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A 10-week trial was performed to investigate the effects of replacing fishmeal with cottonseed meal (CSM) on the growth rate,
protein metabolism, and antioxidant response of Asian red-tailed catfish Hemibagrus wyckioides. Five isonitrogenous and
isocaloric diets (C0, C8.5, C17.2, C25.7, and C34.4) were prepared to contain 0%, 8.5%, 17.2%, 25.7%, and 34.4% CSM
replacing fishmeal, respectively. The weight gain, daily growth coefficient, pepsin, and intestinal amylase activities initially
increased and then decreased with the raising dietary CSM levels; the highest values were observed in the C17.2 group
(P < 0.05). However, feed cost exhibited the opposite trend. With the increasing dietary CSM levels, the protein efficiency ratio
and intestinal trypsin activity decreased but feed conversion rate increased gradually; while no differences were observed
among the C0, C8.5, and C17.2 groups (P> 0.05). Dietary CSM inclusion regardless of levels increased the plasma growth
hormone level as well as hepatic aspartate aminotransferase (AST) and y-glutamyl transpeptidase activities but decreased the
plasma glutamate dehydrogenase and AST activities (P < 0.05). With the increasing dietary CSM levels, the plasma alkaline
phosphatase (AKP) and hepatic superoxide dismutase activities decreased but malondialdehyde content increased gradually,
while no differences were observed among the C0, C8.5, and C17.2 groups (P > 0.05). The plasma immunoglobulin M content
and hepatic glutathione reductase activity initially increased but then decreased with the raising dietary CSM levels; the highest
values were found in the C17.2 group. These results indicated that dietary CSM inclusion level up to 17.2% improved the
growth rate, feed cost, digestive enzyme activity, and protein metabolism without compromising antioxidant capacity of H.
wyckioide, whereas these parameters were depressed by further inclusion of CSM. CSM is a potentially cost-effective alternative
plant protein source in diet of H. wyckioide.

1. Introduction

As the most important protein source in aquafeed, fishmeal
(FM) possesses not only balance amino acids and active sub-
stances (e.g. taurine, hydroxyproline, cholesterol) but also
incomparable palatability [1]. However, FM can no longer
meet the needs of aquaculture because of decreasing fishery
resources and increasing FM demand; and which become
an enormous barrier for aquaculture expansion. Thus, the
pursuit for alternatives to FM has always been hotspot of
aquaculture [2]. Among alternative protein sources for FM,

plant protein sources appear to be the most appropriate
because of their availability, eco-friendly, sustainability, and
price [3]. Cottonseed meal (CSM) is a by-product obtained
from the process of extracting oil from cottonseed. Accord-
ing to the China Statistical Yearbook 2021, the planting area
of cottonseed in China reached 3.03 million hectares, and
the output reached 10.32 million tons. Behind soybean meal
and rapeseed meal, CSM ranks third in terms of tonnage
among the commercially available plant protein sources.
CSM is considered a valuable plant protein source as an
FM substitute in aquafeed because of its relatively favorable
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amino acid profiles [4]. Previous studies showed that CSM
could replace 15-50% FM without compromising growth
rate of Ussuri catfish Pseudobagrus ussuriensis [5], blunt
snout bream Megalobrama amblycephala [6], grass carp
Ctenopharyngodon idellus [7], silver sillago Sillago sihama
[8], red drum Sciaenops ocellatus [9], and turbot Scophthal-
mus maximus [10, 11]. However, the further substitution
were limited by several factors, including relatively low con-
tents of lysine and methionine as well as high level of free
gossypol [12].

Asian red-tailed catfish Hemibagrus wyckioides, an
omnivorous freshwater fish, is widely distributed in the
Mekong River Basin [13]. This species is very popular with
farmers and consumers for its fast growth rate, large size,
extensive adaptability, and superior resistance to disease
[14, 15]. In addition, this catfish do not exhibit cannibalism
phenomenon unlike other catfish [16]. Although this species
is widely cultured in ponds and cages throughout the
Lancang-Mekong River Area, there is no special compound
feed for H. wyckiodies due to limited information on the
requirements of nutrients [13, 17-19] and utilization of feed
ingredients [20, 21]. Hence, an assessment of the utilization
efficiency of various plant protein sources by H. wyckioides is
urgently needed. To date, there is no data on the influence of
CSM inclusion in diet for H. wyckioides. The aim of the pres-
ent study was to assess the effects of replacing FM with CSM
on growth performance, protein metabolism, and antioxi-
dant response of H. wyckioides.

2. Materials and Methods

2.1. Experimental Diets. Using FM (crude protein, 73.6%)
and CSM (crude protein, 49.6%; free gossypol, 1.12 mg/g)
as the primary protein sources, five isonitrogenous (41%
crude protein) and isocaloric (21kJ/g gross energy) diets
(Co, C8.5,C17.2,C25.7, and C34.4) were prepared to replace
0%, 12%, 24%, 36%, and 48% FM protein with 0%, 8.5%,
17.2%, 25.7%, and 34.4% CSM, respectively. DL-methionine,
L-lysine, and L-leucine were also supplemented to each diet
to provide equal amounts of methionine, lysine, and leucine
in all experimental diets. The feed ingredients and proximate
composition of experimental diets are listed in Table 1, and
the corresponding amino acid profiles are shown in Table 2.

