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Fat greenling (Hexagrammos otakii) is a kind of economic fish that is widely consumed by human, and its intensive farming
technology is making important progress. However, high-density farming may cause the occurrence of diseases in H. otakii.
Cinnamaldehyde (CNE) is a new feed additive for aquatic animals and has a positive effect on disease resistance. In the study,
dietary CNE was evaluated on the growth performance, digestion, immune response, and lipid metabolism of juvenile H. otakii
(6:21 ± 0:19 g). Six experimental diets were formulated containing CNE at levels of 0, 200, 400, 600, 800, and 1000mg/kg for 8
weeks. The percent weight gain (PWG), specific growth rate (SGR), survival (SR), and feeding rate (FR) were significantly
increased by including CNE in fish diets regardless of the inclusion level (P < 0:05). The feed conversion ratio (FCR) was
significantly decreased among the groups fed CNE supplemented diets (P < 0:05). A significant decrease in hepatosomatic
index (HSI) was observed in fish fed 400mg/kg-1000mg/kg CNE compared to the control diet (P < 0:05). Fish-fed diets
containing 400mg/kg and 600mg/kg CNE had a higher level of crude protein in muscles than the control diet (P < 0:05).
Moreover, the activities of lipase (LPS) and pepsin (PEP) in the intestinal were markedly increased in juvenile H. otakii-fed
dietary CNE (P < 0:05). Apparent digestibility coefficient (ADC) of dry matter, protein, and lipid was significantly increased
with CNE supplement (P < 0:05). The activities of catalase (CAT) and acid phosphatase (ACP) in the liver were markedly
enhanced by including CNE in juvenile H. otakii diets compared with the control (P < 0:05). The activities of superoxide
dismutase (SOD) and alkaline phosphatase (AKP) in the liver were markedly enhanced in juvenile H. otakii treated with CNE
supplements 400mg/kg-1000mg/kg (P < 0:05). Additionally, the levels of total protein (TP) in the serum were markedly
increased by including CNE in juvenile H. otakii diets compared with the control (P < 0:05). In the CNE200, CNE400, and
CNE600 groups, albumin (ALB) levels in the serum were markedly higher compared with that in the control (P < 0:05). In the
CNE200 and CNE400 groups, the levels of immunoglobulin G (IgG) in the serum were significantly increased compared with
that the control group (P < 0:05). The juvenile H. otakii-fed dietary CNE had lower triglycerides (TG) and total cholesterol
(TCHO) levels in the serum than fish-fed CNE-free diets (P < 0:05). The gene expression of peroxisome proliferator-activated
receptor alpha (PPAR-α), hormone-sensitive lipase (HSL), and carnitine O-palmitoyltransferase 1 (CPT1) in the liver was
significantly increased by including CNE in fish diets regardless of the inclusion level (P < 0:05). However, fatty acid synthase
(FAS), peroxisome proliferator-activated receptor gamma (PPAR-γ), and acetyl-CoA carboxylase alpha (ACCα) in the liver
were markedly decreased with CNE supplements 400mg/kg-1000mg/kg (P < 0:05). The glucose-6-phosphate1-dehydrogenase
(G6PD) gene expression levels in the liver were markedly decreased compared with the control (P < 0:05). The optimal
supplementation level of CNE was shown by curve equation analysis to be 590.90mg/kg.
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1. Introduction

In the modern aquaculture industry, intensive aquaculture
system has been widely promoted and applied in grass carp
(Ctenopharyngodon idella), carp (Cyprinus carpio), tilapia
(Oreochromis niloticus), channel catfish (Ictalurus puncta-
tus), and other fishes, which can create greater economic
value for farmers [1–4]. On the other hand, farming of fish
under intensive culture system with high densities can trig-
ger a great risk of stressful conditions, which would suppress
the immune system and make fish more prone to the dis-
eases resulting in extremely mortalities and significant eco-
nomic losses [5]. In recent years, a variety of antibiotics,
such as flavomycin, bacitracin zinc, salinomycin, and enra-
mycin, have been used to alleviate the pressure of various
infectious diseases in farmed fish [6, 7]. However, the long-
term use of antibiotics can lead to drug resistance and drug
residues in the body of fish [8]. Moreover, beneficial micro-
organisms such as Lactobacillus and Vibrio in the gut of
aquatic animals play a key role in stabilizing metabolic bal-
ance. Antibiotics can inhibit the production of beneficial
microorganisms, which leads to an imbalance in the intesti-
nal microecology and causes intestinal inflammation, intesti-
nal mucosal shedding, and other diseases [9]. Therefore,
seeking new feed additives to replace antibiotics has become
the focus of fish researchers and nutritionists.

Phytonutrients are considered to be multifunctional and
antibiotic-free feed additives, which are beneficial to health in
the diets [10]. Cinnamon (Cinnamomum zeylanicum) is one
of the phytonutrient species and includes compounds such as
polysaccharides, polyphenols, and flavonoids, which are widely
used in medicinal materials and the food industry [11]. Cinna-
maldehyde (CNE) is the main component of cinnamon, which
is an aromatic aldehyde organic compound with the activity of
antibacterial, antifungal, anticancer, and antifibrotic [12, 13].
CNE can be used as a flavoring agent in drinks and as an addi-
tive in diets [14]. In the field of nutrition research, CNE has
been used as a feed additive in the diets of terrestrial animals
and birds, and a certain dose of CNE can promote their growth
performance and improve disease resistance and antibacterial
ability [15–17]. In recent years, CNE has been used in the diet
of aquatic animals. The study suggests that CNE at 1000mg/
kg was able to boost the percent weight gain, specific growth
rate, and protein efficiency in tongue sole (Cynoglossus semilae-
vis) [18]. Amer et al. [19] have demonstrated that adding 2mL/
kg CNE to the diet of Nile tilapia (Oreochromis niloticus) can
enhance antioxidant activity and immune status. Bandeira
Junior et al. [20] pointed out that supplementation of 1mL/kg
cinnamon essential oil increased length and weight gain for 60
days in silver catfish (Rhamdia quelen) and increased the activ-
ity of superoxide dismutase in the liver by reducing levels of
thiobarbituric acid reactive species.

