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Testicular germ cell tumors (TGCTs) are the most common solid malignant tumor in young men aged 20–34 years. Currently, the
diagnosis and differentiation of TGCTs depend on immunohistochemical analysis, and the treatment methods are mainly surgery
and chemoradiotherapy. Although immunotherapy has been applied in clinic, the response rate is not high, and also there is a lack
of effective biomarkers. In this study, through high-throughput transcriptome sequencing and public data mining, the expression
of hepatitis A virus cellular receptor 2 (HAVCR2) was found to be significantly upregulated in TGCT tissue and correlated with
poor prognosis. Additionally, the expression level of HAVCR2 was negatively correlated with its DNA methylation but positively
correlated with its copy number level. The HAVCR2 expression level was significantly positively correlated with the infiltration of
six types of immune cells, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and myeloid dendritic cells.
Also, the higher its expression level, the higher the immune cell abundance. Tumor immune dysfunction and exclusion (TIDE)
scoring analysis showed that HAVCR2 was related to the responsiveness to TGCT immunotherapy. Drug sensitivity analysis
revealed that HAVCR2 was related to the sensitivity of multiple antitumor drugs. This study demonstrated that HAVCR2 has high
potential as a biomarker for the diagnosis, prognosis, and treatment of TGCTs.

1. Introduction

Testicular germ cell tumors (TGCTs), also known as type II
germ cell tumors [1], are a common malignant tumor in
urology, accounting for 95% of testicular malignant tumors,
with the highest incidence among solid tumors in young men
aged 18–35 years [2]. Since 1950, the incidence in many
countries around the world has continued to increase, with
the number of new cases more than doubling each year [3],
also including the United States [4]. TGCTs are divided into
two main types according to their histological characteristics:
seminoma and nonseminoma [5]. At present, the diagnosis

and differentiation of TGCTs depend on immunohistochem-
ical analysis [6], and the treatment methods mainly include
surgery, radiotherapy, and chemotherapy. The therapeutic
effect is closely related to the tumor staging. The curative
ratio in the first stage is 99%, while in the late stage, the
curative ratio in patients with advanced disease and poor
prognosis decreases from 90% to 50% [7]. Despite numerous
successful cases in TGCT therapy over the past few decades,
10%–20% of patients still have incomplete responses or
tumor recurrence [8], and 20%–30% exhibit the resistance
to standard chemotherapy [9]. For cisplatin-refractory
patients with such type of TGCTs, researchers have tried
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different immunotherapy methods, among which PD-L1 and
CTLA-4 immune checkpoint inhibitors are relatively com-
mon [10–12], but they fail to achieve good clinical results in
refractory TGCTs [13], and only a few cases show good
treatment outcomes [14]. Additionally, TGCT immunother-
apy still lacks good markers [12]. Therefore, if a marker
specific to TGCT immunotherapeutic response can be found,
it will be of great significance to improve the treatment out-
come of patients with refractory TGCTs.

Hepatitis A virus cellular receptor 2 (HAVCR2) encodes
T-cell immunoglobulin and mucin domain-containing pro-
tein 3 (TIM-3). Its TIM gene family is located on 11B1.1 of the
mouse genome and 5q33.2 of the human genome [15]. TIM-3
is a transmembrane receptor first discovered byMonney et al.
[16] on the surface of interferon-γ (IFN-γ)-producing CD4+
T helper-1 (Th1) and CD8+ T cytotoxic-1 (Tc1) cells. In later
studies, TIM-3 was found to be expressed in a variety of cells,
including T lymphocytes, innate immune cells such as mono-
cytes, natural killer (NK) cells and dendritic cells (DC), and
cancer stem cells [17]. Subsequently, researchers also proved
that TIM-3 can participate in tumor tolerance as an
activation-induced inhibitory molecule [18, 19], and also
induce T-cell exhaustion in slow virus infection and cancer
[20]. Therefore, in the immunotherapy of solid tumors, TIM-
3 is taken as a key target, and the research on the combined
blockade of it with the PD-1 pathway is gradually deepening
[21, 22]. Also, its function as a potential tumor prognostic
biomarker in prostate cancer, renal clear cell carcinoma, colon
cancer, bladder urothelial carcinoma, cervical cancer, and
gastric cancer has also attracted the attention of researchers
[15]. However, there has been yet no relevant research on the
role and mechanism of HAVCR2 in TGCTs so far.

