, we built the first enrichment net-
work to demonstrate the relationships between enriched
terms. Terms with similar functions were also gathered:
groups 1 and 5 were related to tissue development and struc-
ture, and groups 3 and 4 were related to metabolic pathways.
Altogether, we have depicted the close molecular connec-
tions among DEGs.

In PPI network, there were rich interactions between
most DEGs. Sixteen hub genes (six upregulated and ten
downregulated) were selected using 12 algorithms with the
cytoHubba plug-in. These genes were enriched in “post-
translational protein phosphorylation” and terms related to
tissue development but not in lipid metabolism-related
pathways.

MCODE can find and extract closely related regions in
PPI network, from which 24 modules were detected. The
top five modules were selected for further analysis. Notably,
the genes in module 1 (14 genes) belong to hub genes. The
module 1 enrichment analysis results were also similar to
those of the hub genes. The role of these genes in DED
requires further investigation. In addition, we found that
“posttranslational protein phosphorylation” was the most
statistically significant term for enrichment analysis in mod-
ule 1 and hub genes, and the same 11 genes were enriched in
this term. To verify whether these genes have similar regula-
tory patterns, we used the GLAM2 tool to identify common
conserved motif upstream. In this study, AAA-rich con-
served motifs were detected in the promoter site of these
genes, which affected the expression patterns by activating
and suppressing the transcription of the studied genes. We
also found that the proteins transcribed by these genes have
abundant phosphorylation sites. Protein phosphorylation is
one of the most common and important posttranslational
modifications, and it is an important cellular regulatory
mechanism [33]. Abnormal protein phosphorylation can
be found in many diseases, and the activation or inhibition
of this process to treat diseases is theoretically feasible. How-
ever, there are relatively few studies on protein phosphoryla-
tion during the occurrence and progression of ED. We
found that module 2 mainly enriched signatures regarding
collagen metabolism, whereas modules 1 and 2 represented
downregulated genes. Both the enrichment analyses of hub

genes and modules lacked terms regarding glucose and lipid
metabolism. Genes related to glucose and lipid metabolism
may not play a role in penile lesions but may reflect meta-
bolic disorders of the body, which was demonstrated in
patients with DED that had good control of blood glucose
levels with progressive ED [34].

TFs are a group of proteins that ensure that target genes
are expressed at a specific time and space with a specific
intensity and are important regulators of gene expression.
We predicted TFs associated with DEGs using the ChEA3
tool. By analyzing the tissue specificity and function of these
TFs, we found that TFs targeting upregulated genes were
closely related to glucose and lipid metabolism, whereas
TFs targeting downregulated genes were more closely related
to tissue development. This was consistent with the enrich-
ment results for DEGs. Studies have reported that some of
these TFs (e.g., Foxa1 [35], ELF3 [36], Tbx15 [37], TWIST1,
and TWIST2 [38]) were involved in diabetes or muscle
development. However, the role of these TFs in DED has
not been studied.

Although we obtained meaningful results, our study had
several limitations. First, sequencing data were obtained
from rat samples. Although some genes are conserved
among species, these differences cannot be ignored. There-
fore, the findings of this study should be verified using
human tissues. Cavernous tissue from men undergoing
penile surgery or brain-dead male organ donors may pro-
vide a viable solution [39]. Second, the genes identified in
this study need to be experimentally verified to explore their
mechanisms in DED. Third, this study only involved
changes in mRNA expression and lacking data on noncod-
ing RNA (miRNAs, lncRNAs, and circRNAs). Noncoding
RNA play an important role in the occurrence and develop-
ment of diabetes and ED [10, 40–42]. The molecular mech-
anisms of DED can be elucidated by constructing an
lncRNA-miRNA-mRNA regulatory network.

5. Conclusions

In this study, we successfully defined the molecular signature
of DED. We identified 800 DEGs (407 upregulated and
393 downregulated) in diabetic-induced ED samples.
Upregulated DEGs were enriched in glucose and lipid
metabolism-related pathways, whereas the downregulated
DEGs were primarily enriched in tissue development and
structure. Dysregulated extracellular matrix genes (especially
collagen and elastin) may be closely related to the damage to
the erectile function of the corpus cavernosum. Through hub
gene and module analyses, we found some genes that may
play a key role in developing DED. Therefore, the role of pro-
tein phosphorylation in DED requires further investigation.
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