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Background. This study is aimed at formulating and authenticating a pioneering nomogram integrating noncontrast computed
tomography (NCCT) mean CT densities (m-CTD) of hematoma, morphological indicators from NCCT hematoma, and
clinical manifestations to foresee hematoma expansion (HE) in patients suffering from spontaneous basal ganglia hemorrhage
(BGH). Methods. A predictive model was constructed by retrospectively evaluating the data from 406 patients. This model was
externally validated using an independent dataset of 174 patients. Multivariate logistic regression analysis was deployed to
discern independent prognostic indicators and to generate a nomogram for HE prediction. Model calibration was examined
using 1000 bootstrap samples for internal validation. Results. Multivariate logistic regression disclosed that m-CTD (odds ratio
(OR) 0.846, 95% confidence interval (CI) 0.782-0.909), baseline hematoma volume (BHV) (OR 1.055, 95% CI 1.017-1.095),
NCCT blend sign (BS) (OR 3.320, 95% CI 1.704-6.534), NCCT black hole sign (BHS) (OR 2.468, 95% CI 1.293-4.729), systolic
blood pressure (SBP) (OR 1.027, 95% CI 1.014-1.040), and homocysteine (Hcy) (OR 1.075, 95% CI 1.038-1.114) were
independent predictors of HE. The area under the curve (AUC) for the training and validation datasets yielded 0.874 and
0.883, respectively. The calibration curve for the nomogram closely approximated the optimal diagonal. The decision curve
analysis (DCA) indicated that the prediction model offers substantial net benefits. Conclusions. The innovative predictive
nomogram, leveraging radiomics and clinical traits of hematoma, presents a potent and noninvasive tool for HE risk
stratification. The method of quantifying mean hematoma density holds significant prognostic value in forecasting HE.

1. Introduction

Despite significant advancements in the treatment of intra-
cranial hemorrhage (ICH), it still leaves open the chance of
receiving a poor prognosis [1]. Hematoma expansion (HE)
which typically manifests within the initial 24 hours follow-
ing cerebral hemorrhage onset is a proven prognostic indica-
tor of subsequent neurological decline and unfavorable
patient outcomes [2]. The basal ganglia, as the most frequent
site of ICH, underscores the fact that even minuscule
increases in HE can markedly elevate disability and mortal-
ity rates [3–5].

Contemporary research suggests that hypertension, base-
line hemorrhage volume (BHV), and specific noncontrast
computed tomography (NCCT) hematoma morphological
indicators such as blend sign (BS), black hole sign (BHS),
and island sign (IS) are effective predictors of HE [6–11].
Yet, these NCCT signs, which predict HE through qualitative
analysis of hematomas, are subject to imaging-induced subjec-
tive error. Moreover, the predictive sensitivity of these individ-
ual factors for HE is modest at best (sensitivity < 30%) [12].
However, it has been suggested that quantitative analysis of
hematoma density may enhance predictive accuracy, as evi-
denced by Barras et al. [13], who achieved considerable
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predictive efficacy through quantitative NCCT hematoma
density analysis.

While the computed tomography angiography (CTA)
spot sign is a potent predictor of HE, its routine application
in ICH diagnosis is constrained by its limited accessibility.
Conversely, NCCT is ubiquitously available and retains its
position as the diagnostic gold standard for ICH [14, 15].
Integrating NCCT morphological indicators with clinical
risk factors can amplify the sensitivity and negative predic-
tive value (NPV) of HE prediction [16].

Consequently, this study is aimed at constructing a HE
predictive model, leveraging clinical data and NCCT
markers, in a single-center cohort, with the overarching goal
of bolstering the accuracy of HE identification.