Fat greenling (Hexagrammos otakii) belongs to Scorpae-
niformes, which is a marine carnivorous fish. H. otakii is
mainly distributed in the Korean Peninsula, Japan, China,
and Russia. H. otakii is an important commercial variety
due to its excellent meat quality, rich protein, and nutrition
[21]. However, due to higher price and increasing demand of
the farming of H. otakii, fish meal (FM) is compelled to

search alternative protein sources. Chicken gut meal
(CGM) is reasonably priced and nutritious, which can par-
tially or fully replace FM in fish [22, 23]. One of our previous
studies showed that replacing FM with 75% CGM in the diet
of juvenile H. otakii caused abnormal lipid metabolism
(unpublished research). Thence, we need to treat lipid
metabolism by improving dietary formula in fish. Since
CNE inhibits the release of adrenaline and adrenocorticotro-
pic hormone (ATCH) to fatty acid and facilitates the fat syn-
thesis of glucose in vertebrates, it can be applied as a
replacement of insulin to prevent diabetes [24]. Based on
nontargeted metabolomics, CNE has been shown to amelio-
rate disturbances of glucose and lipid metabolism in mice by
activating AMP-activated protein kinase (AMPK) [25].
Moreover, according to market research analysis, the price
of CNE (￥ 3.2 yuan/kg) and CGM (￥ 7 yuan/kg) is lower
than that of FM (￥ 13.1 yuan/kg). Therefore, the combined
use of CGM and CNE in juvenile H. otakii diets can save
cost and may improve lipid metabolism, which is of great
importance for the realization of intensive breeding of H.
otakii meaning. To the best of our knowledge, this study is
the first to evaluate the effects of dietary CNE supplementa-
tion on growth performance, digestion, immune parameters,
and relative gene expression of lipid metabolism in juvenile
H. otakii and also provided a theoretical reference for the
development and utilization of new feed additive in the H.
otakii diet.

2. Materials and Methods

2.1. Experimental Diets and Design. The formulation and
proximate composition of the experimental diets are listed
in Table 1. FM and CGM were the major protein source; fish
oil was the main fat source. Six experimental diets were for-
mulated with CNE at 0 (CNE0), 200mg/kg (CNE200),
400mg/kg (CNE400), 600mg/kg (CNE600), 800mg/kg
(CNE800), and 1000mg/kg (CNE1000) diet. All of the dry
ingredients were finely ground into powder through 60
mesh screens, distilled water was added to mix with them,
and the 2mm pellet feed was made by the granulator,
oven-dried at 43°C for approximately 24h, sealed in poly-
thene bags, and stored at -20°C until used.

2.2. Experimental Methods

2.2.1. Experiment Feeding Management. Juvenile H. otakii
was obtained from the key laboratory of applied biology
and aquaculture of fish (Dalian, China). Select healthy,
disease-free 270 juvenile fishes (average initial weight
(6:21 ± 0:19) g was randomly assigned to 18
(30 cm × 75 cm) cages in the circulating pool (predisinfec-
tion)). Each diet was randomly assigned to three replicate
groups of fish. The experimental fish were been acclimated
with the experimental diet for one week before the experi-
ment. Feeding was performed twice a day (9:00 and 16:00)
and under a natural photoperiod during the 8-week feeding
trial. The water temperature was 10 ± 2 ° C, salinity was 26-
30, pH was 7:8 ± 0:4, dissolved oxygen was 6:6 ± 0:7mg/L,
and ammonia nitrogen content < 0:1mg/L.
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2.2.2. Sample Collection and Analysis. After the feeding
experiment, the fish was starved for 24 h prior to sampling.
Then, the 10 juvenile H. otakii in each cage were randomly
selected and calculated the percent weight gain (PWG), spe-
cific growth rate (SGR), feed conversion ratio (FCR), condi-
tion factor (CF), and feeding rate (FR). Juvenile H. otakii
were anesthetized with 100mg/L tricalcium methanesulfo-
nate (MS-222) and subjected to vivisection. Blood was col-
lected from the base of the caudal-fin then centrifuged at a
rate of 7000 rpm/min for 10min at 4°C, and the supernatant
was collected to determine the serum biochemical indexes.
Superoxide dismutase (SOD), catalase (CAT), malondialde-
hyde (MDA), acid phosphatase (ACP), alkaline phosphatase

(AKP), aspartate aminotransferase (AST), and alanine ami-
notransferase (ALT) were determined from the liver. Fish
viscera and whole intestines were collected and measured
for lipase (LPS), amylase (AMS), pepsin (PEP), hepatoso-
matic index (HSI), viscersomatic index (VSI), and intestoso-
matic index (ISI). Feces of fish were collected by siphon
method [26] to determine apparent digestibility coefficient
(ADC). Lastly, the muscle of the fish was preserved -20°C
to measure the proximate nutritional composition of the
muscles.

2.2.3. Growth Performance. The growth performance was
evaluated using the following parameters.

2.2.4. Proximate Composition in Muscles and Diet Analysis.
According to the standard method, the approximate compo-
sition of diets and muscles was analyzed [27]. Moisture was
determined by oven drying at 105°C to constant weight, and
ash passed through a muffle furnace at 550°C for 5 h. Crude
protein (N × 6:25) was digested with acid and analyzed by
the Kjeldahl method. Crude lipid was determined by the
petroleum ether extraction.

