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In this study, we screened the expression stability of six reference genes (18S rRNA, β-actin, GAPDH, EF1a, B2M, and HPRT1) in
hybrid yellow catfish (n= 6), considering the SBM levels, sampling time points, and different tissues. Four different statistical
programs, BestKeeper, NormFinder, Genorm, and Delta Ct, combined with a method that comprehensively considered all results,
were used to evaluate the expression stability of these reference genes systematically. The results showed that SBM levels signifi-
cantly impacted the expression stability of most of the reference genes studied and that this impact was time-, dose-, and tissue-
dependent. The expression stability of these six reference genes varied depending on tissue, sampling time point, and SBM dosage.
Additionally, more variations were found among different tissues than among different SBM levels or sampling time points. Due to
its high expression, 18S rRNA was excluded from the list of candidate reference genes. β-actin and GAPDH in the liver and β-actin,
HPRT1 and EF1a in the intestine were the most stable reference genes when SBM levels were considered. HPRT1, and EF1a in
tissues sampled at 2W and EF1a and β-actin in tissues sampled at 4 and 6W were proposed as two stable reference genes when
different tissues were considered. When the sampling time points were considered, β-actin, EF1a, and HPRT1 were the top three
stable reference genes in the intestine. In contrast, β-actin and B2M are the most stable reference genes in the liver. In summary,
β-actin, EF1a, and HPRT1 were the more stable reference genes in this study. The stability of reference genes depends on the
tissues, sampling time points, and SBM diet levels in hybrid yellow catfish. Therefore, attention should be paid to these factors
before selecting suitable reference genes for normalizing the target genes.

1. Introduction

Gene expression level is often considered an essential indica-
tor of an organism’s biological functions in all branches of
biological studies. Hence, the precise monitoring of gene
expression is vital for analyzing target gene expression pat-
terns. Quantitative real-time PCR (RT-qPCR), known for its
convenience, sensitivity, and specificity, is the most widely
used tool for analyzing the expression of target genes in vari-
ous studies, including molecular nutriology. In RT-qPCR, the

expression of the target gene should be standardized and
normalized against a reference gene to reduce experimental
error and ensure the accuracy of the experiment [1, 2]. There-
fore, appropriate reference genes with stable expression across
all experimental samples were required. Unfortunately, there
is growing evidence that, with an invariable expression theory,
assumed reference genes traditionally involved in structural
functions or primary cell metabolism frequently vary with
experimental conditions, such as developmental stage, physi-
cal conditions, and nutritional status [3, 4]. Consequently,
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errors could result if inappropriate reference genes were used
as normalizers [5]. The stability of reference gene expression
must be assessed before its use in RT-qPCR analysis.

With the urgent need for more sustainable aquaculture
production and the sharp rise in fish meal (FM) prices
caused by dwindling marine fish stocks, fish feed containing
alternative protein sources to FM is in high demand [6–8].
Consequently, plant protein, the most cost-effective and
widely used substitute represented by soybean meal (SBM),
has been widely used in fish feed [9–11]. Meanwhile, adverse
effects, most associated with enteritis (i.e., SBM-induced
enteritis, SBMIE), progress to a pathological situation char-
acterized by shortened mucosal folds and swollen lamina
propria and subepithelial mucosa, or intense infiltration of
various inflammatory cells, are often occurring in a species-,
time-, or dose-dependent manner [9, 12, 13]. Ruined gastro-
intestinal barriers result in destructive consequences for fish
homeostasis [13]. Thus, negative effects on growth perfor-
mance [14], nutrient-sensing and metabolic responses [15],
development, and reproduction [16] were all involved.

Exploring the potential molecular mechanisms underly-
ing this lesion is critical for developing effective strategies to
treat enteritis while improving fish immunity and plant pro-
tein utilization. However, it is essential to note that the degree
of hazard caused by plant proteins depends on both the dosage
and duration of exposure [10], and significant differences in
plant protein sensitivity are commonly observed among the
different feeding habits of fish species [17, 18]. It is generally
believed that the progressive characteristic consists of the course
of the exposure, including histopathological changes and expres-
sion patterns of genes involved in immunoreaction or nutrient
intake, due to the dynamic regulation of nutritional and immu-
noregulatory physiology. For example, enteritis caused by SBM
in grass carp (Ctenopharyngodon idellus), the herbivorous spe-
cies, is milder and has more active and faster immunomodula-
tion, a shorter inflammatory process, and faster recovery than
omnivorous or carnivorous species, and the expression patterns
of immune-associated genes vary during incubation, prodromal,
symptomatic, or convalescent periods [10].