In this study, high-throughput transcriptome sequencing
and bioinformatics analysis were adopted to determine that
HAVCR2 is significantly upregulated in TGCT tissue. Then,
the possible regulatory mechanism of HAVCR2 expression
at multiple levels was analyzed. Finally, the analysis of the
predictive value of HAVCR2 for the response to TGCT treat-
ment was performed. This study provided a new idea and
theoretical basis for the development of TGCT diagnostic,
prognostic, and therapeutic markers.

2. Materials and Methods

2.1. Testicular Tumors and Paracancerous Tissue Samples. In
this study, the specimens from seven cases of paracancerous
tissue (as normal controls) and 15 cases of testicular germ cell
tumor tissue used in this study were obtained from the Depart-
ment of Urology, Hunan Cancer Hospital, the Affiliated Can-
cer Hospital of Xiangya School of Medicine, Central South
University. The 15 patients ranged in age from 17 to 53 years,
and the testicular histological types included three cases of
nonseminoma and 12 cases of seminoma. All the tissue sam-
ples came from fresh frozen tumors. All specimens were exam-
ined by the Department of Histopathology in this hospital, and
histopathological types were confirmed. All patients signed the
written informed consent for tissue sample collection autho-
rized by the ethics committee of Hunan Cancer Hospital.

2.2. RNA Extraction and Real-Time Fluorescent Quantitative
PCR (qRT-PCR). Cell and tissue RNA were extracted by the
Trizol method. One microliter of total RNA was taken, fol-
lowed by the measurement of the OD value and RNA con-
centration by the NanoDrop 1000 Spectrophotometer. After
the preparation of 1% agarose gel, 5 µl total RNA was taken
for the determination of its integrity by electrophoresis.
HAVCR2 expression was detected by the real-time quantita-
tive polymerase chain reaction system (LightCyker 480,
Roche, USA), and also the expression value of the internal
reference gene (β-actin) was used as a standard reference.
The reaction conditions were as follows: predenatured at
95°C for 5min, followed by denaturation at 95°C for 10 s
and annealing at 60°C for 10 s, and finally extended at 72°C
for 10 s, amplified for 45 cycles, analyzed for CT value
(threshold cycle value) by LightCyker 480 software and
2−ΔΔ CT method, and calculated for HAVCR2 relative
expression levels. The forward primer of HAVCR2 was
TGTGCCTAACAGAGGTGTCC, and its reverse primer
was CGACCTCCGCTCTGTATTCC; the forward primer
of β-ACTIN was GGGAAATCGTGCGTGACATT, and its
reverse primer was GGAACCGCTCATTGCCAAT.

2.3. Transcriptome Sequencing. For detailed materials and
methods, please refer to a study published by our team in
the early stage [23].

2.4. Bioinformatics Analysis. The Cancer Genome Atlas
(TCGA) TGCT cohort dataset was downloaded from the
Gene Expression Profiling Interactive Analysis (GEPIA2)
database [24] and the University of California Santa Cruz
(UCSC) Xena database [25]. GSE3218 dataset was down-
loaded from Gene Expression Omnibus (GEO) database.
The differential methylation data of HAVCR2 were down-
loaded from the DiseaseMeth database [26]. DNA methyla-
tion and copy number variation of HAVCR2, as well as their
corresponding expression data, were analyzed online and
downloaded in the UCSC Xena database. The data related
to DNA copy number variation and patient prognosis were
also downloaded from the UCSC Xena database. The acqui-
sition of gene data related to HAVCR2 expression and Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Gen-
omes (KEGG) enrichment analysis were performed based on
TCGATGCT dataset analysis by the LinkedOmics online tool
[27]. In order to analyze the correlation of HAVCR2 with the
expression levels of immune cells and immune checkpoint
molecules in TGCT tissue, a correlation analysis was con-
ducted based on TCGA TGCT cohort data by using Assis-
tant for Clinical Bioinformatics (https://www.aclbi.com/sta
tic/index.html#/). In order to obtain the evaluation of
HAVCR2 for predicting the response to TGCT immune
checkpoint therapy, TCGA TGCT cohort data were analyzed
according to the tumor immune dysfunction and exclusion
(TIDE) algorithm to derive the responsiveness of individual
samples to immune checkpoint inhibitors [28]. The results of
the above immune-related analysis were all processed by
Hiplot online tool (https://hiplot.com.cn/) for data
visualization.
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Gene set cancer analysis (GSCA) was used to conduct an
unbiased screening of the drugs potentially related toHAVCR2
[29]. This online tool integrates over 10,000 genomic data from
TCGA across 33 cancer types and over 750 small molecule
drugs from the Genomics of Drug Sensibility in Cancer
(GDSC) and Cancer Therapeutics Response Portal (CTRP).