2.2.5. Digestibility Trial. To calculate apparent digestibility
coefficients (ADCs) of the experimental diets, a quantity of
0.2% of Cr2O3 was used in each test diet as an inert marker
for estimation of apparent digestibility coefficients. Accord-
ing to the standard method, the approximate composition
of feces was analyzed [27]. The determination Cr2O3 in diets
and feces refers to Zheng et al. [28], calculated as follows:

Percent weight gain PWG,%ð Þ = final weight − initial weightð Þ
initial weight

× 100,

Specific growth rate SGR,%body weight/dayð Þ = ln final weightð Þ – ln initial weightð Þ½ �
feeding trial days

× 100,

Feed conversion ratio FCRð Þ = total feed consumption
wet weight gain

,

Hepatosomatic index HSI,%ð Þ = liver wet weight
body wet weight

× 100,

Viscerosomatic index VSI,%ð Þ = visceral wet weight
body wet weight

× 100,

Intestosomatic index ISI,%ð Þ = intestine wet weight
body wet weight

× 100,

Condition factor CF, g/cm3� �
= body weight
body length3

× 100,

Survival SR,%ð Þ = last amount of fishð Þ
initial amount of fishð Þ × 100,

Feeding rate FR,%/dð Þ = feed intake in dry matter
initial body weight + final body weightð Þ/2½ �/feeding trial days × 100:

ð1Þ

ADC drymatterð Þ %ð Þ = 100 ×
1 − Cr2O3 in the diet
Cr2O3 in the feces

� �
,

ADC nutrientð Þ %ð Þ = 100 × 1 −
nutrient content in the feces
nutrient content in the diet

� �
×

Cr2O3 in the diet
Cr2O3 in the feces

� �� �
:

ð2Þ
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2.2.6. Intestinal, Liver, and Serum Biochemical Parameter
Measurement. The intestinal digestive enzymes included lipase
(LPS) (U/g prot), amylase (AMS, U/mg prot), and pepsin (PEP,
U/mg prot) (acid pepsin, pH: 1.5-5); the liver immune andmet-
abolic enzymes included superoxide dismutase (SOD, U/mg
prot), catalase (CAT, U/mg prot), malondialdehyde (MDA,
nmol/g prot), acid phosphatase (ACP, U/g prot), alkaline phos-
phatase (AKP, U/g prot), aspartate aminotransferase (AST, U/g
prot); and alanine aminotransferase (ALT, U/g prot); the serum
immune and metabolic enzymes included total protein (TP, g/
L), immunoglobulin G (IgG, g/L), albumin (ALB, g/L), triglyc-
erides (TG,mmol/L), total cholesterol (TCHO,mmol/L), aspar-
tate aminotransferase (AST, U/L), and alanine
aminotransferase (ALT, U/L) by using lipase assay kit (colorim-
etry), amylase assay kit (starch iodine colorimetry), pepsin assay
kit (colorimetry), superoxide dismutase assay kit (hydroxy-
amine method), catalase assay kit (ammonium molybdate
method), malondialdehyde assay kit (TAB method), alkaline
phosphatase assay kit (visible light colorimetry), acid phospha-
tase assay kit (colorimetry), total protein assay kit (Coomassie
brilliant blue method), albumin assay kit (colorimetry), immu-
noglobulin G assay kit (immunoturbidimetry), triglycerides
assay kit (colorimetry), total cholesterol assay kit (colorimetry),
aspartate aminotransferase assay kit (colorimetry), and alanine

aminotransferase assay kit (colorimetry). All the kits were pro-
vided by the Jiancheng Bioengineering Institute (Nanjing,
China) (http://www.njjcbio.com/).

2.2.7. Quantitative Real-Time PCR Analysis. RNA was
extracted from the liver of juvenile H. otakii by using the
Trizol method [29]. Ultra-microphotometer (Biochrom
Technologies, UK) was used to assess the quantity and qual-
ity of total RNA. The 260/280 nm absorbance ratios of all
selected samples were ranged from 1.85 to 2.00. Total RNA
was used as a template to synthesize cDNA for preservation
at -20°C, according to the reverse transcription kit provided
by Baisai Biotechnology Co. (Shanghai, China). The primer
sequences used are shown in Table 2. β-Actin gene was used
as a housekeeping gene. The fluorescence quantitative PCR
reaction system was 20μL: 0.6μL upstream primer, 0.6μL
downstream primer, 10μL 2× Talent qPCR PreMix, 1μL
cDNA, and 7.8μL RNase-Free ddH2O. Quantitative real-
time PCR (qRT-PCR) analysis was performed in a quantita-
tive thermal cycler (Roche, Light cycler 96, Basel, Switzer-
land). The cycling conditions of qRT-PCR were used as
follows: 95°C for 3min, 40 cycles for annealing at 60°C for
15 s, and denaturation at 95°C for 5 s. Temperature was
increased from 55°C to 95°C to conduct melting curve

Table 1: Formulation and proximate composition of the experimental diets (% dry matter).

Ingredients
CNE supplementation level (%)

CNE0 CNE200 CNE400 CNE600 CNE800 CNE1000

Fish meala 15.48 15.48 15.48 15.48 15.48 15.48

Chicken gut mealb 24.52 24.52 24.52 24.52 24.52 24.52

Soybean mealc 30 30 30 30 30 30

Caseind 14.8 14.8 14.8 14.8 14.8 14.8

Fish oile 5 5 5 5 5 5

Floursf 3 3 3 3 3 3

Corn starchg 4 3.98 3.96 3.94 3.92 3.9

Cr2O3
h 0.2 0.2 0.2 0.2 0.2 0.2

Vitamin premixi 1 1 1 1 1 1

Mineral premixj 1 1 1 1 1 1

Sodium alginatek 1 1 1 1 1 1

CNEl 0 0.02 0.04 0.06 0.08 0.1

Total 100 100 100 100 100 100

Proximate composition (%)