2. Materials and Methods

2.1. Patient Selection. Data were compiled from patients pre-
senting with BGH at a solitary medical center (Figure 1).
The selection pool comprised 2984 patients admitted for
ICH to Tianjin Huanhu Hospital from October 1, 2016,
through December 31, 2022. A subset of 580 patients, with
comprehensive data and meeting the defined inclusion cri-
teria, was further selected. In a 7 : 3 random distribution,
406 patients (285 males and 121 females) were allocated to
the training cohort, while 174 patients (116 males and 58
females) were assigned to the validation cohort (Figure 1).
Initial NCCT and subsequent follow-up NCCT data, col-
lected within 24 hours postsymptom onset, were retrieved
for each patient. Likewise, laboratory test results conducted
within this 24-hour window were also obtained. Patient
management, encompassing blood pressure regulation and
complication management, adhered to unified standards,
following the American Heart Association/American Stroke
Association guidelines for spontaneous intracerebral hemor-
rhage management [1].

This study obtained ethical approval from the Ethics
Committee of Tianjin Huanhu Hospital and adhered to the
ethical standards set forth in the 1964 Helsinki Declaration
and its subsequent amendments or equivalent standards.

Inclusion criteria are as follows: (1) patient age ≥ 18
years, (2) initial NCCT scan conducted within 6 hours from
the time last seen well and a subsequent NCCT conducted
within 24 hours postadmission, and (3) patients experienc-
ing their first episode.

Exclusion criteria are as follows: (1) underwent surgery
prior to follow-up NCCT scan; (2) patients with cerebral hem-
orrhage due to head trauma, arteriovenous malformation,
cerebral aneurysm, brain tumor, or venous sinus embolism;
(3) spontaneous intraventricular hemorrhage; (4) concomi-
tant subarachnoid hemorrhage; (5) hemorrhagic transforma-
tion of acute ischemic stroke; (6) baseline hematoma
volume ðBHVÞ ≤ 5mL; and (7) antithrombotic medication
prior to symptom onset.

2.2. Imaging Acquisition and Analysis. Baseline and follow-
up NCCT scans were configured with a conventional 5mm
slice thickness.

Baseline and subsequent NCCT measurements were
independently executed by two proficient neuroimaging
physicians utilizing the ITK-SNAP software (http://www
.itksnap.org). With the threshold range established at 35-
100 Hounsfield units (HU), a semiautomated approach was
adopted to assess all baseline hematoma volumes (BHV), the
m-CTD of the hematoma, and to discern the presence or
absence of BS, BHS, and IS, respectively (Figure 2). Any con-
flicting observations between the two investigators were
arbitrated by a third party. HE was defined as either a
6mL volume increase in hematoma or a 33% escalation
from the baseline hematoma volume [17].

Images were obtained via a picture archiving and com-
munication system and stored in Digital Imaging and Com-
munications in Medicine (DICOM) format for subsequent
review.

2.3. Definition of Mean CT Densities (m-CTD) of Hematoma.
ITK-SNAP software was used to mark the hematoma in
NCCT in 3D, and then, the average Hounsfield units (HU)
value of the marked hematoma was automatically analyzed
by the software (Figure 2(a)).

2.4. Definition of NCCT Signs. The blend sign (Figure 2(e))
denotes a comparatively hypodense area adjacent to a hyper-
dense area of the hematoma, with a discernible margin and a
density variance of at least 18 HU between the two regions
[10]. The black hole sign (Figure 2(f)) is characterized as a
region of lower attenuation enveloped by a region of higher
attenuation, with the attenuation disparity between the two
regions exceeding 28 HU [11]. The island sign (Figure 2(g))
is distinguished by the presence of either ≥3 scattered minor
hematomas, entirely segregated from the primary hematoma,
or ≥4 smaller hematomas, of which some or all might be
linked to the main hematoma [9].

2.5. Statistical Analysis. Statistical computations and analy-
ses were executed utilizing the R software (version 4.2.1).
All samples were arbitrarily divided into a training cohort
(70%) and a validation cohort (30%) in a 7 : 3 ratio. The
training cohort facilitated model construction, while the val-
idation cohort was employed for external validation. Contin-
uous variables conforming to a normal distribution were
presented as �x ± s, and Student’s T test was implemented
for intergroup comparisons. Alternatively, variables were
denoted as median (interquartile range (IQR)), and the
rank-sum test was leveraged for group comparisons. Cate-
gorical variables were represented as numbers (%), and
either the chi-square test (χ2) or Fisher’s exact test was used
for intergroup comparisons.