To our knowledge, only a few investigations have focused
on assessing the expression stability of reference genes in fish
fed a plant-based diet, including SBM. However, numerous
studies have shown that the expression stability of reference
genes varies between treatments [19–22]. Furthermore, mis-
interpretation of the data caused by incorrect normalization
of the reference genes frequently occurs. Hence, systematic
evaluation and screening of the stability of reference genes in
fish-fed plant-based diets are necessary to investigate the
biological mechanisms of plant-based diet intolerance.

Hybrid yellow catfish, one of the most important breed-
ing species in China [23], can be used as an ideal model test
organism for SBMIE because of its unusual dose- and time-
dependent enteritis caused by SBM [17, 24]. Therefore, this
study investigated the expression stability of the six candi-
date reference genes in hybrid yellow catfish-fed diets with
varying SBM levels. The tissue-, time-, and dose-dependent
characteristics and expression stability of these reference
gene expressions were assessed and evaluated in four tissues

using RT-qPCR. Expression stability was verified by normal-
izing the expression ofMLKL (mixed lineage kinase domain-
likeMLKL). Our findings provide a foundation for accurately
normalizing target gene expression to further investigate the
biological mechanisms of SBM-induced nutritional and met-
abolic diseases.

2. Materials and Methods

2.1. Fish Management and Experimental Procedures. Five
isonitrogenous and isolipid experimental diets were formu-
lated. A diet containing 40% FM was used as the control
group and was designated as 0%. The other four diets, in
which 25%, 50%, 75%, and 100% FM were replaced with
SBM, were named 25%, 50%, 75%, and 100%, respectively.
Hybrid yellow catfish were obtained from a commercial farm
in Zhengzhou, Henan Province, China, and transported to
the outdoor aquaculture system of the Henan Fisheries
Research Institute. The experimental diets are listed in Sup-
plemental Table S1.

After 1 week of acclimation, 750 fish (initial body weight:
9.7Æ 0.5 g) were selected and randomly distributed into 15
net cages (size: 1× 1× 1.3m, 1,300 L) installed in the cement
pond after 24 hr starvation, with three net cages per treat-
ment. During the experiment, the water temperature ranged
from 25 to 28°C; dissolved oxygen was kept above 6.5mg/L,
pH was between 7.5 and 8.5; total ammonia nitrogen was
below 0.2mg/L; and the photoperiod was maintained under
natural light. The fish were fed to apparent satiation twice
daily (07 : 00 and 18 : 30), and the experiment lasted for
42 days.

After the start of the experiment, samples were collected
at weeks 2, 4, and 6. After 24 hr of starvation, two fish were
randomly collected and anesthetized with MS-222 (50mg/L)
in each cage (six biological samples per teatment, n= 6).
Tissue samples (liver, foregut, midgut, and hindgut) were
collected and quickly frozen in liquid nitrogen before being
stored at −80°C until analysis.

2.2. RNA Isolation and cDNA Synthesis. Total RNA was iso-
lated using the TRIzol Reagent (TransGen Biotech, Beijing,
China). The purity and integrity of total RNA were detected
using a spectrophotometer (Thermo, USA) and 1% agarose
gel electrophoresis. PrimeScript™ RT reagent Kit with
gDNA Eraser (Perfect Real Time) (TaKaRa, RR047A, Japan)
was used to synthesize cDNA, which was then stored at
−20°C for RT-qPCR.

2.3. Selection of Potential Reference Genes and Primer Design.
Nucleotide sequences of 18S rRNA, β-actin, GAPDH, EF1a,
B2M, and HPRT1 were obtained from NCBI GenBank to
design gene-specific primers using Primer-BLAST provided
by NCBI (Table 1). Primers were synthesized by Sangon
Biotech Co., Ltd. (Shanghai, China). Primer specificity was
confirmed by a single-band and expected product with a
unique melting peak at the melting curve stage of
RT-qPCR. Amplification efficiency was measured using
standard curves generated from assays made with five-fold
serial dilutions (50, 5−1, 5−2, 5−3, and 5−4) of cDNA from
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pooled target templates. Mean threshold cycle (Ct) values
were plotted against the logarithm of the cDNA dilution
factor. Primer efficiency was calculated using the regression
slope by the following equation: E= 10(−1/slope)−1.