Moisture 9.92 9.99 10.11 10.12 9.86 10.04

Protein 50.55 50.58 50.61 50.64 50.66 50.60

Lipid 10.41 10.44 10.48 10.55 10.46 10.51

Ash 8.06 8.43 8.21 7.99 8.08 8.11
aFish meal (58% crude protein, 7.2% crude lipid). Shandong Provincial Improved Meiweiyuan Biotechnology Co., Qingdao, China. bChicken gut meal (65.47%
crude protein, 14.80% crude lipid). Liaoning Provincial Improved Yufeng Feed Co., Anshan, China. cSoybean meal (42.5% crude protein, 2.1% crude lipid).
Shandong Provincial Improved Meiweiyuan Biotechnology Co., Qingdao, China. dCasein (86.2% crude protein, 1.5% crude lipid). Shandong Provincial
Improved Meiweiyuan Biotechnology Co., Qingdao, China. eFish oil. Shandong Provincial Improved Meiweiyuan Biotechnology Co., Qingdao, China.
fFlours (6.2% crude protein, 0.9% crude lipid). Shandong Provincial Improved Meiweiyuan Biotechnology Co., Qingdao, China. gCorn starch (0.3% crude
protein, 0.1% crude lipid). Shandong Provincial Improved Meiweiyuan Biotechnology Co., Qingdao, China. hCr2O3. Improved McLin Biotech Co.,
Shanghai, China. iVitamin premix, 1 kg: vitamin A, 7000 IU; vitamin E, 50mg; vitamin D3, 2000 IU; vitamin K3, 10mg; vitamin B1, 20 mg; vitamin B2,
20mg; vitamin B6, 30mg; vitamin B12, 0.1 mg; nicotinic acid, 80mg; vitamin C, 100mg; Ca pantothenate, 50mg; folic acid, 6mg; inositol, 80mg. jMineral
premix, 1 kg: MgSO4·7H2O, 5782mg; FeSO4·7H2O, 1000mg; NaCl, 3000mg; ZnSO4·7H2O, 150mg; MnSO4·4H2O, 50.3mg; CuSO4·5H2O, 15mg;
CoCl2·6H2O, 1.2 mg; KI, 1.5 mg. kSodium alginate. Shandong Provincial Improved Meiweiyuan Biotechnology Co., Qingdao, China. lCinnamaldehyde
(CNE). Improved McLin Biotech Co., Shanghai, China.
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analysis. Agarose gel electrophoresis of the final product was
conducted which confirmed the presence of single ampli-
cons. Standard curves were generated using six different
dilutions (in triplicate). The data of expression analysis was
analyzed by using the 2−ΔΔCT method [30].

2.2.8. Statistical Analysis. The experiment data were analyzed
using one-way ANOVA with the software SPSS 19.0 (SPSS,
Chicago, Illinois). Data were represented as mean ± standard
error of mean ðSEMÞ. Prior to statistical analyses, raw data
were diagnosed for normality of distribution and homogeneity
of variance with the Kolmogorov-Smirnov test and Levene
test, respectively. Mathematical transformations were applied
if at least one of the assumptions was not verified. Each treat-
ment group was compared with the control group. To adjust
for multiple comparisons among the groups, Duncan’s
method was used, and significant difference was set at P <
0:05. A curve equation analysis was conducted to analyze in
response to dietary CNE of juvenile H. otakii (Figure 1).

3. Results

3.1. Growth Performances. CNE had a significant positive
effect on the growth performance parameters of juvenile H.
otakii (Table 3). The best PWG, SGR, FCR, and FR were
observed in the CNE400 and CNE600 groups (P < 0:05).
VSI, ISI, and CF have no significant differences among die-
tary groups (P > 0:05). HSI was significantly decreased in
the CNE400, CNE600, CNE800, and CNE1000 groups com-
pared to the control group (P < 0:05). Moreover, the groups
of supplementation CNE improved SR compared to the con-
trol group (P < 0:05).

A curve analysis was used to estimate the optimal sup-
plementation level of CNE. Based on PWG, curve equations
were y = −5718:75x2 + 675:8464x + 108:68643 ðR2 = 0:78Þ.
The vertices of the lower axis of the curve were at
0.059090%.

3.2. Muscle Compositions. The muscle compositions of juve-
nile H. otakii are shown in Table 4. Moisture, crude lipid and
ash were not significantly difference among treatments
(P > 0:05). Meanwhile, crude protein was significantly
increased in fish groups of CNE400 and CNE600 compared
with the control group (P < 0:05).

3.3. Digestive Enzyme Parameters. The digestive enzyme
parameters of juvenile H. otakii after an 8-week experimen-
tal period are shown in Table 5. Supplementation CNE
groups increased the activities of LPS and PEP (P < 0:05).
However, there was no difference in intestinal AMS activity
among the groups (P > 0:05).

3.4. Apparent Digestibility Coefficient Parameters. The
apparent digestibility coefficient parameters of juvenile H.
otakii after an 8-week experimental period are shown in
Table 6. The digestibility coefficient of protein, lipid, and
dry matter was significantly increased compared with the
control group (P < 0:05).

3.5. Liver Biochemical Parameters. Liver biochemical param-
eters are presented in Table 7. There was no significant dif-
ference in MDA, AST, and ALT among all treatments
(P > 0:05). Moreover, the groups of CNE400, CNE600,
CNE800, and CNE1000 showed significantly increased
SOD and AKP activities compared with the control group
(P < 0:05). Additionally, higher significant CAT and ACP
activities were observed in fish groups received diets supple-
mented with CNE in comparison with the control group
(P < 0:05).

Table 2: Primer sequence.