First, in the training cohort, univariate logistic regression
analysis was employed to discern potential predictors of HE,
and variables with P < 0:1 were incorporated into the multi-
variate logistic regression to construct the predictive model.
Second, a clinical nomogram was devised to illustrate the
predictive model for HE, utilizing the “rms” data package
of the R software. Thereafter, the predictive efficacy of the
model was evaluated by ascertaining the area under the
receiver operating characteristic (ROC) curve. Calibration
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curves were subsequently plotted, and 1000 internal boot-
strap samples were utilized to validate the model, assessing
the calibration of the predictive model. The DCA evaluated
the clinical efficacy of the predictive model by determining
the threshold range. Finally, the established model was fur-
ther validated within the validation cohort, and the calibra-
tion curve, ROC curve, and DCA were plotted. All tests
incorporated two-tailed tests. P < 0:05 was considered to be
statistically significant.

3. Results

3.1. Baseline Characteristics. The study included a total of
580 patients diagnosed with spontaneous BGH, of whom
167 instances (28.79%) developed HE. Of the 406 patients
allocated to the training cohort, 117 (28.82%) manifested
HE, while 50 (28.74%) of the 174 patients in the validation
cohort exhibited the same. No significant disparities were
detected in the statistical comparisons between the two
cohorts (Table 1).

The comparison of the non-HE and HE groups in the
training cohort revealed significant discrepancies in m-CTD
of hematoma (P < 0:001), BHV (P < 0:001), BS (P < 0:001),

BHS (P = 0:002), SBP (P < 0:001), DBP (P < 0:001), hemoglo-
bin (P = 0:002), and Hcy (P < 0:001) (Table 2).

3.2. Independent Predictors of HE. Independent predictors of
HE were identified through multivariate logistic regression
analysis. The results indicated that m-CTD of hematoma
(odds ratio (OR) 0.846, 95% confidence interval (CI)
0.782-0.909, P < 0:001), BHV (OR 1.055, 95% CI 1.017-
1.095, P = 0:005), BS (OR 3.320, 95% CI 1.704-6.534,
P < 0:001), BHS (OR 2.468, 95% CI 1.293-4.729, P = 0:006),
age (OR 1.015, 95% CI 0.996-1.035, P = 0:116), SBP (OR
1.027, 95% CI 1.014-1.040, P < 0:001), hemoglobin (OR
1.012, 95% CI 0.998-1.026, P = 0:084), and Hcy (OR 1.075,
95% CI 1.038-1.114, P < 0:001) were selected as salient com-
ponents for the final prediction model (Table 3).

3.3. Construction of the Predictive Nomogram and
Preliminary Validation. Drawing upon the identified predic-
tors for HE, a nomogram was constructed (Figure 3(a)). The
receiver operating characteristic (ROC) curve of the training
cohort substantiated the discriminating ability of the prediction
model (AUC = 0:874, 95% CI 0.835–0.912) (Figure 3(c)). The
decision analysis curve (DAC) of the training cohort showed
the nomogram’s strong predictive performance within a risk

All patients with Spontaneous cerebral hemorrhage from
October 1, 2016 to December 31, 2022

n = 2984

Excluded for:
Non-first-episode patients (n = 171)
Non-basal ganglia cerebral
hemorrhage (n = 1349) 
Time to first NCCT ≥ 6 h (n = 229)
Follow-up NCCT time ≥ 24 h (n = 157)
Other causes of hemorrhage (n = 25)
With subarachnoid hemorrhage (n = 87)
With ventricular hemorrhage (n = 137)

(i)
(ii)

(iii)
(iv)
(v)

(vi)
(vii)

All patients with basal ganglia cerebral hemorrhage
n = 829

Excluded for:
Underwent surgery before follow-up NCCT (n = 74)
Hematoma volume ≤ 5 mL ( n = 19)
History of antithrombotic drug treatment before onset ( n = 84)
Incomplete data (n = 72)