2.4. RT-qPCR. RT-qPCR was performed using TB Green®

Premix Ex Taq™ II (TaKaRa, Japan) on a CFX96™ Real-
Time System (Bio-Rad, USA). Each reaction mixture was
10 µL volume and consisted of 5 µL TB Green® Premix Ex
Taq™ II, 0.3 µL of each primer, 2 µL cDNA (200 ng/µL), and
2.4 µL ddH2O. The amplification protocol was 95°C for 10 s,
60°C for 30 s, and 72°C for 30 s. The melting curve was
determined by systematically monitoring fluorescence from
65 to 95°C with temperature increments of 0.5°C increase
per 5 s. All samples were evaluated using six biological repli-
cates for each group and three technical replicates for each of
the samples; a non-template was used as a control.

2.5. Expression Stability of the Reference Genes. Four different
statistical programs, BestKeeper, NormFinder, Genorm, and
Delta Ct, were used to ascertain the expression stability of the
candidate reference genes. The BestKeeper program calcu-
lates the Ct standard deviation (SD), and more stable gene
expression is represented by lower SD values [25]. NormFin-
der is an ANOVA-based model that calculates the expression
stability value by obtaining inter- and intra-group gene
expression variations. The lowest value indicated the most
significant stability [26]. According to Genorm, each refer-
ence gene’s expression stability value (M value) was deter-
mined based on the average pairwise variation among all
tested reference genes, which can be used as an alternative
reference gene when the M value is less than 1.5. A lower M
value indicates higher expression stability [27]. In addition,
GeNorm compared the pairwise variation (V) of the evalu-
ated reference genes with those of the others. The V value of
Vn/Vn+ 1 between the two sequential normalization factors
was obtained [20]. When the V value of Vn/Vn+ 1 was <0.15,
the number of optimal reference genes was “n”. When the V
value of Vn/Vn+ 1 was >0.15, the optimal number of refer-
ence genes was “n+ 1” [28]. The Delta Ct method first com-
putes the ΔCt value between each reference gene and other
reference genes in each sample, then computes the standard
deviation (SD) of all sample ΔCt values, and finally computes
the average SD of each reference gene compared to other
reference genes. The lowest average SD value indicates the
highest stability [29].

Finally, considering that the basic mathematical princi-
ples of each program are different, the final ranking was
conducted using a method that comprehensively considered
all results, as described in the study by Chen et al. [30]. In
short, we computed the geometric average value of the rank-
ing of each reference gene using the four analysis programs.
The lowest geometric average value indicated the highest
stability.

2.6. Validation of Reference Genes. Based on the analysis
results at different SBM levels (Table 2). MLKL (mixed line-
age kinase domain-like) gene expression in tissues of hybrid
yellow catfish fed with 6W SBM-based diets was normalized

against the two most stable and least stable reference genes
(β-actin, GAPDH, and 18S rRNA for the liver; EF1a, β-actin,
and 18S rRNA for foregut; β-actin, B2M, and EF1a for mid-
gut; β-actin, 18S rRNA, and GAPDH for hindgut) for vali-
dating the candidate reference genes. The 2−ΔΔCt method was
used to determine MLKL expression levels.

2.7. Data Analysis. Using the logarithm of sample concentra-
tion as the independent variable and the Ct value as the depen-
dent variable, calibration curves and the correlation coefficients
(R2) were calculated using Excel 2021. The Shapiro–Wilk test
was employed to determine data normality, and Levene’s test
was used to determine homoscedasticity (P<0:05). The data
are expressed as meanÆ Standard Deviation (SD) and ana-
lyzed using SPSS 26.0, one-way ANOVA, followed by
Duncan’s multiple comparison test. Statistical significance
was set at P<0:05. GraphPad Prism 5 (GraphPad Program,
USA) was used to plot the graphs.

3. Results

3.1. Primer Specificity and PCR Efficiency of Candidate
Reference Genes. The amplification efficiency values of the
six genes ranged from 95.21% to 114.23%, and R2 varied
from 0.9827 to 0.9973 (Table 1). Melting curve analysis gen-
erated only one peak for each amplification (Figure S1).
These results demonstrated that these candidate primers
were suitable for RT-qPCR analysis.