Gene Primer sequence (5′-3′)
FAS-F CGCTGATTTGGGAAAGGAT

FAS-R GTGAGAGCACGAGGGGTTG

PPAR-α-F ATGACCCTGAGCCATCTAC

PPAR-α-R ACGACAACTTCCTCTTCCC

ACCα-F CCATCTGGTCAGTGTTGCT

ACCα-R TGTTGGTGTGGGCTTATTT

HSL-F CGTTCCTGTCTTTCTGTGA

HSL-R TTGTTTGTTCTTTTTGGGT

CPT1-F ATGCTATGGCTCTTGCTCA

CPT1-R CCCAGACTTTGGTGGTGTT

PPAR-γ-F TCCCTTATTACCCAACAAA

PPAR-γ-R CAACCTCCCTCAGAAACCC

G6PD-F TCTCTCCCCCCCAACAAAG

G6PD-R TACCGCAGCACAGACCACA

β-Actin-F TTACCGTCTTCGGCGTCAG

β-Actin-R AGGGGCATCTTTGCTTGGG

FAS: fatty acid synthase; PPAR-α: peroxisome proliferator-activated
receptor alpha; ACCα: acetyl-CoA carboxylase alpha; HSL: hormone-
sensitive lipase; CPT1: carnitine O-palmitoyltransferase 1; PPAR-γ:
peroxisome proliferator-activated receptor gamma; G6PD: glucose-6-
phosphate1-dehydrogenase.

y = –5718.75x2 + 675.8464x + 108.68643
R2 = 0.78
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Figure 1: Curve chart about the relationship between the
cinnamaldehyde supplementation level (%, X) and percent weight
gain (%, Y) in juvenile H. otakii for 8 weeks.
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3.6. Serum Biochemical Parameters. The serum biochemical
parameters of juvenile H. otakii are presented in Table 8.
No significant differences were detected in serum AST and
ALT among different experimental groups (P > 0:05). How-
ever, IgG was significantly increased in CNE200 and
CNE400 groups compared to the control group (P < 0:05).
CNE supplemented fish showed higher significant levels of
TP unlike the control group (P < 0:05). ALB level was signif-

icantly increased in CNE200, CNE400, and CNE600 groups
(P < 0:05). Additionally, the levels of TG and TCHO were
significantly reduced with CNE supplementation (P < 0:05).

3.7. Expression of Genes Involved in Lipid Metabolism. The
relative gene expression involved in lipid metabolism was
presented in Figures 2 and 3. Fish-fed diets in groups of
CNE400, CNE600, CNE800, and CNE1000 had lower

Table 3: Growth performance and feed utilization of juvenile H. otakii fed the experimental diets for 8 weeks.

Parameters
CNE supplementation level (%)

CNE0 CNE200 CNE400 CNE600 CNE800 CNE1000

IBW (g)1 6:10 ± 0:14a 6:26 ± 0:10a 6:25 ± 0:12a 6:14 ± 0:11a 6:29 ± 0:13a 6:28 ± 0:15a

PWG (%)2 107:84 ± 3:02a 119:56 ± 2:17b 129:37 ± 2:39cd 130:85 ± 1:87d 119:01 ± 2:05b 122:43 ± 2:93bc

SGR (%/d)3 1:31 ± 0:03a 1:40 ± 0:02b 1:48 ± 0:02cd 1:49 ± 0:01d 1:40 ± 0:03b 1:43 ± 0:04bc

FCR4 1:49 ± 0:03d 1:35 ± 0:03c 1:16 ± 0:02ab 1:08 ± 0:02a 1:23 ± 0:03b 1:24 ± 0:02b

VSI (%)5 12:75 ± 0:36 12:68 ± 0:44 12:52 ± 0:33 12:59 ± 0:49 12:39 ± 0:26 12:37 ± 0:25
HSI (%)6 3:32 ± 0:07c 3:17 ± 0:04bc 2:93 ± 0:08a 2:99 ± 0:05ab 3:11 ± 0:04ab 3:07 ± 0:06ab

ISI (%)7 3:77 ± 0:11 3:91 ± 0:10 3:89 ± 0:11 3:92 ± 0:13 3:82 ± 0:16 3:87 ± 0:21
SR (%)8 82:22 ± 2:22a 93:33 ± 3:85b 95:55 ± 2:22b 95:50 ± 2:22b 93:33 ± 3:85b 91:11 ± 3:85b

CF (g/cm3)9 1:96 ± 0:06 1:87 ± 0:05 1:92 ± 0:03 2:01 ± 0:05 2:04 ± 0:04 1:99 ± 0:03
FR (%/ d)10 1:26 ± 0:01a 1:44 ± 0:02b 1:52 ± 0:04bc 1:59 ± 0:04c 1:42 ± 0:03b 1:41 ± 0:03b
1IBW: initial body weight; 2PWG: percent weight gain; 3SGR: specific growth rate; 4FCR: feed conversion ratio; 5VSI: viscerosomatic index; 6HSI:
hepatosomatic index; 7ISI: intestosomatic index; 8SR: survival; 9CF: condition factor; 10FR: feeding rate. Values are mean ± SE of three replicates; means
with different subscripts are significantly different (P < 0:05).

Table 4: Muscle composition (g/kg in dry matter) of juvenile H. otakii fed the experimental diets for 8 weeks.

Parameters
CNE supplementation level (%)

CNE0 CNE200 CNE400 CNE600 CNE800 CNE1000

Crude protein (%) 14:15 ± 0:36a 14:61 ± 0:33ab 15:24 ± 0:24b 15:21 ± 0:26b 14:97 ± 0:29ab 14:76 ± 0:19ab

Crude lipid (%) 3:41 ± 0:15 3:51 ± 0:21 3:60 ± 0:19 3:42 ± 0:23 3:57 ± 0:11 3:65 ± 0:20

Ash (%) 2:82 ± 0:18 3:04 ± 0:28 3:04 ± 0:19 2:71 ± 0:31 2:73 ± 0:27 3:01 ± 0:25

Moisture (%) 77:94 ± 0:26 77:97 ± 0:37 77:26 ± 0:30 77:68 ± 0:34 77:21 ± 0:42 77:26 ± 0:27

Values are mean ± SE of three replicates; means with different subscripts are significantly different (P < 0:05).