(i)
(ii)

(iii)
(iv)

All enrolled patients with basal ganglia cerebral hemorrhage
n = 580

Training cohort
n = 406

Validation cohort
n = 174

External validation

Univariate and Multivariate logistic regression analysis
Nomogram establishment

Figure 1: Patient selection flowchart. NCCT denotes noncontrast computed tomography.
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Figure 2: Semiautomatic ITK-SNAP measurement of hematoma volume and m-CTD (a). The red areas depict the region of interest (ROI)
of the hematoma in the cross-sectional, sagittal, and coronal sections, respectively (b–d). (e–g) Schematics of the blend sign, black hole sign,
and island sign, respectively. ROI = region of interest; m-CTD = mean CT densities.
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threshold of 0.05–0.8, with optimal efficacy observed around a
risk threshold of 0.4 (Figures 3(d) and 3(e)). Correspondingly,
the ROC curve of the validation cohort confirmed the model’s
discriminating capability (AUC = 0:883, 95% CI 0.831-0.936)
(Figure 3(f)), in alignment with the training cohort findings.
The DAC of the validation cohort demonstrated predictive
efficiency within the risk threshold of 0.05–0.7, again achiev-
ing optimal performance around a risk threshold of 0.4
(Figures 3(g) and 3(h)), consistent with the training cohort.
ROC curve analysis indicated that m-CTD of hematoma offers
moderate predictive value in both the training and validation
cohorts, with the area under the ROC curve surpassing 0.7
(AUC = 0:776, 95% CI 0.725–0.827 vs. AUC = 0:730, 95% CI
0.643–0.817) (Figure 3(b)).

The calibration curves for both cohorts underscored the
robust alignment between predicted and actual probabilities,
reflecting the high calibration of our constructed prediction
model (Figures 3(d) and 3(g)).

3.4. Multivariate Analysis of the Overall Predictive Power.
ROC analyses were conducted for all isolated risk factors, cap-
turing sensitivity and specificity measures. In alignment with
our hypothesis, these NCCT predictors exhibited strong pre-
dictive performance. The multivariate predictive power of
the m-CTD in conjunction with other radiomics and clinical
characteristics surpassed the accuracy of single-factor predic-
tion (AUC 0.865, sensitivity 0.749, and specificity 0.860).
Cut-off values for these factors were determined as follows:

Table 1: Baseline characteristics of all patients.

Variables
Total Training cohort Validation cohort

P
n = 580 n = 406 n = 174

m-CTD of hematoma (Hu) 65.24 (62.43, 68.24) 65.00 (62.37, 68.24) 65.63 (62.57, 68.16) 0.534

BHV (mL) 13.35 (7.28, 20.62) 13.94 (7.53, 21.31) 12.40 (6.84, 19.42) 0.174

BS 0.225

No 478 (82.41%) 329 (81.03%) 149 (85.63%)

Yes 102 (17.59%) 77 (18.97%) 25 (14.37%)

BHS 0.312

No 481 (82.93%) 332 (81.77%) 149 (85.63%)

Yes 99 (17.07%) 74 (18.23%) 25 (14.37%)

IS 0.525

No 568 (97.93%) 396 (97.54%) 172 (98.85%)

Yes 12 (2.07%) 10 (2.46%) 2 (1.15%)

HE 1.000

No 413 (71.21%) 289 (71.18%) 124 (71.26%)

Yes 167 (28.79%) 117 (28.82%) 50 (28.74%)

Gender 0.456

F 179 (30.86%) 121 (29.80%) 58 (33.33%)

M 401 (69.14%) 285 (70.20%) 116 (66.67%)

Age (years) 56.00 (47.00, 67.00) 56.00 (47.00, 67.00) 56.00 (46.00, 65.00) 0.438

SBP (mmHg) 165:15 ± 22:69 165:02 ± 23:18 165:45 ± 21:56 0.828

DBP (mmHg) 95.00 (87.00, 104.00) 95.00 (86.75, 104.00) 95.00 (88.00, 104.00) 0.872

