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Reproductive health is an important issue for humanity. In the context of the increasing incidence rate of male infertility, it is
essential to find the factors that affect male reproductive health. Gastrointestinal health is closely related to reproductive health.
Gastrointestinal hormones (GIH) and gut microbiota (GM), as important material foundations for gastrointestinal function, can
promote or inhibit testicular reproductive function, including spermatogenesis, sperm maturation, androgen synthesis, and even
broader male diseases such as sexual function, prostate cancer, etc. On the contrary, the functional health of the testes is also of
great significance for the stability of gastrointestinal function. This review mainly discusses the important regulatory effects of GIH
and GM on male reproductive function.

1. Background

The intestine is the largest endocrine organ in the human body,
capable of secreting numerous gastrointestinal hormones (GIH)
[1]. GIH are a group of small molecule highly efficient bioac-
tive substances secreted by endocrine cells in the gastrointes-
tinal tract, which belong to the peptide class in chemical
structure, so-called gastrointestinal peptides. GIH can not
only locally regulate the activities of the gastrointestinal tract
itself but also play a variety of roles, such as growth factors,
neurotransmitters, fertility factors, sex hormones, etc. They
extensively regulate systemic metabolic activities and are closely
related to the occurrence and development of immune and
inflammatory diseases, neoplasia, nervous and reproductive
diseases [2].

GIH can physiologically affect the secretion of sex hor-
mones such as luteinizing hormone (LH), follicle-stimulating
hormone (FSH), testosterone (T), and affect the blood-testis
barrier (BTB) to regulate spermatogenesis and can patholog-
ically cause vascular inflammation, leading to erectile dys-
function (ED) [3, 4]. In addition, gut microbiota (GM) can
also regulate the release and function of GIH, and there may
be an interaction between them [3, 5, 6].

The number of genes of intestinal microorganisms is 150
times more than that of the human, and intestinal bacteria
contribute 99.1% of them, which is considered the “second
genome” and metabolic “organ” of the human, and some
scholars predict that its metabolic capacity is even more criti-
cal than the host’s own metabolism [7, 8]. The large number
of GM plays an important role on the health. The GM is
related to obesity, diabetes, mental disease, cardiovascular
disease, intestinal disease, and other diseases [9–12].

In recent years, researchers have increasingly focused on
how GM affects the occurrence and development of andro-
logical diseases. Lundy et al. [13] found that there were cer-
tain compositional and functional differences in the gut,
urine, and semen microbiota between infertile and healthy
males, and the imbalance among the three promoted the occur-
rence of male infertility. Kang et al. [14] compared the compo-
sition of GMof patients with EDwith that of healthy people; the
results showed that there was a significant difference between
the two groups, and they believed thatActinomycesmay be a key
pathogen. GM can affect male reproductive function through
inflammation, metabolism, sex hormones, and other ways,
which need further research [3].
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Androgen is the most important sex hormone in men,
mainly including T secreted by testes and a few T precursors
secreted by adrenal glands, such as dehydroepiandrosterone
(DHEA) and dehydroepiandrosterone sulfate (DHEAS). Its
role runs through the whole life cycle of male growth, devel-
opment, and aging and is closely related to the occurrence
and development of male diseases. T can be converted into
dihydrotestosterone (DHT) with stronger activity by
5α-reductase and exerts its role by binding to androgen
receptor, or it is converted into estrogen by aromatase and
then works with estrogen receptor [15]. Some studies have
shown that GM can regulate androgen metabolism [16–18],
affecting the permeability of BTB, testicular endocrine func-
tion, penile erectile function [3, 19], and other male repro-
ductive health problems, but the mechanism of GM
regulating androgen needs to be further studied and
explained [20].

Based on this, we assume the existence of a testis–gut-
reproduction (TGR) axis. Testis is the target of GM and GIH.
Simultaneously, GIH and GM are two main factors that can
directly affect the physiology and pathology of the

reproductive system and can also regulate the level of andro-
gen to affect reproductive health.

This article uses the Boolean logical operator “AND” to
match vocabulary such as GIH, GM, androgens, testes, and
male reproduction and uses these as search terms to search
for relevant literature in databases such as MEDLINE and
Web of Science. We review the effects of GIH and GM
on reproductive health and then explain how GM affects
androgens, which elucidate the connotation of the TGR axis
(Figure 1).