Table 5: Digest parameters of juvenile H. otakii fed the experimental diets for 8 weeks.

Parameters
CNE supplementation level (%)

CNE0 CNE200 CNE400 CNE600 CNE800 CNE1000

LPS (U/g prot)1 2:09 ± 0:19a 2:81 ± 0:11b 3:95 ± 0:15c 4:32 ± 0:24c 4:01 ± 0:36c 3:84 ± 0:15c

AMS (U/mg prot)2 0:26 ± 0:02 0:24 ± 0:02 0:23 ± 0:02 0:25 ± 0:04 0:26 ± 0:03 0:24 ± 0:02
PEP (U/mg prot)3 2:83 ± 0:09a 3:54 ± 0:08b 4:57 ± 0:30c 5:35 ± 0:18d 4:64 ± 0:20c 4:86 ± 0:14cd
1LPS: lipase; 2AMS: amylase; 3PEP: pepsin. Values are mean ± SE of three replicates; means with different subscripts are significantly different (P < 0:05).

Table 6: Apparent digestibility coefficient (ADC) of juvenile H. otakii fed the experimental diets for 8 weeks.

Parameters
CNE supplementation level (%)

CNE0 CNE200 CNE400 CNE600 CNE800 CNE1000

ADC of protein (%) 76:02 ± 0:89a 80:48 ± 0:36b 82:76 ± 1:42bc 85:72 ± 1:60c 83:71 ± 1:75bc 82:80 ± 1:77bc

ADC of lipid (%) 77:16 ± 1:08a 85:40 ± 0:52b 85:81 ± 0:93b 86:11 ± 0:71b 87:78 ± 1:75b 88:36 ± 1:72b

ADC of dry matter (%) 68:51 ± 1:25a 76:15 ± 1:64b 83:35 ± 2:76c 83:37 ± 0:92bc 79:02 ± 1:45b 82:80 ± 1:77bc

Values are mean ± SE of three replicates; means with different subscripts are significantly different (P < 0:05).
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expression of FAS, ACCα, and PPAR-γ than those fed the
control diet group (P < 0:05). The relative gene expression
of G6PD was significantly decreased with CNE supple-

mented (P < 0:05). Moreover, the groups of supplementa-
tions CNE increased gene expression of CPT1, PPAR-α,
and HSL as compared to the control group (P < 0:05).

4. Discussion

In high-density farming, several phytonutrients have been
shown to increase profits by enhancing fish growth and
immunity [31]. Growth performance can directly reflect
the response of fish to diet. As a cold-water fish, H. otakii’s
growth rate and metabolism are much slower than those of
warm- and hot-water fish. Therefore, CNE is usually added
to fish feed as a growth promoter. There are two reasons
for the addition of CNE to the diet to improve fish growth
performance. On the one hand, feed intake is one of the fac-
tors affecting the growth performance of fish. Appetite
enhancement has been documented to be a potential mech-
anism for the increase in feed intake [32–34]. Plant essential
oils are aromatic and volatile compounds that act predators
in fish diets. As a kind of plant essential oil, CNE can be used
as a food attractant for fish to enhance feed intake [35]. This
study indicated that the feeding rate was boosted with CNE
supplement in the diets, which is a reason that improved
growth performance of juvenile H. otakii. Abd El-Hamid
et al. [36] indicated that dietary supplementation of CNE
improved feed intake and specific growth rate of Nile tilapia.
Supplementation of 0.75% cinnamon leaves in the diet

Table 7: Liver biochemical biochemistry of juvenile H. otakii fed the experimental diets for 8 weeks.

Parameters
CNE supplementation level (%)

CNE0 CNE200 CNE400 CNE600 CNE800 CNE1000

SOD (U/mg prot)1 218:85 ± 9:57a 248:00 ± 6:28ab 306:60 ± 10:78bc 291:76 ± 13:31b 272:69 ± 17:69b 292:75 ± 22:78b

CAT (U/mg prot)2 16:44 ± 0:50a 19:33 ± 0:56b 22:49 ± 1:19c 20:23 ± 0:73bc 20:98 ± 1:32bc 21:31 ± 0:88bc

MDA (nmol/g prot)3 2:04 ± 0:20 2:05 ± 0:19 1:76 ± 0:29 1:93 ± 0:16 1:97 ± 0:20 2:16 ± 0:14
AKP (U/g prot)4 9:41 ± 0:59a 11:29 ± 0:87ab 13:89 ± 0:58bc 14:27 ± 0:79c 12:81 ± 0:87bc 13:25 ± 1:21bc

ACP (U/g prot)5 167:58 ± 7:30a 200:28 ± 5:37bc 228:23 ± 3:16d 201:12 ± 5:45bc 197:13 ± 11:65b 218:87 ± 6:97cd

AST (U/g prot)6 18:81 ± 0:31 19:07 ± 0:19 18:85 ± 0:37 18:50 ± 0:22 18:87 ± 0:26 18:75 ± 0:29

ALT (U/g prot)7 6:17 ± 0:10 5:98 ± 0:07 6:15 ± 0:16 6:19 ± 0:11 6:13 ± 0:12 6:28 ± 0:17
1SOD: super oxide dismutase; 2CAT: catalase; 3MDA: malondialdehyde; 4AKP: alkaline phosphatase; 5ACP: acid phosphatase; 6AST: aspartate
aminotransferase; 7ALT: alanine aminotransferase. Values are mean ± SE of three replicates; means with different subscripts are significantly different
(P < 0:05).

Table 8: Serum biochemistry of juvenile H. otakii fed the experimental diets for 8 weeks.