Hemoglobin (g/L) 138.00 (122.00, 154.00) 141.00 (124.00, 153.00) 134.50 (119.25, 154.00) 0.193

Platelet count (×109/L) 207.00 (166.00, 243.00) 209.00 (167.00, 243.00) 203.00 (157.50, 245.25) 0.331

APTT (s) 25.30 (22.70, 30.70) 25.45 (22.50, 30.80) 25.05 (23.10, 30.15) 0.831

PT (s) 11.70 (10.88, 12.70) 11.80 (10.83, 12.80) 11.60 (10.90, 12.60) 0.909

TT (s) 17.10 (16.10, 18.20) 17.10 (16.10, 18.20) 17.10 (16.10, 18.10) 0.912

FIB (g/L) 2.96 (2.18, 4.22) 2.96 (2.17, 4.36) 2.95 (2.18, 4.03) 0.962

INR (s) 0.98 (0.85, 1.14) 0.98 (0.85, 1.13) 0.99 (0.86, 1.17) 0.416

Blood glucose (mmol/L) 8.71 (6.08, 12.07) 8.71 (6.18, 12.03) 8.71 (5.50, 12.18) 0.484

Total cholesterol (mmol/L) 4.34 (3.28, 5.49) 4.30 (3.23, 5.50) 4.40 (3.38, 5.46) 0.510

Triglycerides (mmol/L) 1.26 (0.77, 1.74) 1.24 (0.75, 1.77) 1.30 (0.80, 1.71) 0.968

Hcy (μmol/L) 13.85 (9.65, 18.28) 14.09 (9.51, 18.63) 13.71 (9.68, 18.16) 0.807

Data are expressed as n (%), �x ± s, or median (interquartile range (IQR)). P < 0:05 was considered to be statistically significant. IQR = interquartile range;
m-CTD = mean CT densities; BHV = baseline hemorrhage volume; BS = blend sign; BHS = basal ganglia hemorrhage; IS = island sign; HE = hematoma
expansion; SBP = systolic blood pressure; DBP = diastolic blood pressure; APTT = activated partial thromboplastin time; PT = prothrombin time; TT =
thrombin time; FIB = fibrinogen; INR = international normalized ratio; Hcy = homocysteine.
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m-CTD (63.45), BHV (17.33), Hcy (14.09), and systolic pres-
sure (181.50), respectively (Table 4 and Figure 4).

4. Discussion

HE predominantly occurs within the initial six hours follow-
ing intracerebral hemorrhage (ICH) onset [17–19]. Accord-
ingly, we utilized baseline NCCT data, procured within six
hours post the latest well-observed time, to gauge the m-
CTD of the hematoma and assess the radiomic features.
Concurrently, the follow-up NCCT within the initial 24
hours of admission was examined to delineate between HE
and non-HE cases. Our findings confirmed that m-CTD is
an independent risk factor for HE prediction (P < 0:001),
corroborating previous studies [20, 21]. When amalgamated
with other factors, the predictive accuracy was enhanced,
underscoring m-CTD’s ability to independently anticipate
HE occurrence and, when utilized as a contributing factor,

augmenting the precision of the predictive model. This sim-
ple method of measuring hematoma average density can be
pragmatically applied by clinicians to fortify ICH diagnosis
and treatment strategies.

Variations in hematoma CT densities are profoundly
associated with factors such as onset time and hematoma
volume [14, 19]. Areas of hypodensity within the hematoma
often indicate an elevated incidence of HE [6, 10, 11]. Para-
doxically, in our clinical observations, we noted that homo-
geneous hematomas devoid of hypodense regions were also
susceptible to HE, generally exhibiting lower density values.
Conversely, certain hematomas with density heterogeneity
did not progress to the anticipated HE. Numerous investiga-
tions have probed the utility of NCCT in forecasting HE [6,
10, 11, 13, 22–28], primarily focusing on qualitative or cate-
gorical designation of hematoma density regions. It is critical
to acknowledge that hematoma density is not uniformly dis-
tributed and comprises various densities. We carried out a

Table 2: Baseline characteristics of patients with and without HE.