2. The Effect of GIH on Male
Reproductive Function

GIH are divided into two categories with protective and
damaging effects. Some common GIH can protect the struc-
ture and function of the testis, such as gastrin (GAS), gastric
inhibitory peptide (GIP), cholecystokinin (CCK), peptide YY
(PYY), glucagon-like peptide-1 (GIP-1), vasoactive intestinal
peptide (VIP), etc. Similarly, some GIH have a potential risk
of damage to testicular structure and function, such as ghre-
lin, leptin, somatostatin (SST), etc. We start our narrative
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FIGURE 1: Testis–gut-reproduction axis. (1) GIH and gut microbiota regulate testicular reproductive function. (2) (+) represents a hormone
with protective effects or a microbiota positively correlated with testosterone levels, while (−) represents the opposite. (3) Androgens can also
affect the composition of gut microbiota. (4) In the future, further discussions will be conducted on the impact of androgens on GIH, as well
as the interaction between gut microbiota and GIH. (5) Reproductive health and gastrointestinal health are closely related, and they interact
with each other, which is of great significance in maintaining human health.
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from this classification. Tables 1 and 2 show the general
information of this section.

2.1. The Protective Effect of GIH

2.1.1. GAS. GAS is secreted by G cells in the gastric antrum,
duodenum, colon, and pancreas. It can promote gastric acid
secretion, epithelial cell proliferation and differentiation, par-
ticipate in maintaining iron homeostasis, and regulate gastric
function [60]. However, GAS-like mRNA is also expressed in
human testicular seminiferous tubules [21]. The seminiferous
tubules are the places where sperm is produced. Schalling
et al. [21] demonstrated that biologically active α-aminated
GAS is expressed in ejaculated spermatozoa through immu-
nocytochemical staining of human testicles. All GAS detected
in human testis is in the form of precursor, and most of the
ejaculated sperm cells are α-carboxylated GAS-17 or GAS-34.
The expression level of GAS receptor protein significantly
increased after the electrical injury of the rat testis, suggesting
that it may have a potential protectivemechanism in testicular
injury [22]. This indicates that GAS may protect testicular
spermatogenic function and promote fertilization.

2.1.2. GIP. Fat, glucose, and amino acids can stimulate the
secretion of GIP by small intestinal K cells and insulin by
pancreas β cells, inhibit gastric glands from secreting gastric
acid and pepsin, and slow down gastric peristalsis. It is proved
that GIP and GIP receptor (GIPR) are expressed in the testi-
cles of mice, affecting the reproductive ability of male mice
[23, 61]. Killion et al. [23] suggest that the expression of GIPR
in adipocytes and testes of GIPR gene knockout mice was
significantly reduced. Although the number, morphology,
and vitality of sperm were normal, the ability of fertilization
in vitro was weakened. Shimizu et al. [24] also reported that
GIPR was expressed in the seminiferous tubule of mice. Com-
pared with the normal control group, the external fertilization
rate of GIPR gene knockout mice decreased. The decrease in
external fertilization ability of GIPR knockout mice is related
to the decrease in the expression of pregnancy-specific glyco-
protein 17 (Psg17). Psg17 is expressed in the acrosome of
sperm, which may be a key factor in sperm–egg fusion, while
GIP can regulate the expression of Psg17 in the testes, affecting
fertilization ability [24, 62]. GIP can promote sperm fertiliza-
tion ability.

2.1.3. CCK. CCK is secreted by type I cells in the duodenum
and jejunum, which can inhibit gastric emptying and gastric
acid secretion, stimulate gallbladder contraction, and secre-
tion of the pancreatic digestive enzymes [63]. CCK and its
receptor are expressed in pituitary cells, thyroid gland, pan-
creatic islet, adrenal gland, and testis [64]. CCK and its
receptors, phosphorylate-related proteins tyrosine, and pro-
mote sperm capacitation. Persson et al. [25, 26] proved that
CCK mRNA expression was detected in rat, mouse, and
monkey testicular seminiferous tubule, and there was CCK
in monkey testicular sperm acrosome granules, indicating
that CCK may affect sperm fertilization through acrosome
reaction [25, 26]. Zhou et al. [27] further indicated that
CCK1 and CCK2 receptors are expressed in the acrosome
region of mature sperm. Protein tyrosine phosphorylation is

an important marker of sperm capacitation, and CCK1 and
CCK2 receptor agonists can phosphorylate related protein
tyrosine, promoting sperm capacitation [27]. CCK can act on
the processes of sperm capacitation and replacement, thereby
improving fertilization ability.