Parameters
CNE supplementation level (%)

CNE0 CNE200 CNE400 CNE600 CNE800 CNE1000

TP (g/L)1 41:26 ± 0:78a 45:07 ± 1:33b 45:29 ± 1:10b 44:82 ± 0:89b 45:93 ± 1:06b 45:27 ± 1:27b

ALB (g/L)2 11:74 ± 0:18a 12:95 ± 0:15b 13:09 ± 0:21b 13:01 ± 0:24b 11:92 ± 0:20a 11:30 ± 0:22a

IgG (g/L)3 24:34 ± 0:73a 26:77 ± 0:39bc 28:29 ± 0:43c 25:94 ± 0:84ab 24:83 ± 0:62ab 24:65 ± 1:05ab

TCHO (mmol/L)4 8:51 ± 0:09d 8:01 ± 0:08bc 7:69 ± 0:10ab 7:64 ± 0:14a 7:87 ± 0:09abc 8:18 ± 0:08c

TG (mmol/L)5 2:75 ± 0:05d 2:35 ± 0:11c 1:93 ± 0:07a 2:27 ± 0:11c 2:23 ± 0:07bc 2:00 ± 0:05ab

AST (U/L)6 84:29 ± 1:01 83:15 ± 0:89 84:72 ± 1:11 83:83 ± 1:58 84:87 ± 1:46 84:31 ± 0:83

ALT (U/L)7 34:25 ± 0:55 34:09 ± 0:77 34:38 ± 0:67 34:28 ± 0:98 34:13 ± 0:78 35:99 ± 0:69
1TP: total protein; 2ALB: albumin; 3IgG: immunoglobulin G; 4TCHO: total cholesterol; 5TG: triglycerides; 6AST: aspartate aminotransferase; 7ALT: alanine
aminotransferase. Values are the mean ± SE of three replicates; means with different subscripts are significantly different (P < 0:05).
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juvenile H. otakii-fed diets supplemented with CNE levels. Mean
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enhanced the growth performance and substrate utilization
of carp and yellow catfish (Pelteobagrus fulvidraco) [37,
38]. Similar results were also found in pigs, cattle, and grow-
ing lambs [39–41]. On the other hand, there is a close rela-
tionship between fish digestion and absorption of diet and
growth performance [42]. In the present study, the digestive
enzymes and apparent digestibility coefficient of fish were
improved with CNE supplement. CNE can promote the
digestion and absorption of nutrients and improve growth
performance by inhibiting intestinal bacteria such as Escher-
ichia coli (Gram-negative), Salmonella (Gram-negative), and
Shigella (Gram-negative) [43, 44]. Previous studies have
shown that CNE can boost growth performance by regulat-
ing the activity of broiler chicken gut microbiota [45]. Zhou
et al. [46] suggested that dietary supplementation with CNE
increased the activities of trypsin, amylase, lipase, sodium-
potassium-ATPase, and intestinal creatine kinase, which in
turn enhanced grass carp’s growth performance. In the pres-
ent study, the percent weight gain and specific growth rate of
fish were enhanced following dietary CNE supplementation.
These results stem from the fact that the addition of CNE to
the diet improved the feed intake and digestibility of fish,
which boosted growth performance of fish. Based on curve
analysis, the optimal supplementation CNE level is recom-
mended to be 590.90mg/kg for juvenile H. otakii.

Among fish body indices, CF, HSI, VSI, and ISI reflect
the nutritional and physiological status of fish. The results
of the present study showed that CF, VSI, and ISI did not
change with supplementation of CNE in the diet during
the treatment. However, HSI was significantly decreased in
the CNE400, CNE600, CNE800, and CNE1000 groups,
which was consistent with previous studies performed on
striped catfish (Pangasianodon hypophthalmus) [47]. A
reduction in the percentage of HSI indicated that dietary
CNE supplementation reduces lipid and glycogen content

in the liver. CNE maintains insulin hormones by lowering
blood sugar and lipid levels, and maintaining healthy liver
activity [48].

Muscle nutrient composition may reflect fish response to
dietary macronutrients. Fish tissue is composed of many
primitive myoblasts, which fuse into multinucleated myo-
tubes and develop into mature muscle tissue [49]. In the
present study, moisture, crude lipid, and ash in muscle were
not affected by supplementation CNE of diet. However,
crude protein was higher in fish groups of CNE400 and
CNE600. The amount of muscle protein is closely related
to growth. Flavonoids are abundant in cinnamon, which
are reported to show a positive effect on muscle quality
and muscles cell differentiation as feed additives [50]. Xu
et al. [51] have demonstrated that addition of 0.06% lotus
leaf flavonoids could regulate muscle growth by improving
the mRNA expression of fibroblast growth factor 6 b
(FGF6b) in grass carp. Villasante et al. [52] showed that
anthocyanin mixture (120μM of peonidin chloride, 50μM
of cyanidin chloride, and 40μM of pelargonidin chloride)
could boost cell survival in fish muscle cells by inducing gene
expression pattern in accordance with a delay toward termi-
nal differentiation. Therefore, the increase in muscle crude
protein in this study was attributed to the improvement of
fish muscle cell differentiation by flavonoids in cinnamon.

The antioxidant defenses and nonspecific immune sys-
tems in fish are highly linked to their health and immune
mechanisms. SOD, CAT, and MAD prevent damage by
reactive oxygen species and maintain a balance between free
radical production and scavenging [53]. The present study
described that the activities of SOD and CAT were increased
with CNE supplementation. Some common phytonutrients
such as soybean isoflavones and curcumin have major anti-
oxidant action [33, 54]. Studies have shown that phytonutri-
ents can scavenge free radicals through single-electron
transfer antioxidant capacity [55]. Moreover, several studies
indicated that dietary CNE boosted meat quality by increas-
ing antioxidant capacity in animals, thereby protecting the
product from spoilage [56, 57]. The nonspecific immune
system is vital for fish, acting as the primary line of protec-
tion and driving force of adaptive immunity [58]. The study
indicated that CNE as dietary additives trigger toll-like
receptors to induce proinflammatory and chemokines,
which drive the activation of innate immunity [59]. Faikoh
et al. [60] found that CNE enhanced nonspecific immunity
and survival in zebrafish (Danio rerio) under challenge with
Vibrio vulnificus or Streptococcus agalactiae. Shan et al. [61]
also pointed out that yesso scallop (Patinopecten yessoensis)
treated with CNE enhanced the activities of ACP and AKP
to prevent Vibrio infection. Our work found a significant
stimulation in nonspecific immunity, as indicated by the
increase in activities of ACP and AKP in fish due to dietary
supplementation of CNE.