Variables
Training cohort

P
Non-HE (n = 289) HE (n = 117)

m-CTD of hematoma (Hu) 66.49 (63.83, 68.73) 62.25 (60.35, 64.35) <0.001
BHV (mL) 11.77 (6.52, 17.24) 20.76 (13.23, 25.16) <0.001
BS <0.001

No 260 (89.97%) 69 (58.97%)

Yes 29 (10.03%) 48 (41.03%)

BHS 0.002

No 248 (85.81%) 84 (71.79%)

Yes 41 (14.19%) 33 (28.21%)

IS >0.99
No 282 (97.58%) 114 (97.44%)

Yes 7 (2.42%) 3 (2.56%)

Gender 0.198

F 92 (31.83%) 29 (24.79%)

M 197 (68.17%) 88 (75.21%)

Age (years) 56.00 (47.00, 66.00) 57.00 (51.00, 69.00) 0.069

SBP (mmHg) 159.00 (145.00, 175.00) 185.00 (162.00, 194.00) <0.001
DBP (mmHg) 94.00 (86.00, 100.00) 100.00 (93.00, 108.00) <0.001
Hemoglobin (g/L) 136.00 (123.00, 150.00) 149.00 (127.00, 157.00) 0.002

Platelet count (×109/L) 210.00 (168.00, 241.00) 207.00 (166.00, 247.00) 0.924

APTT (s) 25.50 (22.50, 30.80) 25.10 (22.70, 30.80) 0.612

PT (s) 11.70 (10.80, 12.70) 11.80 (10.90, 13.10) 0.405

TT (s) 17.10 (16.00, 18.20) 17.30 (16.40, 18.30) 0.254

FIB (g/L) 3.01 (2.19, 4.35) 2.84 (2.12, 4.38) 0.742

INR (s) 0.99 (0.86, 1.15) 0.96 (0.81, 1.09) 0.206

Blood glucose (mmol/L) 8.79 (6.16, 12.18) 8.49 (6.18, 11.74) 0.868

Total cholesterol (mmol/L) 4.28 (3.28, 5.49) 4.37 (3.14, 5.52) 0.943

Triglycerides (mmol/L) 1.24 (0.76, 1.75) 1.19 (0.75, 1.83) 0.889

Hcy (μmol/L) 12.46 (8.25, 16.30) 17.88 (13.93, 21.48) <0.001
Data are expressed as n (%) or median (IQR). P < 0:05 was considered to be statistically significant. IQR = interquartile range; HE = hematoma expansion;
Non-HE = nonhematoma expansion; m-CTD = mean CT densities; BHV = baseline hemorrhage volume; BS = blend sign; BHS = basal ganglia hemorrhage;
IS = island sign; SBP = systolic blood pressure; DBP = diastolic blood pressure; APTT = activated partial thromboplastin time; PT = prothrombin time; TT =
thrombin time; FIB = fibrinogen; INR = international normalized ratio; Hcy = homocysteine.

6 Acta Neurologica Scandinavica



quantitative analysis of hematoma CT density values, which
may offer a more precise and objective representation of the
overall CT density profile of the hematoma. The final results
presented commendable predictive performance in both
training and validation cohorts, and the prediction efficacy
was further optimized through multivariate combination.

High systolic blood pressure (SBP) has been identified as
an independent risk factor for HE prediction, and it also
impacts the baseline hemorrhage volume (BHV) of ICH
[29–32]. Indeed, BHV is not only another risk factor for
HE prediction but also a critical determinant of mortality
and prognosis [33, 34]. Multiple studies have validated a
positive correlation between hematoma expansion and
larger BHV [35–37]. Aligning with these findings, we noted
a significantly higher BHV in the HE group compared to the
non-HE group (P < 0:001). These results propose a potential
strategy for reducing HE incidence through early BP
intervention, especially in patients presenting with sizeable
BHV and low m-CTD, specifically when BHV > cut‐off
value 17:33 and m‐CTD < cut‐off value 63:45 (Table 4).