2.1.4. PYY. PYY is mainly produced in intestinal L cells and
inhibits gastrointestinal peristalsis and dietary intake [65].
PYY can regulate the secretion of gonadotropin and affect
the secretion of reproductive hormones in rats. The admin-
istration of PYY can directly stimulate the release of LH and
FSH in the rat pituitary. High-dose PYY can elevate the level
of LH and enhance the effect of Gonadotropin-releasing
hormone on the secretion of LH and FSH [28, 29]. However,
a study on the impact of PYY on human reproduction sug-
gests that intravenous injection of biologically active PYY
does not affect LH, FSH, and T levels [30]. This may be related
to different administration methods and concentrations. PYY
may regulate the function of the hypothalamic–pituitary–go-
nadal (HPG) axis, but further research is needed to determine.

2.1.5. GIP-1. GLP-1 is synthesized by L cells in the jejunum,
ileum, and colon, which can promote insulin secretion, reduce
appetite, and stimulate pancreatic islets β-cell regeneration
and proliferation, improving pancreatic islet function, relaxing
blood vessels, and protecting endothelial function [66–68].
The role of GLP-1 in reproduction has received attention,
and the GLP-1 receptor (GLP-1R) is expressed in both human
testicular Leydig cells and Sertoli cells, and Leydig cells may be
a potential target for GLP-1 [31]. GLP-1 promotes the differ-
entiation of rat Leydig cells, regulates metabolism and mito-
chondrial function of Sertoli cells [32, 33]. These two types
of cells are crucial for maintaining normal spermatogenic
function.

GLP-1R agonists (GLP1-RAs) can improve the damage
of obesity and diabetes to testes and sperm, and enhance
sperm vitality [69, 70]. The exenatide, somalutide, and lir-
aglutide that can promote insulin secretion are all GLP1-RAs
with potential anti-inflammatory and anti-atherosclerosis
effects. Exenatide can inhibit the orchitis of mice caused by
high-fat-induced obesity and reduce the expression of proin-
flammatory cytokines and the oxidative stress and apoptosis
of testicular tissue [34, 35]. Somaglutide can regulate the
GLP-1-mediated steroidogenesis signal pathway, and liraglu-
tide can reduce the activities of apoptosis protease activating
factor 1 (Apaf-1) and nitric oxide synthase (NOS). This
improves the oxidative status of the testis, inhibits orchitis
and cell apoptosis, and ameliorates ischemia/reperfusion-
induced testicular dysfunction in rats [36, 37]. In addition,
liraglutide can also regulate the function of corpus caverno-
sum smooth muscle, oxidative stress, and autophagy and
ultimately upgrade ED in diabetes rats [38]. Therefore,
GLP-1 analogs can protect testicular tissue and corpus caver-
nosum smooth muscle cells by exerting inhibitory effects on
inflammatory response, oxidative stress, cell apoptosis, etc.

2.1.6. VIP. VIP is a gut peptide hormone that can regulate the
function of nerve cells, epithelial cells, and endocrine cells,
thereby affecting nutrient absorption, ion secretion, immune
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regulation, and so on [71]. VIP and its receptor are expressed
in the testis and epididymis, which may be involved in sper-
matogenesis [39, 40]. Siow et al. [41] also proved that VIP
stimulates the activity of adenylyl cyclase, improves the level
of cyclic 3′,5′-adenosine monophosphate (cAMP) in Leydig
cells and activates protein kinase activity, stimulates sperm
movement, and improves sperm vitality through cAMP-
mediated axonal protein phosphorylation. Moreover, VIP
protects the testicular vascular system. VIP and its receptors
can be detected around and inside the vascular walls of adult
healthy testes. VIP can dilate testicular blood vessels and reg-
ulate testicular blood flow and mean arterial pressure in rats
[42, 43]. In addition, VIP can protect the testis from torsion
injury by inhibiting the activity of mastocytes and increasing
heparin content [44]. VIPmay enhance spermmotility through
direct or indirect means.