Based on TCGA TGCT cohort data, the online tool
Assistant for Clinical Bioinformatics (https://www.aclbi.
com/static/index.html#/) was adopted to analyze the corre-
lation of HAVCR2 with expression levels of immune cells
and immune checkpoint molecules in TGCT tissue. The
analysis of HAVCR2 expression for predicting the response
to immune checkpoint therapy for TGCT was also com-
pleted via the Assistant for Clinical Bioinformatics based
on TCGA TGCT cohort data by using the TIDE algorithm
analysis [28], and the data visualization was processed by the
Hiplot online tool (https://hiplot.com.cn/) [30].

The Assistant for Clinical Bioinformatics online tool was
also used to divide the samples into HAVCR2 high and low
expression groups based on the TCGATGCT cohort data with
the median of HAVCR2 as the critical value. Then, the relevant
functions of this tool were utilized to plot the mutation spec-
trum of the top 20 high-frequency mutant genes in these two
groups of samples. Meanwhile, the mutation frequencies of
three genes (KIT, KRAS, and PIK3CA) in the two groups of
samples were compared. Finally, the analysis of the relationship
between HAVCR2 expression and the common chemotherapy
drugs paclitaxel and gemcitabine IC50 for TGCT was per-
formed by this tool. Additionally, an unbiased screening for
drugs potentially related to HAVCR2 was also performed by
GSCA [29]. This online tool was used to integrate over 10,000
genome data from 33 cancer types from TCGA and over 750
small-molecule drugs from GDSC and CTRP. The data visual-
ization was also completed by this online tool.

2.5. Data Analysis. All data were statistically analyzed by
GraphPad Prism 5, and the Student’s t-test was adopted to
calculate the significance of differences between the two groups.
One-way analysis of variance (ANOVA) and log-rank test were
adopted to calculate the significant differences between
multiple groups of data, as well as the overall survival time
and the survival time of disease patients, respectively.

3. Results

3.1. The Significant Upregulation of HAVCR2 Expression
Levels in TGCT Tissue. First, the expression of two tran-
scripts of HAVCR2 genes (ENST00000522593 and
TCONS_00165169) in TGCT patients and normal tissue
was analyzed based on the transcriptome sequencing data
published earlier by our team. HAVCR2 was significantly
upregulated in TGCT tissue compared with normal tissue
(Figures 1(a) and 1(b)). Then, the data on HAVCR2 expres-
sion in both TGCT and normal tissue were obtained from
TCGA and Genotype-Tissue Expression (GTEx) databases.
Also, it was found that HAVCR2 had a higher expression level
in TGCT tissue (Figure 1(c)), and that there were both statis-
tical differences in the expression between seminoma and
nonseminoma and normal tissue (Figure 1(d)), which was

consistent with the transcriptome sequencing data. In a set
of TGCT gene expression profiling microarray data in GEO
database (GSE3218), HAVCR2 expression in TGCT tissue
was also significantly higher than that in normal tissue
(Figure 1(e)). Finally, the above findings were verified in
TGCT tissue samples by the qRT-PCR technique (Figure 1(f)).