The incidence of HE escalates with age, potentially
attributable to a higher prevalence of arteriosclerosis,
amyloid angiopathy, hypertension, increased BHV post-
ICH, and enhanced neurovascular inflammation among
the elderly [38, 39]. Conventional wisdom also attributes
low hemoglobin levels to the evolution of HE [40]. However,
our study found a higher hemoglobin concentration in the

HE group in the training cohort compared to the non-HE
group (P = 0:002). This may not suggest that elevated hemo-
globin precipitates HE but rather hints towards a decreased
platelet ratio secondary to increased hemoglobin, culminat-
ing in an amplified HE incidence. This hypothesis was cor-
roborated in our study, wherein the HE group displayed a
marginally lower platelet count compared to the non-HE
group within the training cohort (M (IQR), 207.00 (166.00,
247.00) vs. 210.00 (168.00, 241.00)). However, the difference
was not statistically significant.

Contrary to the findings by Suo et al., which suggested
lower plasma Hcy concentrations as a risk factor for HE
[41], we observed higher Hcy levels in the HE group than in
the non-HE group (P < 0:001), corroborating Zeng et al. and
Li et al.’s results [42, 43]. A plausible explanation is that high
Hcy levels augment matrix metalloproteinase-9 (MMP-9)
production, thereby increasing vascular endothelial cell
permeability and causing cell damage. MMP-9 may also
compromise the blood-brain barrier by degrading type IV col-
lagenase, laminin, and fibronectin in the extracellular matrix
and basement membrane, inducing apoptosis and, subse-
quently, HE. Moreover, Hcy is associated with hypertension
and can provoke atherosclerosis by escalating oxidative stress,
damaging elastin fibers, and increasing collagen synthesis [44].
Hence, this underscores the clinical significance of early
intervention in ICH patients with high Hcy levels to mitigate
HE occurrence.

Table 3: Univariate and multivariate logistic regression analyses identifying predictors for HE.

Variables
Univariate logistic regression Multivariate logistic regression

OR (95% CI) P OR (95% CI) P

m-CTD of hematoma (Hu) 0.776 (0.723, 0.828) <0.001 0.846 (0.782, 0.909) <0.001
BHV 1.108 (1.075, 1.143) <0.001 1.055 (1.017, 1.095) 0.005

BS 6.237 (3.689, 10.72) <0.001 3.320 (1.704, 6.534) <0.001
BHS 2.376 (1.407, 3.999) 0.001 2.468 (1.293, 4.729) 0.006

Age (years) 1.016 (1.001, 1.031) 0.033 1.015 (0.996, 1.035) 0.116

SBP (mmHg) 1.039 (1.027, 1.051) <0.001 1.027 (1.014, 1.040) <0.001
Hemoglobin(g/L) 1.016 (1.005, 1.028) 0.005 1.012 (0.998, 1.026) 0.084

Hcy (μmol/L) 1.096 (1.063, 1.134) <0.001 1.075 (1.038, 1.114) <0.001
IS 1.060 (0.225, 3.886) 0.933

Gender 1.417 (0.878, 2.333) 0.161

DBP (mmHg) 1.036 (1.017, 1.056) <0.001
Platelet count (×109/L) 1.000 (0.996, 1.004) 0.896