In addition, VIP, as an inhibitory neurotransmitter, par-
ticipates in the neural regulation of erection. VIP combined
with phentolamine has a synergistic effect, causing venous
occlusion, and is used to treatmoderate and severe ED [45, 72].
In patients with neurogenic impotence, VIP expression in the
penile corpus cavernosum is weakened [73]. And injectingVIP
cDNA into the corpus cavernosum of rats can increase the
expression of VIP mRNA in the corpus cavernosum, increase
the average amplitude of intracavernosal pressure, improving
erectile function [74]. Hence, VIP can also act on the penis,
enhancing penile erection function.

2.2. The Damaging Effects of GIH

2.2.1. Ghrelin.Ghrelin is a growth-hormone secretagogue (GHS)
released by the stomach, regulating energy metabolism and
cellular homeostasis [75, 76]. Ghrelin and the functional type
1a receptor GHS-R1a are found in the testis of humans and rats,
which suggests the reproductive regulatory effects [46, 47]. It
can regulate the development of spermatogenic cells and the
proliferation of Leydig cells [46, 47]. Ghrelin is negatively
correlated with serum T levels [48, 49]. Ghrelin may reduce
T synthesis by inhibiting steroid synthase in Leydig cells
[49, 50]. This suggests that Ghrelin may inhibit spermato-
genic cell function by reducing T synthesis in Leydig cells.

2.2.2. Leptin. Leptin in mammals is almost released from
adipose tissue, but it is also partially expressed in nonadipose
tissue [77]. It is reported that leptin and leptin receptor
(LEPR) are expressed in testicular tissue [51]. High levels
of leptin can directly damage the structure and function of
the testis through the suppressor of cytokine signaling 3
(SOCS3)/phosphorylated signal transducer and activator of
transcription 3 (pSTAT3) pathway, which is manifested by
the reduction of testicular volume and weight, the diameter
of the seminiferous tubule, the number of spermatocytes and
spermatozoa, and testosterone synthesis [52]. The outcome
is probably also related to leptin injuring the BTB composed
of tight junctions of Sertoli cells [53]. Meanwhile, leptin can
also affect the HPG axis to inhibit the synthesis of testoster-
one by Leydig cells [78]. It can be seen that spermatogenic
cells, Sertoli cells, and Leydig cells all receive restrain from
leptin. However, the role of leptin to reproductive function is

controversial. This may be related to the developmental
stage. Ramos–Lobo et al. [54] believe that in the early stages
of life, leptin deficiency can damage the reproductive system
and brain development, and even if the leptin signal is restored
later, this lesion is difficult to reverse.

2.2.3. SST. SST is distributed in endocrine cells and nerve
cells in the gastrointestinal tract, participating in inhibiting
intestinal peristalsis and regulating gastrointestinal blood
flow status [79]. SST is distributed in various forms in the
testes, epididymis, and prostate of rats. SST14 plays a domi-
nant role in the epididymis, prostate, and hypothalamus, and
SST14 and SST28 can be detected in the testes [55]. Besides,
the mRNA of the SST receptor was found to exist in the
seminiferous tubules of the testes [56]. This indicates that
SST can influence testicular function. It is indicated that SST
can inhibit DNA synthesis in spermatogonia and Sertoli cells
[57, 58]. Additionally, SST reduces serum T levels in intact
adult rats and in vitro T secretion but not in immature rats,
and in hemicastrated rats, this result is overturned [59]. This
indicates that age and testicular status can also affect the role
of SST.