3.2. Expression Levels of Candidate Reference Genes. The
expression level of each reference gene for all samples, as
the mean Ct value, is shown in Figure 1. The six reference
genes had Ct values ranging from 4.76 (18S rRNA) to 28.15
(HPRT1) in the liver, 1.41 (18S rRNA) to 26.98 (HPRT1) in
the foregut, 2.62 (18S rRNA) to 27.73 (HPRT1) in the mid-
gut, and 3.58 (18S rRNA) to 27.43 (HPRT1) in the hindgut.
Among the four tissues, 18S rRNA showed the highest
expression, whereas HPRT1 showed the lowest. According
to the interquartile range of each gene Ct value, the three
least variable reference genes were β-actin, B2M, and 18S
rRNA in the liver; β-actin, EF1a, and GAPDH in the foregut;
18S rRNA, B2M, and HPRT1 in the midgut; and β-actin,
GAPDH, and HPRT1 in the hindgut. In the foregut, midgut,
and hindgut, the ranking of the expression levels of these six
genes from highest to lowest was as follows: 18S rRNA>
β-actin>EF1a>B2M>GAPDH>HPRT1. In the liver, 18S
rRNA>GAPDH> EF1a> β-actin>B2M>HPRT1.

When gene expression data were visualized as a function
of sampling time points or SBM levels, all reference genes
had more unstable liver Ct values than those of the foregut,
midgut, and hindgut. Using the Ct values of the livers sam-
pled from the 0% group as an example, the Ct values of the
reference genes were all variable across different sampling
time points, except for β-actin and B2M, as shown in
Figure 2. The Ct values of 18S rRNA revealed more variables
among different sampling time points in both of the four
tissues. Similar findings were observed in other groups
(Table S2). The variance analysis of the Ct values of the
same tissue sampled at the same time point among different
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SBM levels showed that the Ct values of these reference genes
were also affected by SBM levels, as shown in Figure 2.

3.3. Expression Stability of Candidate Reference Genes at
Various SBM Levels. To confirm the effect of SBM levels
on the expression stability of candidate reference genes, we
inputted all the Ct values of samples from the same tissue
sampled simultaneously into the programs mentioned above.
Then received the ranks of the expression stability.

As shown in Tables S3–S6, the results showed that the
stability rankings of these reference genes among different
tissues sampled at the same time or the same tissue sampled
at different sampling time points were varied. However, the
top three stable reference genes provided by NormFinder
and Delta Ct were unanimous, except for subtle differences
in ranking (Tables S4 and S6). Compared with Bestkeeper,
the top three stable reference genes provided by Genorm
were more consistent with those provided by NormFinder
and Delta Ct, with only a few discrepancies in the third gene.

The most unstable reference genes for each tissue sam-
pled simultaneously, as provided by GeNorm, NormFinder,

and Delta Ct, were consistent. The most unstable reference
genes in the foregut and midgut were the same as those
provided by BestKeeper. Meanwhile, 18S rRNA had the high-
est frequency of occurrence for all the most unstable genes.

As shown in Table 2, comprehensive analysis rankings
revealed that the top three stable reference genes provided
only had minor differences when compared to those provided
by GeNorm, NormFinder, or Delta Ct. β-actin, HPRT1, and
EF1a were the top three stable reference genes of the foregut
and midgut, except for EF1a, which was replaced by B2M in
the 6W midgut. In the hindgut, β-actin and HPRT1 were
ranked as the top two stable reference genes. Only GAPDH
was the fixed gene ranked as the second most stable gene in
the liver tissue at each sampling time point.

In addition, V values of V2/3 in the liver sampled at 2W,
foregut sampled at 4 and 6W, and midgut and hindgut
sampled at 6W all surpassed 0.15, indicating that three or
more reference genes were required to normalize the target
genes in RT-qPCR. For the remaining samples, V values of
V2/3 were all less than 0.15, and two reference genes were
suitable for normalizing target genes (Figure 3).
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3.4. Expression Stability of Candidate Reference Genes among
Different Tissues. To determine the expression stability of
candidate reference genes among different tissues, we used
Ct values from all tissues sampled at the same point of sam-
pling time in each group. Then we ranked the expression
stability of the reference genes.