3.2. The Better Diagnostic Efficacy and Prognostic Value that
HAVCR2 Has for TGCT. In view of the significant difference
in HAVCR2 expression between TGCT and normal testicu-
lar tissue, it was speculated that it may have the value as a
diagnostic marker. Therefore, the receiver operating charac-
teristic (ROC) curve analysis based on GSE3218 and qRT-
PCR experimental data was performed, and the area under
the curve (AUC) values of both curves were found to exceed
0.9, indicating that HAVCR2 has good diagnostic efficiency
for TGCTs (Figures 2(a) and 2(b)). In the time dimension,
the survival curve analysis revealed that the overall survival
rate of patients with low HAVCR2 expression was higher
than that of patients with high expression (Figure 2(c)).
The ROC curve analysis showed that the HAVCR2 expres-
sion level has a good diagnostic value for judging the 5-year
overall survival rate of TGCT patients (Figure 2(d)).

3.3. The Close Correlation of DNA Methylation and Copy
Number with HAVCR2 Gene Expression. The expression of
LncRNAs can be regulated by multiple mechanisms. In this
study, the analysis at the epigenetic level revealed that the
average methylation level of the HAVCR2 promoter region
in normal tissue was significantly higher compared with
TGCT tissue (Figure 3(a)). Correlation analysis revealed
that the average DNA methylation level in the HAVCR2
promoter region was negatively correlated with HAVCR2
gene expression level, indicating that DNA methylation
may be one of the important pathways for regulating gene
expression (Figures 3(b) and 3(c)). Besides, it was also found
that HAVCR2 copy number level was positively correlated
with HAVCR2 gene expression level (Figures 3(d) and 3(e)).
The survival curve showed that patients with the high copy
number of HAVCR2 had a poor prognosis (Figure 3(f )),
which may be due to the high HAVCR2 expression level in
TGCT patients with the high copy number.

3.4. The Possibility that HAVCR2 in TGCT Is Involved in the
Regulation of Multiple Signal Pathways. In order to determine
the possible mechanism of HAVCR2 in TGCTs, Spearman’s
correlation analysis was adopted to screen the relevant genes
(Figure 4(a)), and 50 genes with the most significant positive
and negative correlations were exhibited in the heat map,
respectively (Figure 4(b)). Through GO enrichment analysis,
the following findings were obtained: in biological process,
HAVCR2-related genes were mainly involved in biological reg-
ulation, metabolic process, multicellular biological process, local-
ization, etc.; in cellular components, they mainly played a role in
biofilm, nucleus, membrane-enclosed lumen, protein-binding
complex, cytoplasm, etc.; in molecular functions, they were
mainly involved in these processes such as protein binding,
ion binding, nucleic acid binding, hydrolase activation, and
transferase activation (Figure 4(c)). GSEA GO enrichment
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analysis was further performed andHAVCR2was found to be
related to the processes such as adaptive immune response,
immune response regulation signal pathway, immune effect
process regulation, T-cell activation, bone morphogenetic
protein stimulation pathway, the establishment of tissue
polarity, and spinal cord development (Figure 4(d)). GSEA
KEGG enrichment analysis revealed that these genes were
mainly related to the signal pathways such as tuberculosis,
cell adhesion molecules, phagosomes, EB virus infection,
NOD-like receptor signal, T-cell receptor signal, Th cell dif-
ferentiation, hippo signal receptor, and cell cycle (Figure 4(e)).

3.5. The Close Correlation of HAVCR2 Gene Expression with
Tumor Immunity. Given that HAVCR2 was found to be
related to multiple immune signal pathways in the