3. The Effect of GM on Male
Reproductive Function

Besides GIH, GM is another prominent gastrointestinal fac-
tor that affects male reproduction. The relationship between
GM and reproductive health is receiving increasing attention
[80]. It seems to be a causal relationship between GM and
male infertility [3, 81]. Imbalance of GM may lead to sper-
matogenic disorders and inhibit hormone synthesis, and
fecal microbiota transplantation (FMT) can improve semen
quality and spermatogenesis [82, 83]. Androgens are crucial
for maintaining normal male reproductive development and
spermatogenic function, such as the number of spermatogo-
nia, BTB, spermatogenesis, etc. [84]. As mentioned above,
the GM can regulate the metabolism of androgens, affecting
the occurrence and development of related diseases. For exam-
ple, Al-Asmakh et al. [19] showed that compared with specific
pathogen-free (SPF) mice, the testosterone content in the tes-
tes of germ-free (GF) mice was significantly reduced. After
implanting Clostridium tyrobutyricum in GF mice, the testos-
terone content in the testes significantly increased. Therefore,
we will now review the relationship between GM and andro-
gen, as well as how GM regulates androgen metabolism.

3.1. GM Affects Androgen Levels. GM can affect androgen
levels during two important periods in men: adolescence and
old age. The interaction between androgens and organs such
as the genitalia and brain propel changes in male development
during adolescence [85]. A longitudinal comparison between
nonadolescent and adolescent subjects showed that nonadoles-
cent subjects were significantly more abundant in the order
Clostridiales, family Clostridiaceae, genus Coprobacillus, while
adolescent subjects had a significant increase in the abundance
of class Betaproteobacteria, order Burkholderiales. However,
there is no difference in the diversity of GM between adolescent
and nonadolescent subjects in α and β diversity [86].
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Comparison within the adolescent subject group showed a pos-
itive correlation between the abundance of generaAdlercreutzia,
Dorea, Ruminococcus, and T levels, while the abundance of
genera Clostridium and Parabacteroides was negatively corre-
lated with T levels [87]. This implies a dynamic correlation
between specific GM categories and androgen levels during
adolescence. Nevertheless, whether changes in the GM during
adolescence drive changes in androgen levels or whether ele-
vated androgen levels alter the structure of the GM remains
unclear and requires further research [85–87].

The GM affects the androgen levels in the elderly. Andro-
gens can promote hair growth and enhance hair gloss, which
symbolizes vigorous vitality. It is shown that the elderly mice
fed probiotic yogurt or Lactobacillus reuteri have significantly
higher levels of androgens and faster and denser hair growth
compared to these fed a regular diet, indicating that the GM
can restore androgen levels to younger levels [88]. A clinical
study obtained similar results, showing that elderly male sub-
jects with higher T levels showed a significant increase in nine
bacterial groups and a significant decrease in six. Among
them, except for the genus Alloscardovia belonging to the Acti-
nobacteria phylum, most of the increased bacteria belonged to
the phylum Firmicutes, such as Clostridiales, Turicibacter, and
Gemella [89]. Meanwhile, researchers believe that GM can
regulate T metabolism in elderly men and suggest that bacte-
rial preparations may be used in the future to prevent and
treat T-related diseases [89].

3.2. GM Affects the Progression of Androgen-Related Diseases
and Body State. It is widely believed that androgens have a
protective effect [90]. In line with this, the androgen level in
female mice receiving the GM of male mice increased, inhib-
ited, and reduced pancreatic islet inflammation and produc-
tion of antibodies, significantly delayed the onset time and
cumulative incidence rate of type 1 diabetes (T1D), while the
onset time and cumulative incidence rate of T1D in female
mice receiving the GM from the same sex were similar to
those in untreated female mice [16]. This strongly demon-
strated the potential of GM to regulate androgen to affect
disease occurrence. Exercise can increase the cross-sectional
area and strength of skeletal muscles in mice, accompanied
by an increase in serum T levels and changes in GM struc-
ture. After using antibiotics to remove the intestinal micro-
biota in mice, exercise no longer increased androgen levels,
resulting in a corresponding decrease in skeletal muscle per-
formance. Subsequently, FMT was carried out to increase
the serum androgen levels of antibiotic-treated mice and
improve muscle performance [91]. The above studies certifi-
cated that increasing the diversity and abundance of bacterial
communities, as well as supplementing probiotics, such as
C. tyrobutyricum [19] and L. reuteri [88] can increase the
level of androgens in the body, improve the state of the body,
and the occurrence and development of diseases. On the
contrary, the imbalance of GM, an increase in opportunistic
pathogenic bacteria, and a decrease in androgen levels are
more closely related [92].