In addition to slight differences in rankings, the top three
stable reference genes provided by NormFinder and Delta Ct
were consistent (Tables S8 and S10). They only had a subtle
difference from those provided by GeNorm (Table S9) and
by comprehensive analysis (Table 3). The top three stable
reference genes of tissues sampled at 2W, provided by all
analytical programs except for BestKeeper, were HPRT1,
EF1a, and β-actin in each group. While in samples of 4W,
HPRT1 of 0% and 100% SBM groups, β-actin in the 75%
SBM group was substituted with 18S rRNA. In samples of
6W, more differences in the top three stable genes were
observed between the analytical programs or groups.
According to the NormFinder and Delta Ct analyses, the
top three stable reference genes in the 50% and 75% SBM
groups were EF1a, β-actin, and 18S rRNA, respectively. At
the same time, they were GAPDH, HPRT1, and EF1a in the
50% SBM group and β-actin, B2M, and EF1a in the 75% SBM
group by GeNorm analysis. Compared with NormFinder
and Delta Ct analyses, the different data provided by com-
prehensive analysis only occurred in the 50% SBM group, in
which EF1a, GAPDH, and β-actin were recommended as the
top three most stable genes. The least stable genes in each

group at different sampling times provided by the above four
analytical programs were all focused on GAPDH or B2M.

The top three stable reference genes provided by Best-
keeper (Table S7) were vastly different from those provided
by the four analytical programs above. However, no discern-
ible pattern was found between sampling times or SBM
levels. The relatively consistent thing is that the most stable
reference genes were HPRT1 at 2W and 18S rRNA at 6W,
and B2M was the least stable one at each sampling time point
in all groups.

As shown in Figure 4, the V values of V2/3, V3/4, V4/5, and
V5/6 provided by GeNorm were all higher than 1.5, indicat-
ing more variable expression stability of these six reference
genes across tissues and that more reference genes were
needed when normalizing the target genes.

3.5. Expression Stability of Candidate Reference Genes among
Different Points of Sampling Time. To determine the expres-
sion stability of candidate reference genes among different
sampling time points, we input all Ct values of each tissue
sampled at different sampling time points in each group and
then obtain the expression stability rankings of these refer-
ence genes.

The top three stable reference genes provided by these
analytical programs varied greatly, regardless of whether they
were simultaneously sampled from different tissues or
groups within the same tissue. In the liver, the top three
stable reference genes identified by GeNorm (Table S13)
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FIGURE 3: Optimal number of candidate reference genes among different soybean meal levels in hybrid yellow catfish. GeNorm was used for
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were β-actin, B2M, and GAPDH. Using BestKeeper (Table
S11), NormFinder (Table S12), Delta Ct (Table S14), and
comprehensive analysis (Table 4), β-actin, B2M, and 18S
rRNA were identified in the 0%–50% SBM groups. In con-
trast, the results were consistent between BestKeeper and
comprehensive analysis and between NormFinder and Delta
Ct in the 75% and 100% SBM groups. The least stable refer-
ence gene was HPRT1 in all programs. In the foregut, β-actin
and EF1a were two of the top three reference genes identified
using the above analytical programs. In addition, different
programs may recommend HPRT1, GAPDH, or B2M in dif-
ferent groups. β-actin could be a suitable reference gene in
the midgut and hindgut, with the highest frequency among
the top three stable genes provided by the above programs in
each group. The other two significantly depended on the
analytical programs or the SBM levels. Except for GAPDH,
B2M, and EF1a, which were occasionally considered the
most unstable genes in the midgut or hindgut by BestKeeper
or comprehensive analysis in some groups, 18S rRNA was
the least stable in the intestine provided by all the programs.

According to Figure 5, four-fifths of the V values of V2/3,
more than half of the V values of V3/4, and a quarter of the V
values of V4/5 were more significant than 0.15. The results
indicated that three or four reference genes were required for
RT-qPCR when compared at different sampling time points.

3.6. Evaluation and Validation of Screening Reference Genes.
The top two stable and most unstable reference genes, as
shown in Table 2, were used to normalize MLKL expression
levels in tissues sampled at 6W, as shown in Figure 6. In the
liver, the transcript levels of the MLKL gene significantly
decreased in the 25%–100% SBM group compared to the
0% SBM group when normalized using β-actin and GAPDH,
respectively (P<0:05). However, a different tendency was
observed when 18S rRNA was used for normalization.
When EF1a and β-actin were used as normalizer genes in
the foregut, the transcript levels of MLKL in the 0% and

100% SBM groups were significantly higher than those in
the 25%–50% SBM groups (P<0:05). No significant differ-
ences were found between the 0% and 25%–50% SBM groups
when 18S rRNA was used as the normalizer (P<0:05). How-
ever, when β-actin and B2M were used as normalizers in the
midgut, the MLKL expression level in the 25% SBM group
significantly decreased to the lowest level (P<0:05). Simul-
taneously, the reverse result was obtained by normalizing to
EF1a, the least stable gene. When β-actin and 18S rRNA were
used as normalizers of the hindgut, the expression levels of
MLKL were significantly decreased to the lowest level in the
25% SBM group. They then significantly increased to the
highest level in the 75% SBM group (P<0:05). In contrast,
it was significantly increased with increasing SBM levels and
reached the highest level in the 75% and 100% SBM groups
when normalized using GAPDH (P<0:05).