aforementioned enrichment analysis, it was analyzed which
immune cells and molecules HAVCR2 is specifically related
to. The data showed that the HAVCR2 expression level was
closely related to six types of immune cells (B cells, CD4+
T cells, CD8+ T cells, neutrophils, macrophages, and mye-
loid dendritic cells), and that the higher the HAVCR2
expression level, the higher the immune cell abundance
(Figure 5(a)). In the samples with high HAVCR2 expres-
sion, the infiltration degree of the above six immune cells
was higher (Figure 5(b)). Furthermore, eight important
immune checkpoint molecules were also selected to observe
their correlation with HAVCR2 expression. It was found
that in the samples with high HAVCR2 expression, the
expression level of immune checkpoint molecules was also
higher (Figure 5(c)).
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FIGURE 1: Upregulation of hepatitis A virus cellular receptor 2 (HAVCR2) in testicular germ cell tumors (TGCTs). (a/b) TGCT RNA
sequencing data analysis revealed significant upregulation of two transcripts of HAVCR2, ENST00000522593 and TCONS_00165169, in
the tumor group; gray represents normal testicular tissue and red represents tumor tissue. (c) The analysis of HAVCR2 expression level in
TCGA TGCTs by using the GEPIA2 database, showing that HAVCR2 had a higher expression level in TGCT tissue. (d) The comparison of
HAVCR2 expression levels between different TGCT subtypes and corresponding normal testicular tissue; gray represents normal testicular
tissue and red represents nonseminoma (left) and seminoma (right); there were both significant differences between seminoma and
nonseminoma and normal tissue. (e) The comparison of HAVCR2 expression levels between TGCT and corresponding normal tissue in
the GSE3218 dataset, showing that HAVCR2 expression in TGCT tissue was also significantly higher than that in normal tissue. (f ) The
detection of HAVCR2 expression in TGCT tissue samples by qRT-PCR.
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FIGURE 2: Hepatitis A virus cellular receptor 2 (HAVCR2) as a potential diagnostic and prognostic marker of testicular germ cell tumors
(TGCTs). (a/b) The receiver operating characteristic (ROC) curves based on HAVCR2 expression were plotted according to GSE3218 and
qRT-PCR data, respectively, and the AUC values of both curves exceeded 0.9. (c) The data of the TCGA TGCT cohort were used to divide
clinical samples into two groups of high and low expression based on HAVCR2 expression for survival analysis, showing that the overall
survival rate of patients with low HAVCR2 expression was higher than that of those with high expression. Gray represents HAVCR2 low
expression group and red represents HAVCR2 high expression group. (d) The receiver operating characteristic (ROC) curve of HAVCR2 for
judging the prognosis of TGCT patients, showing that the expression level of HAVCR2 had a good diagnostic value for judging the 5-year
overall survival rate of TGCT patients.
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3.6. The Potential of HAVCR2 as a Therapeutic Marker for
TGCT Immune Checkpoint. Since HAVCR2 is related to a
variety of immune cells and immune checkpoint molecules in
TGCTs, the possibility of HAVCR2 as a therapeutic marker for
immune checkpoint molecules in TGCTs was further explored.
The TIDE algorithm was used for analysis, and the TIDE value
corresponding to high HAVCR2 expression was found to be
lower than that of the low expression group (Figure 6(a)).
Meanwhile, the patients with high HAVCR2 expression are
more likely to benefit from immune checkpoint therapy (Fig-
ure 6(b)), and also based on HAVCR2 expression, the benefit
and nonbenefit populations of immune checkpoint therapy can
be well differentiated (Figure 6(c)). Besides, the HAVCR2
expression level was positively correlated with the content of
effector T-cell-related factor IFN-γ (Figure 6(d)), and also
HAVCR2 expression was higher in samples with cytotoxic T
lymphocytes flag (Figure 6(e)). It was also found that the
HAVCR2 expression was significantly positively correlated
with immune dysfunction scoring (Figure 6(f)). All the evi-
dence pointed to the potential of HAVCR2 as a marker for
TGCT immune checkpoint therapy.