In some cases, an increase in T levels can promote disease
progression. Unlike T1D and skeletal muscle manifestations,

androgen deprivation therapy (ADT) is a necessary treat-
ment for prostate cancer patients, as androgen promotes
the cancer progression. The contradiction lies in the com-
pensatory synthesis of T and DHT by the GM of patients
receiving ADT treatment and castrated mice. After T absorp-
tion into the bloodstream, it can inhibit the effect of ADT
and promote cancer development, while antibiotics or pro-
biotics and prebiotics can delay the occurrence of androgen
resistance and prostate cancer progression [93–95]. Cao et al.
[17] analyzed the characteristics of GM in patients with non-
obstructive azoospermia (NOA), and the results showed that
seven bacteria, including Prevotella denticola and Prevotella
melaninogenica, were positively correlated with serum T levels.
Acinetobacter johnsonii and genus Parabactoides were nega-
tively correlated with serum T levels. They believe that changes
in GM structure, to some extent, explain the pathogenesis of
NOA. The GM may serve as a biomarker for prostate cancer
and NOA in the future, assisting clinical screening, diagnosis,
and treatment.

3.3. The Mechanism of GM Regulating Androgen Metabolism

3.3.1. GMMetabolizes Androgens in the Intestine.GM expresses
steroid metabolic enzymes that can synthesize, transform, and
decompose androgens. First, the GM can metabolize androgens
in the intestine through processes such as de glucuronization,
lysis, and reduction. T undergoes reduction and glucuroniza-
tion in the liver to produce glucuronized T (T-G) and glucur-
onized DHT (DHT-G), which are excreted into the intestine
with bile. The GM can convert T-G andDHT-G to free form by
deglucuronization. It is shown that the levels of free DHT in the
cecum and colon of normal mice and healthy adult males are
much higher than those in the small intestine, and the levels of
T-G and DHT-G in the small intestine are significantly higher
than those in the distal intestine. In contrast, the levels of T-G
and DHT-G in the cecum of GF mice are significantly higher
than those in the free type, comparable to the levels of andro-
gens in the small intestine of normal mice, indicating that the
GM has β glucosidase activity, which can participate in andro-
gen metabolism [96]. However, the results showed that the
serum T levels of GF mice were similar to those of ordinary
mice, which was inconsistent with these research results
[16, 88, 91, 97]. It may be related to the detection method,
mouse strain, and age. Second, both androgens and glucocor-
ticoids are synthesized from cholesterol [98]. The GM has
steroid-processing enzymes that can directly participate in
the metabolism of androgens and glucocorticoids. Glucocor-
ticoids are synthesized from cholesterol through the adrenal
cortex, and about 4%–8% can enter the intestine with bile
acids synthesized by the liver. Clostridium scidens and other
bacterial communities can express steroid-17,20-deaminase,
which cleaves the glucocorticoid side chain and converts it
into 11 β-hydroxyandrostenedione, further reduced to sub-
stances with biological activity comparable to DHT, such as
11-oxoandrogen, 11-ketotestosterone, and 11-ketodihydro-
testosterone [99–101]. Thus, it can be considered that the
GM participates in the synthesis of androgens in the intestine.

Apart from its synthetic effects, it is revealed that Thauera
sp. strain GDN1 can decompose androgens in the intestinal
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tract of mice, hinder the hepatic intestinal circulation of
androgens, and lower serum androgen levels [102]. However,
as a steroid metabolite similar to bile acids, the existence of
hepatointestinal circulation in androgens requires intensive
study [103].