Serum biochemical markers are considered important to
measure overall health of fish and are affected by animal
developmental stages and nutritional levels. In this study,
the levels of TP, ALB, and IgG were increased in fish fed
CNE [62]. TP, ALB, and IgG are indicators for assessing var-
ious immunity in the diet, and the increase in their levels is
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attributed to the improvement of nonspecific immunity.
However, TG and TCHO of fish were decreased following
dietary supplementation with 200mg/kg CNE. TG and
TCHO are crucial components of animal fat, which are
involved in the transport of various lipoprotein particles in
plasma. TG and TCHO accumulation in serum could be
explained by lipid transport impediment [63]. This study
shows that dietary CNE supplementation can improve the
fat metabolism status of fish. AST and ALT are one of the
most crucial indicators to evaluate the health of liver metab-
olism. Abnormal protein metabolism can be explained by
AST and ALT in the liver entering the blood [64]. In the
present study, we notice that dietary CNE did not have a
favorable effect on the hepatic protein metabolism status of
the juvenile H. otakii. On the other hand, studies showed
that CNE could restore the activities of AST and ALT in
damaged liver tissue and downregulate the expression of
interleukin-6 (IL-6), interleukin-1β (IL-1β),
cyclooxygenase-2 (Cox-2), and tumor necrosis factor recep-
tor type-2 (TNFR-2) inflammation-related protein and
genes [65]. In addition to difference in species, environmen-
tal factors, as well as different metabolic cycles, could be the
main reasons for differences in protein metabolism.

Lipids are composed of fatty acids and proteins, which are
the main organic constituents of teleost fish. Fatty acids play
an important role as a source of metabolic energy in fish growth
[66]. However, the abnormal lipid metabolism in fish is a risk
factor for diabetes, hyperlipidemia, and metabolic diseases [67,
68]. In recent years, several studies have demonstrated the pos-
itive role of CNE in the treatment of lipidmetabolism disorders.
Kaur et al. [69] have investigated the ability of cinnamon to
reduce obesity-related metabolic disturbances in a zebrafish by
means of blood glucose levels, serum triglyceride analysis, and
Oil Red O staining. Setiawati et al. [70] pointed out that cinna-
mon leaf extract and powder more effectively increased high
density lipoprotein levels of Asian catfish (Clarias batrachus)
and reduced fat in the liver. However, research on lipid metab-
olism gene expression and CNE is still in its infancy.

Lipid homoeostasis is maintained in fish through a balance
of catabolic and anabolic processes [71]. Fatty acids are catabo-
lized in mitochondria or peroxisomes via the β-oxidation path-
way [72]. Peroxisome proliferator-activated receptor (PPAR)
binds to peroxisome proliferator response elements in the pro-
moter reigns of target genes, which are involved in β-oxidation,
such as PPAR-α, CPT1, and HSL. These genes are involved in
the intracellular transport of fatty acids destined of catabolism
[73]. As a subtype of PPAR, PPAR-α induces the intensity of
β-oxidation by regulating CPT1. Fang et al. [74] pointed out
that the expression of PPAR-α and CPT1 was significantly
increased by fat deposition in pompano (Trachinotus ovatus).
As a downstream gene of PPAR-α,HSL can hydrolyze triglycer-
ides, diglycerides, and monoglycerides [75]. Fish steatohepatitis
is accompanied by a significant downregulation of HSL expres-
sion. A small amount ofHSL is not sufficient to adequately cat-
alyze the release of fatty acids from TG [76].

Conversely, fatty acids can be synthesized de novo by
pathways that are activated by sterol regulatory element-
binding protein (Srebp). Srebp have many target genes with
examples of those in lipid metabolism including FAS, PPAR-

γ, ACCα, and G6PD [77]. FAS is a multifunctional enzyme
that uses acetyl-CoA as a primer, malonyl-CoA as a two-
carbon donor, and nicotinamide adenine dinucleotide phos-
phate (NADPH) produced by G6PD as a reducing agent to
catalyze long-chain fatty acid synthesis [78]. ACCα can be
used for the ATP-dependent carboxylation of acetyl-CoA
to generate malonyl-CoA, which is involved in the regula-
tion of vertebrate fatty acid synthesis [79]. Both FAS, ACCα,
and G6PD are highly expressed in the liver. Hoi et al. [80]
have demonstrated that CNE inhibition of lipid accumula-
tion was accompanied by downregulation of FAS and ACCα
on gene levels, suggesting that FAS and ACCα have a modu-
lating effect on adipogenesis signaling. PPAR-γ is a key tran-
scription factor of fat synthesis genes, which promotes lipid
storage and regulates insulin. PPAR-γ induces fibroblasts or
preadipocytes to differentiate into adipocytes [81]. This
study showed that CNE supplementation in the diet of juve-
nile H. otakii can improve lipid metabolism by upregulating
genes for fat catabolism via β-oxidation (HSL, CPT1, and
PPAR-α) and downregulating genes for fatty acid synthesis
(FAS, ACCα, G6PD, and PPAR-γ).

5. Conclusion

In conclusion, our results proved that supplementation of
CNE in the diet of juvenile H. otakii can enhance their
growth, digestion, immune, and lipid metabolism status.
Based on curve equation analysis, using CNE at the level of
590.90mg/kg was recommended as a feed additive in the
diet of the juvenile H. otakii.
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