3.7. The Correlation of the Mutation Spectrum of HAVCR2-
Related Genomes and Their Expression with the Sensitivity of
Common Chemotherapy Drugs. Based on the median of
HAVCR2 expression in TCGA TGCT cohort data, these
TGCT tissue samples were divided into HAVCR2 high and
low expression groups, with the genome mutation spectrum
of the two groups of samples plotted. It was found that the
mutation frequency of kitproto-oncogeneprotein (KIT)
(belonging to type 3 receptor tyrosine kinase) in samples of
the HAVCR2 high expression group was as high as 23% and
that of Kirsten rat sarcoma viral oncogene homolog (KRAS)
was 17%, while that of phosphatidylinositol-4,5-bispho-
sphate 3-kinase, catalytic subunit alpha (PIK3CA) was only
5% (Figure 7(a)). The KIT mutation frequency in samples of
the HAVCR2 low expression group was 8% (Figure 7(b)).
There were significant differences in the mutation status of
KIT, KRAS, and PIK3CA between samples of HAVCR2 high
and low expression groups (Figure 7(c)). Different gene
mutations can lead to different sensitivity of patients to
drugs. In this study, follow-up analysis was performed to
find that there were significant differences in the sensitivity
of samples in HAVCR2 high and low expression groups to
the chemotherapy drugs paclitaxel (microtubule inhibitor in
mitosis) and gemcitabine (pyrimidine antitumor drugs) (Fig-
ure 7(d)), with the negative correlation of gemcitabine IC50
with HAVCR2 expression (Figure 7(e)). These results sug-
gested that HAVCR2 may be an important indicator of the
sensitivity of mutation-targeting drugs and common chemo-
therapy ones.

4. Discussion

This study showed that HAVCR2 expression levels were
significantly upregulated in TGCT tissue, compared with
adjacent cancer tissue, which was confirmed by all the anal-
ysis results in different databases. It was further found that
HAVCR2 has better diagnostic efficacy and prognostic value
for TGCTs, and that the patients with low HAVCR2 expres-
sion have a better prognosis, suggesting that HAVCR2 can be
used as a potential prognostic biomarker for TGCTs. A
growing number of studies have shown that molecules asso-
ciated with cancer carcinogenesis and metastasis can be used
not only as potential prognostic markers but also as thera-
peutic targets [31]. Similarly, many studies have proved that
HAVCR2 is significantly upregulated in different tumor tis-
sues, and also closely related to the prognosis of urothelial
carcinoma of bladder [32], gastric carcinoma [33], renal clear
cell carcinoma [34], pancreatic cancer [35], and cervical can-
cer [36], suggesting that HAVCR2 may play an important
role in different types of cancer.

In order to further explore the regulatory mechanism of
HAVCR2, relevant analysis was conducted. It was found that
the HAVCR2 gene expression level was negatively correlated
with DNAmethylation but positively correlated with its copy
number. In melanoma, Holderried et al. [37] detected a sig-
nificant negative correlation between the mRNA expression
and methylation in the HAVCR2 promoter region, confirm-
ing that DNA methylation can regulate the HAVCR2 gene at
the epigenetic level. In terms of the copy number, studies
showed that the DNA copy number and mRNA expression
of HAVCR2 in head and neck cancer were significantly
increased compared with the control group [38]. This sug-
gested that the changes in the methylation and copy number
of HAVCR2 may be one of the important reasons for the
upregulation of HAVCR2 expression.

HAVCR2 encodes TIM-3 protein, and the latter has
gradually become an important immune checkpoint mole-
cule, by which immunotherapeutic drugs for a variety of
malignant tumors are being developed [39]. Through the
analysis of various online databases, HAVCR2 was found
to be involved in the regulation of multiple signal pathways,
such as adaptive immune response, immune response regu-
latory signal pathway, and T-cell activation. So, is there a
possibility of HAVCR2 as a marker for immune checkpoint
therapy in TGCTs? Interestingly, based on the analysis of
tissue samples from TGCT patients, HAVCR2 gene expres-
sion was found to be closely related to tumor immune cells.
The higher the HAVCR2 expression level, the higher the
abundance of B cells, CD4+ T cells, CD8+ T cells, neutro-
phils, macrophages, and myeloid dendritic cells. Meanwhile,
it was also found that eight immune checkpoint molecules

plotting of both the expression and promoter region methylation profiles of HAVCR2 by using UCSC Xena online tool. (c) Correlation
analysis between HAVCR2 mRNA expression and average methylation in the HAVCR2 promoter region. (d) The plotting of the heat map of
the expression and copy number of HAVCR2 by using UCSC Xena online tool. (e) Correlation analysis between HAVCR2 mRNA expression
and its DNA copy number variation. (f ) Based on TCGA TGCT cohort data, clinical samples were divided into two groups of high and low
DNA copy number for survival analysis. The survival curve showed that patients with the high copy number of HAVCR2 had a relatively
poor prognosis.
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FIGURE 4: Coexpressed genes and their related signal pathways of hepatitis A virus cellular receptor 2 (HAVCR2). (a) The exhibition of the
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HAVCR2 coexpressed gene.
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were positively correlated with HAVCR2 expression levels in
TGCTs.