3.3.2. GM Regulates Androgen Synthesis in Leydig Cells. The
GM can affect Leydig cells and regulate androgen metabo-
lism. Metabolites of GM and their own components can both
affect testicular secretion function [8, 17]. C. tyrobutyricum
can secrete short-chain fatty acids (SCFAs) such as butyric
acid, enhance the expression of specific genes in Leydig cells
and mRNA encoding enzymes involved in T production
(such as Insl3, Hsd3b1, Hsd17b11, cyp1a1, and cyp19a),
and promote T synthesis in mouse testes [19]. There is a nega-
tive correlation between androgen levels and various inflamma-
tory factors such as C-reactive protein, monocyte chemotactic
protein 1, and tumor necrosis factor-α [104, 105]. The damage
to the intestinal mucosal barrier causes lipopolysaccharides
(LPS) in the cell wall of gram-negative bacteria to enter the
human circulation, promoting the production of immune
responses, oxidative stress, and inflammatory factors, harm-
ing Leydig cells and inhibiting T synthesis [7, 17]. Probiotics
can produce SCFAs, protect intestinal barrier function, promote
the production of anti-inflammatory factors such as interleukin

10 (IL-10), and inhibit the chronic low-grade inflammatory
state [20, 106]. Poutahidis et al. [107] demonstrated that elderly
mice fed with L. reuteri showed an increase in testicular inter-
stitial area and a number of interstitial cells, an increase in
nuclear volume, and an increase in serum T levels compared
with the control group, indicating that probiotics restored Ley-
dig cell function. At the same time, the study showed that this
effect was achieved by inhibiting pro-inflammatory factor inter-
leukin 17 (IL-17) and upregulating anti-inflammatory factor IL-
10 [107]. Substances such as SCFAs and LPS derived from GM
can directly act on the testes or affect the inflammatory state,
thereby impacting the synthesis of androgens in the testes.

3.3.3. GM Regulates Hypothalamic–Pituitary Function. The
hypothalamic–pituitary axis may be one of the pathways
through which GM affects T synthesis. The hypothalamus
secretes gonadotropin-releasing hormone (GnRH), which
promotes the synthesis and secretion of LH in the anterior
pituitary gland and stimulates the synthesis of T by Leydig
cells. LPS can restrain hypothalamic–pituitary function and
reduce serum LH levels through mediators such as Kisspep-
tin, inflammatory factors, and hypothalamic–pituitary–adre-
nal axis [107, 108]. However, Shen et al. [109] suggest that
intraperitoneal injection of LPS into adult male mice can lead
to acute systemic inflammation, eventuating excessive
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FIGURE 2: The action of GIH and GM on testicular tissue. (1) The position pointed by the arrow represents the site or physiological process of
action of GIH and GM. (2) The solid line represents a promoting effect, the dashed line represents an inhibitory effect, and (+/−) indicates a
possible bidirectional regulation.
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activation of GnRH neurons in the medial preoptic area of
the hypothalamus, ultimately increasing serum LH levels.
Moreover, they consider that this may be related to LPS
impairing the T synthesis ability of Leydig cells, causing a
decline in negative feedback inhibition. There are contradic-
tions in LH, which may be due to different species and age
stages. There is controversy over whether the GM works
through the hypothalamic–pituitary axis and what kind of
action it produces [17, 19], which needs to be explicated.

In the bargain, androgens can also affect the GM [110, 111].
The two interact to jointly maintain physical health [90]. The
relationship between GM and androgens is a scientific direc-
tion worth exploring. Herein, we only focus on discussing
how the former affects the latter.

4. Conclusions

This article mainly reviews the protective and damaging
effects of GIH on testicular function, as well as the regulatory
effects of GM on androgens. GIH can affect the function of
testicular Leydig cells and Sertoli cells, as well as the process
of spermatogenesis and sperm quality. The GM may affect
the occurrence and development of male diseases by regulat-
ing androgen metabolism. Figure 2 briefly shows the effects
of GIH and GM on testicular tissues and cells. This is a mean-
ingful aspect of TGRAxis. But there are still some noteworthy
contents needing to be further explored. For example, the first
is how the GM interacts with GIH. Secondly, at a macro level,
how androgens or male reproduction affect GIH and GM,
thereby influencing gastrointestinal health and even overall
health.

Overall, the TGR axis establishes the viewpoint that
includes two aspects: GIH and GM from the gastrointestinal
tract regulate male reproductive system function, and testi-
cles and other male reproductive system tissues and organs
also affect GIH secretion and GM structure. GIH and GM
are closely related to obesity, diabetes, neuropsychiatric dis-
eases, and other diseases [112–115]. Therefore, the TGR axis
may provide valuable guidance for the diagnosis and treat-
ment of male reproductive-related diseases and the mainte-
nance of physical health.
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