APTT (s) 0.987 (0.946, 1.028) 0.526

PT (s) 1.085 (0.918, 1.281) 0.337

TT (s) 1.074 (0.93, 1.241) 0.331

FIB (g/L) 0.99 (0.84, 1.163) 0.902

INR (s) 0.553 (0.199, 1.499) 0.250

Blood glucose (mmol/L) 0.986 (0.933, 1.027) 0.558

Total cholesterol (mmol/L) 1.003 (0.857, 1.174) 0.967

Triglycerides (mmol/L) 1.039 (0.739, 1.454) 0.825

P < 0:05 was considered to be statistically significant. OR = odds ratio; 95% CI = 95% confidence interval; m-CTD = mean CT densities; BHV = baseline
hemorrhage volume; BS = blend sign; BHS = basal ganglia hemorrhage; SBP = systolic blood pressure; Hcy = homocysteine; IS = island sign; DBP =
diastolic blood pressure; APTT = activated partial thromboplastin time; PT = prothrombin time; TT = thrombin time; FIB = fibrinogen; INR =
international normalized ratio.
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5. Strengths and Limitations

The current investigation is, to our knowledge, pioneering in
quantifying the m-CTD of BGH, further integrating it with
CT morphological indicators and hematoma clinical charac-
teristics to predict HE. To bolster the accuracy of our find-
ings, we adopted stringent criteria for sample inclusion.

Nonetheless, the study has several constraints:

(1) The study’s design is retrospective and confined to
a single center. Therefore, prospective multicenter
studies are imperative for validating these findings

(2) Given that spontaneous intracranial hemorrhages
primarily occur within the basal ganglia, we did not
account for thalamic or cortical bleeding, thereby
introducing a selection bias. Future endeavors will
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Figure 3: Constructed nomogram for predicting HE. (a) The nomogram is derived from multivariate analysis. (b) The AUCs of m-CTD in
the training cohort and validation cohort were 0.776 and 0.730, respectively. (c, f) The AUCs for the training cohort and validation cohort
were 0.874 and 0.883, respectively. (d, g) Calibration curves for the training and validation cohorts. (e, h) DAC curve analyses for both
cohorts show the nomogram’s optimal predictive efficacy at risk thresholds approximating 0.4. AUC = area under the curve; DAC =
decision analysis curve; ROC = receiver operating characteristic; m-CTD = mean CT densities; BHV = baseline hemorrhage volume;
BS = blend sign; BHS = basal ganglia hemorrhage; SBP = systolic blood pressure; Hcy = homocysteine.

Table 4: Comprehensive multivariate analysis of predictive power.

Variables AUC Sensitivity Specificity P Cut-off value

Multivariable 0.865 0.749 0.860 <0.001 —

m-CTD (Hu) 0.762 0.653 0.804 <0.001 63.45

BHV (mL) 0.733 0.647 0.753 <0.001 17.33

Hcy (mmol/L) 0.729 0.737 0.615 <0.001 14.09

Systolic pressure (mmHg) 0.725 0.527 0.852 <0.001 181.50

Blend sign 0.646 0.383 0.908 <0.001 —

Black hole sign 0.569 0.269 0.869 0.009 —

P < 0:05 was considered to be statistically significant. AUC = area under the curve; m-CTD = mean CT densities; BHV = baseline hemorrhage volume; Hcy =
homocysteine; SBP = systolic blood pressure; BS = blend sign; BHS = black hole sign.
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encompass data from these cerebral hemorrhages for
a comprehensive analysis

(3) Data collection was limited to patients who under-
went follow-up CT, excluding those with sizable
baseline hemorrhage volumes (BHV) and those
who received surgical interventions. This has inad-
vertently led to a dearth of data concerning HE
occurrence in patients with extensive BHV

(4) We overlooked the examination timeframes of base-
line NCCT and follow-up NCCT, a variable that
warrants further exploration in upcoming research

6. Conclusion

The mean CT densities of hematoma, baseline hematoma
volume, blend sign, black hole sign, systolic blood pressure,
and homocysteine levels independently predispose patients
to basal ganglia hemorrhage. Quantitative analyses of
hematoma’s mean CT densities significantly enhance the
predictive accuracy for HE occurrence. When integrated
with other risk factors, this measure notably improves
comprehensive predictive capacity. Utilizing freely available,
open-source ITK-SNAP software for quantifying the mean
CT densities of hematoma affords a rapid, efficient method,
facilitating neurologists in the diagnosis and treatment
of ICH.
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