4. Discussion

The present study showed greater consistency in the top
three stable reference genes provided by NormFinder, GeN-
orm, Delta Ct, and the comprehensive analysis. The most
stable genes obtained from one program were often the
same or were among the top three stable genes obtained
from the other programs. For example, when assessing the
effects of different SBM levels on the stability ranking of
reference genes in the foregut sampled at 2W, the top three
stable reference genes provided by Delta Ct were EF1a>
HPRT1> β-actin, they were HPRT1> EF1a> β-actin by
NormFinder or β-actin/HPRT1 > EF1a by GeNorm. In con-
trast, the top three stable reference genes provided by Best-
keeper showed more significant differences from those
provided by the above three analytical programs. Further-
more, a similar discrepancy existed between Bestkeeper and
NormFinder, Delta Ct, Genorm, and comprehensive analysis
when the least unstable reference gene was analyzed. Several
studies have mentioned different analytical programs that
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FIGURE 4: Optimal number of candidate reference genes among different tissues of hybrid yellow catfish. GeNorm was used for calculating the
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FIGURE 5: Optimal number of candidate reference genes among different sampling time points in each tissue of hybrid yellow catfish. GeNorm
was used for calculating the pairwise variation (Vn/Vn+ 1, “n” means the number of reference genes).

β-Actin GAPDH 18S rRNA
0.0

0.5

1.0

1.5

2.0

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

a

b
c

c c

a

b

b
b b

a
ab

bc

cd
d

Liver

0 % 75 %

50 %
100 %25 %

ðaÞ

EF1a β-Actin 18S rRNA
0.0

0.5

1.0

1.5

2.0

2.5

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

aa

ab
b

b
aa

bb b

a

b

b

b

b

Foregut

0 % 75 %

50 %
100 %25 %

ðbÞ

β-Actin B2M EF1a 
0.0

0.5

1.0

1.5

2.0

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n a a

b b b

aab

abbc

c

a
ab

abcbc
c

0 % 75 %

50 %
100 %25 %

Midgut

ðcÞ

β-Actin 18S rRNA GAPDH
0

1

2

3

4

Re
lat

iv
e m

RN
A

 ex
pr

es
sio

n

a

c

bb
b

a

d

b
bcc

a

a
b

c
d

Hindgut

0 % 75 %

50 %
100 %25 %

ðdÞ
FIGURE 6: Changes inMLKL expression of samples sampled at 6W normalized by the two most stable reference genes and the most unstable
reference gene provided in Table 2.
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result in different stability rankings [20, 31]. This disparity
was caused by differences in the algorithms and procedures
used by each computational program.

RT-qPCR is a popular molecular biology technique for
studying the mechanisms of the nutritional hazards caused
by plant protein-based diets [9, 10, 13, 17]. However, it is yet
to be determined whether the expression stability of refer-
ence genes has been tested in plant protein-based diet experi-
ments. In the present study, six candidate genes that cover
multiple physiological activities of cells involved in cytoskele-
ton formation (β-actin), protein synthesis (EF1a), glycolysis
canalization (GAPDH), purine nucleotide cycle (HPRT1),
protein translation (18S rRNA), immune response, and struc-
tural protein (B2M) were chosen based on previous studies on
fish [4, 28, 31]. The expression variations in different tissues
reflected by violin maps or the interquartile range of Ct values
of each gene indicated the tissue-dependent expression of
these reference genes in hybrid yellow catfish fed with differ-
ent SBM levels. The more unstable Ct values in the liver
compared to the foregut, midgut, or hindgut, reflected by
the visualizing data of gene expression as a function of differ-
ent sampling time points or SBM levels in each tissue, was
another support for this organ-specific feature. The optimal
combination obtained from GeNorm, represented by V
values of Vn/Vn+ 1 (V values of V2/3, V3/4, V4/5, and V5/6

were all greater than 1.5) (Figure 4), also indicating that the
expression stability of these reference genes was more variable
in different tissues. Therefore, when tissue factors are consid-
ered, more reference genes should be chosen to normalize the
target genes.