In the case of ineffective conventional chemotherapy,
immunotherapy (e.g., PD-1 inhibitor) is regarded as an effec-
tive scheme for the treatment of solid tumors. At present, in a
number of clinical studies and experiments, anti-PD-1

immunotherapy has been reported [5, 10–12]. Regrettably,
immune checkpoint inhibition therapy (including PD-L1
and CTLA-4 inhibitors) has not shown an excellent thera-
peutic effect, and the effect that it exerts in the treatment of
refractory germ cell tumors outside clinical trials is still lim-
ited [13]. An important reason for this is the lack of effective
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predictors for clinical immunotherapy decision making, and
it is difficult for clinicians to determine under what circum-
stances TGCT patients can be treated with immunotherapy
and which immunotherapeutic drugs are chosen to treat
them. Therefore, it was further explored whether HAVCR2
can be used as a marker for immune checkpoint therapy in
TGCTs. Through the analysis of the TIDE algorithm and

ROC curve, it was further proved that HAVCR2 has good
potential as a marker of immunotherapeutic response. More-
over, the reason for the failure of PD-1 immunotherapy may
be that the inhibition of the PD-1 pathway is not sufficient to
overcome the dysfunction of depleted T cells, resulting in the
failure of PD-1 single drug immunotherapy to block TCGT.
In this case, the combined blockade of PD-1 and TIM-3 may
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FIGURE 6: The assessment of the value of hepatitis A virus cellular receptor 2 (HAVCR2) for predicting the response to TGCT immune
checkpoint therapy by using tumor immune dysfunction and exclusion (TIDE) algorithm. (a) Lower TIDE scores in patients with high
HAVCR2 expression. (b) Higher levels of HAVCR2 expression in populations potentially benefiting from immune checkpoint therapy. (c)
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be one of the effective schemes for overcoming the resistance
to anti-PD-1 therapy [15, 40, 41], which also provides a new
idea for TGCT immunotherapy.

Themutant KIT causes changes in its expression pattern and
internal kinase structure, which relieves the automatic inhibitory
state, with ligand-independent autophosphorylation/indepen-
dent of ligand autophosphorylation, and activates the down-
stream proliferation pathway; this results in unregulated cell
proliferation, thus triggering tumorigenesis [42]. After the path-
ogenic mutation in KRAS genes occurs, they will always remain
bound to GTP. Also, KRAS proteins will be in a state of
ceaseless activation and continuously activate downstream
signal pathways such as PI3K, RAF-MEK-ERK (MAPK),
and Ral-GEF, which, in turn, stimulates cell proliferation
and migration, thereby leading to tumorigenesis [43].
PIK3CA gene mutation can cause PI3K enzymes to remain
in a state of continuous activation, enhance intracellular
signal transduction, and incur a series of diseases, including
cancer, autoimmune disorders, and hematopoietic system
diseases. The activation mutation in PIK3CA was found in
approximately 30%–40% of cancer patients [44]. Alan
McIntyre demonstrated the relationship between the acti-
vation mutation, copy number, and expression levels of
KRAS2, KIT, ERBB2, and GRB7, indicating their involve-
ment in TGCT cellular behavior. Paclitaxel can promote
microtubule polymerization and stabilize the drugs that
have polymerized microtubules [45]. Therefore, KIT,
KRAS, and PIK3CA may be relatively good targets for
intervention treatment. HAVCR2 is possibly an important

indicator of the sensitivity of multitarget inhibitors and
common chemotherapy drugs.