When the factors of SBM levels or different sampling
time points were evaluated, significant discrepancies in the
ranking were observed among the same tissue sampled at
different sampling time points or among different SBM levels
in the same tissue. The stability rankings also varied among
the tissues sampled simultaneously (Tables 2 and 4). For
example, the top three stable reference genes in different
tissues sampled at 2W were nearly consistent with each
other at different SBM levels. At the same sampling time,
there were no regular rules for 4 and 6W among the SBM
levels (Table 3). GAPDH, the least stable reference gene in
the tissues of each SBM level sampled at 2W, was ranked
among the top three stable genes in the tissues of the 0% and
50% SBM levels sampled at 6W. These results revealed that
the expression stability of the six reference genes in hybrid
yellow catfish varied based on the tissues, sampling time
points, and SBM dosage. Many studies have reported that
experimental conditions, such as dietary restriction [32],
metals [22], viral infection [33, 34], and herbicides [20],
influence the expression of reference genes that have tradi-
tionally been considered as reference genes (e.g., GAPDH,
HPRT1, and 18S rRNA). This could be attributed to each
organ’s different functions and heterogeneity and the char-
acteristic reactions of the evaluated reference genes to spe-
cific conditions [35].

Among the six candidate reference genes assessed in this
study, 18S rRNA, a part of ribosomal RNA, showed the most
abundant expression (Ct values ranged from 2.93 to 7.04).

For the most of specific target genes measured in typical
RT-qPCR experiments, they are often expressed at relatively
low levels. Hence, a significant difference in the expression of
18S rRNA and its target genes will reduce the accuracy of
RT-qPCR; minor changes in target gene expression between
different groups are challenging to observe. From this point
of view, 18S rRNA is unsuitable as a control gene for nor-
malizing low-copy target genes. In studies on rainbow trout
(Oncorhynchus mykiss) [22], zebrafish (Danio rerio) [20],
and grass carp [36], 18S rRNA was excluded from the candi-
date reference genes. In theory, as a ribosomal RNA, 18S
rRNA expression is hardly affected by conditions that influ-
ence the expression of mRNA [33, 36], whereas its expres-
sion is indeed influenced by experimental conditions [37]. In
Prenant’s schizothoracin (Schizothorax prenanti), challenged
by the pathogen, 18S rRNA was also considered an unsuit-
able reference gene both in vitro and in vivo when compared
among different treatments [21]. In our study, although 18S
rRNA was ranked among the top three stable reference genes
by all the analytical programs when the factors of SBM levels,
tissues, and sampling time points were integrated, it was
often considered the least stable when a single factor was
considered. In conclusion, 18S rRNA may not be an appro-
priate reference gene for studies on plant protein-based diet-
induced nutritional hazards in hybrid yellow catfish.

The other five candidate reference genes used in our
study are widely used for RT-qPCR in fish studies [33, 38].
In the present study, GAPDH and B2M were considered the
two most unstable reference genes when the different tissues
were the dependent variables. When the different SBM levels
or sampling time points were considered as the dependent
variables, GAPDH and B2M were also ranked out of the top
three stable genes in most rankings. In fish, it has been
reported that the expression of GAPDH and B2M varies
with tissues and developmental stages [39], exposure to
harmful substances [20], the severity of oxidative stress,
and inflammatory states [40–43]. Hybrid yellow catfish is
an SBM intolerance species; soybean antigen protein, which
accounts for approximately 40% of total SBM protein, fre-
quently induces oxidative stress and cell apoptosis, ultimately
causing damage to the morphological structure of the intes-
tine [44]. Replacing a fish meal with plant protein sources
often causes intestinal inflammation and growth inhibition.
Soybean protein, a fishmeal replacement protein, has been
associated with intestinal damage. Genes involved in intesti-
nal barrier development, including the physical, chemical,
and immunological barriers, frequently show dysregulated
expression [13, 24]. In our study, the unstable GAPDH and
B2M expression may result from oxidative stress or inflam-
mation caused by SBM. Therefore, GAPDH and B2M are
not recommended as internal reference genes when using
RT-qPCR to normalize target genes in nutrition research
related to SBM.