About 1%–5% of TGCT patients are resistant to plati-
num chemotherapy. Patients with recurrent TGCTs usually
receive high-dose chemotherapy, but this treatment can lead
to serious adverse reactions and cytotoxicity. However, there
are multiple epigenetic alterations in TGCTs, for which tar-
geted therapy can be implemented through specific therapeu-
tic methods. Several studies have explored the correlation
between tumor progression and antineoplastic drug resis-
tance, which may help improve chemotherapy for cancer spe-
cies [46, 47]. Histone deacetylase (HDAC1) is identified as the
main target for TGCT therapy [48]. Lobo et al. [49] found that
HDAC inhibitor belinostat (50 nM to 1 µM) effectively
reduced the dose- and time-dependent effects of cell viability
(cisplatin sensitivity and resistant clones) over a period of
time. Bromodomain and extraterminal domain (BET) inhibi-
tors can restrict the gene expression of growth-promoting
factors and oncogenic factors (e.g., MYC), thereby inducing
cell cycle arrest and apoptosis in different cancer models.
Jostes et al. [50] found in studies that BET inhibitors can
induce apoptosis andG1 cell cycle arrest in platinum-resistant
TGCT cell lines. Cell cycle-related kinases (CDK1/2/4/6) that
directly regulate cell cycle progression have been extensively
studied in preclinical and clinical trials of TGCTs and other
types of cancer with different CDK inhibitors used. As a cen-
tral regulator of proliferation signal transduction, mammalian
target of rapamycin (mTOR) is an ideal target for tumor
therapy. Schaffrath et al. [51] believed that the inhibition of
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FIGURE 7: The differences in genome mutation spectrum and sensitivity of common chemotherapy drugs between samples in hepatitis A virus
cellular receptor 2 (HAVCR2) high and low expression groups. (a/b) The genome mutation status of patients in HAVCR2 high and low
expression groups. The genes and samples were sorted by mutation frequency and disease histology, respectively; as shown in the annotation
column (bottom), the left side indicates the mutant gene, each column represents a sample, and the right side indicates the mutation
frequency of this gene in all samples; the mutation information for each gene in each sample is shown in the figure and different colors with
specific notes at the bottom represent various mutation types. (c) The mutation status of kitproto-oncogeneprotein (KIT), Kirsten rat
sarcoma viral oncogene homolog (KRAS), and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) genes
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the PI3K/AKT/mTOR pathway may be a target for TGCT
overcoming cisplatin resistance. Gutekunst et al. [52] demon-
strated the close relationship between p53 protein levels and
the degree of apoptosis in pluripotent TGCT cells, and also
p53 proapoptotic function mediated by NOXA and PUMA.
Therefore, HAVCR2 may be an important marker for drug
sensitivity in TGCT patients. The detection of HAVCR2
expression level has a certain guiding significance for the
selection of clinical chemotherapy drugs.

In this study, we demonstrated a significant upregulation
of HAVCR2 expression in TGCT tissues. Based on its
expression levels, HAVCR2 shows promise as a diagnostic
marker for tumor types and is correlated with a poor prog-
nosis. Additionally, HAVCR2 has the potential to serve as a
prognostic marker. Our findings also revealed the association
of HAVCR2 with tumor immunity and its impact on the
sensitivity of TGCT cells to various antitumor drugs. These
results suggest that HAVCR2 could be a valuable therapeutic
target for immunotherapy and drug treatment in TGCT.
This study provides novel. However, there are still some
deficiencies in this study. Since TCGT is a relatively uncom-
mon tumor, enough samples or public data were not avail-
able to adequately verify the findings from this study.
Therefore, further verification is required for them in the
future insights into tumor progression and antitumor drug
resistance in TGCT, which may contribute to the improve-
ment of TGCT treatment strategies.

Moving forward, our next steps involve expanding the
sample size to validate the clinical relevance of HAVCR2. By
collecting a sufficient number of samples, we aim to further
support the application of HAVCR2 as a marker with
enhanced clinical utility.

In conclusion, this study showed that the HAVCR2
expression level was significantly upregulated in TGCT tis-
sue, and that based on its expression level, tumor types could
be diagnosed very well, with quite good judgment on patient
prognosis. Meanwhile, it also revealed that this molecule was
related to TGCT tumor immunity and the sensitivity of vari-
ous antitumor drugs. These data suggest that HAVCR2 may
be a very good marker for diagnosis, prognosis, immuno-
therapy, and drug therapy of TGCTs.
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