HPRT1, a coding gene encoding hypoxanthine-guanine
phosphoribosyl transferase (HGPRT) involved in the purine
nucleotide cycle, exhibits species- [31, 39], tissue-, and test
substance-dependent expression [20, 22]. Similar findings
were found in the current study. For example, compared
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with the intestine, the Ct values of HPRT1 in the liver dem-
onstrated more variability across different sampling time
points at each SBM level, and HPRT1 has been deemed the
least stable reference gene in all programs. In addition,
HPRT1 was ranked out of the top three stable genes by all
programs except Bestkeeper when the stability ranking of
these candidate genes was integrated with tissue factors, sam-
pling time points, and SBM levels. Although the stability
ranking of HPRT1 showed different expressions regardless
of tissue or group, HRPT1 still has value as a reference gene
for the intestine when points of sampling time or SBM levels
are considered. Therefore, we do not recommend using
HPRT1 as a reference gene for the liver of hybrid yellow
catfish.

β-Actin has often been reported as the most stable refer-
ence gene, less impacted by factors of tissues, developmental
stages, or stress conditions in both fish and mammals. Pacific
abalone (abalone Haliotis discus hannai) [45], rainbow trout
[46], half-smooth tongue sole (Cynoglossus semilaevis) [47],
zebrafish [48], and β-actin have all been reported to be suit-
able reference genes. However, in normal grass carp and Jian
carp (Cyprinus carpio var. jian), β-actin was unsuitable as a
reference gene when analyzed in different tissues [36, 49].
Our study consistently ranked β-actin among the top three
stable reference genes, regardless of the SBM levels, sampling
time points, or tissues. In our study, the expression of EF1a
was time- and dose-dependent with SBM levels, as evidenced
by the different rankings between different SBM levels in the
same tissue or between different sampling time points in the
same tissue. It was ranked among the top three stable genes
when evaluated in different tissues or when all the Ct values
were combined. Similar findings have been reported in dif-
ferent tissues of adult Atlantic salmon (Atlantic salmon) [50]
and zebrafish [51]. These findings suggest that EF1a is a
suitable reference gene for hybrid yellow catfish when differ-
ent tissues are used as variables.

According to the V values of Vn/Vn+ 1 provided by GeN-
orm, most of the V values of V2/V3 were less than 0.15 when
ranking the stability among different SBM levels, and all of
the V values were larger than 0.15 when ranking the stability
among different tissues. Furthermore, half of the V values of
V3/V4 were less than 0.15 when ranking the stability among
different sampling time points. These findings showed that
the expression stability of the reference genes varied more
between tissues than between SBM levels and sampling time
points. Therefore, a suitable number of reference genes for
target genes should be determined for specific experimental
purposes in hybrid yellow catfish fed a soybean meal-based
diet. Moreover, using multiple genes as controls for normal-
ization may be a suitable theoretical approach. On the other
hand, increasing the number of reference genes increases
experimental complexity and cost. Further, multiple refer-
ence genes can also lead to instability [52]. Thus, suitable
reference genes that balance cost and precision are required.

When the screening of reference genes was evaluated and
validated by normalizing the relative expression of MLKL
samples sampled at 6W, the tendencies of MLKL transcript
levels among different SBM levels were almost consistent

when the two stable genes were used for calibration. How-
ever, a different trend was observed when the least stable
gene was used for calibration. These results confirm the sta-
bility of the selected reference genes.

5. Conclusion

In our study, β-actin and GAPDH in the liver and β-actin,
HPRT1, and EF1a in the intestine were the most stable ref-
erence genes when SBM levels were considered. When dif-
ferent tissue factors were considered, HPRT1 and EF1a for
2W and EF1a and β-actin for 4 and 6W were proposed as
the two stable reference genes. When the sampling time
points were considered, β-actin, EF1a, and HPRT1 were
the top three stable reference genes in the intestine, whereas
β-actin and B2M were the two most stable reference genes in
the liver. The present study demonstrated that dietary SBM
levels significantly affected the expression stability of refer-
ence genes in hybrid yellow catfish. The stability was time-,
dose-, and tissue-dependent. The results also revealed that
the expression stability of the reference genes varied more
between tissues than between SBM levels and sampling time
points. Therefore, we strongly recommend screening for sta-
ble reference genes in hybrid yellow catfish fed a plant
protein-based diet before performing RT-qPCR experiments
to acquire more accurate and reliable data.
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