All feed ingredients except lipid sources were crushed
and passed through a sieve with a diameter of 320 ym. Soy-
bean lecithin was preblended in the mixture of soybean oil
and fish oil. All ingredients were thoroughly mixed; the lipid
mixture was added, and then thoroughly mixed again. Suit-
able water was added to make a dough, and the dough was
squeezed into 1.5-mm pellet by a pellet feed maker (KS-
180; Jiangsu Jingu Rice Mill Co., Ltd., Zhenjiang, China).
The wet pellets were dried at 40°C and then stored at
—20°C until use.

2.2. Fish and Experimental Procedure. Before the initiation of
feeding trial, juvenile H. wyckioides originated from the
same batch were fed commercial rainbow trout diet (TR-
2242, Chile) for 14 days to acclimate the experimental
conditions. After 24-h fast, healthy and uniform juveniles
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(initial body weight 3.21 +£0.02g) were selected and ran-
domly assigned into five dietary groups with triplicates of
35 juveniles per tank (1.0m x0.6m x 0.5m). During the
feeding trial, the experimental diets were manually fed twice
a day (07:00, 17:00) to apparent satiation for 10 weeks. The
cultivation water was recirculated through a filtration system
composed of filter sponge, coral stone and active carbon to
remove particulate matter and hazardous substances, and
water temperature was kept at 27 + 1°C by a heating rod.
All tanks were provided with continuous aeration (dissolved
oxygen >6mg/L) and natural photoperiod (13.5h light/
10.5h dark at the beginning of July and 12 h light/12h dark
at the end of September).

2.3. Sample Collection. After the feeding trail, all fish were
anesthetized with eugenol (1:12000; Shanghai Reagent Cor-
poration, Shanghai, China) after 24-h fast. All fish from each
tank were weighed and counted to calculate the growth rate
and feed utilization. Five fish per tank were randomly col-
lected and stored at —-20°C for body composition analysis.
Blood samples were collected from the caudal vein of ten fish
per tank using a sterile 1-ml syringe. One part of blood sam-
ple was transferred into an Eppendorf tube without antico-
agulant, and the other part was collected in a heparinized
tube. Serum/plasma samples were allowed to clot for 4h at
4°C, then centrifuged at 4000 g for 10 min at 4°C, the super-
natants were collected and stored at -80°C. Liver, stomach,
and midgut (the part from anterior valvula intestine to ante-
rior rectum) were dissected from five fish per tank and
stored at —80°C until analysis. Three additional samples of
liver and dorsal muscle were collected from each tank and
pooled in a 1.5-ml Sterile cryovials (Axygen®), and stored
at -80°C for analysis of relative expression of protein
metabolism-related genes (mammalian target of rapamycin
(mTOR), adenosine monophosphate deaminase 1 (AMPD1),
glutamate dehydrogenase (GDH), and insulin-like growth fac-
tor 1 (IGF-1).

2.4. Chemical Analysis

2.4.1. Proximate Composition. The proximate composition
of feed ingredients, experimental diets, and whole-body
samples were measured following the method of AOAC
[22]. Dry matter was determined by drying the sample to a
constant weight at 105°C; crude protein content was exam-
ined by the Kjeldahl method (N x 6.25); crude lipid content
was determined using the Soxhlet method with ether extrac-
tion; crude ash content was determined after burning in a
muffle furnace at 550°C for 6h. A bomb calorimeter (Parr
1351; Parr Instrument Co., Moline, IL, USA) was used to
measure gross energy. Free gossypol content in diets was
determined by high-performance liquid chromatography
[23]. The amino acid composition of diets was determined
using the method described by Mai et al. [24].

2.4.2. Digestibility Enzyme Activity. To obtain an adequate
crude enzyme extract solution, the amount of physiological
saline solution (0.9% NaCl) needed to add to the wet stom-
ach/midgut sample was determined by a preliminary study.
Approximately 0.2 g wet stomach/midgut plus 1.8 mL cold
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TaBLE 1: Ingredients and proximate composition (% dry matter) of five experimental diets.

Price® Dietary inclusion levels of cottonseed meal

US$/kg 0% 8.5% 17.2% 25.7% 34.4%
Ingredients
Fish meal’ 1.90 52.00 45.80 39.50 33.30 27.00
Cottonseed meal' 0.89 0.00 8.50 17.20 25.70 34.40
Fish oil 2.41 0.90 1.40 1.90 2.40 2.90
Soybean oil 1.47 4.80 4.75 4.70 4.65 4.60
DL-Methionine® 2.93 0.00 0.09 0.19 0.28 0.38
L—Lysine3 1.36 0.00 0.17 0.34 0.51 0.68
L-leucine 9.14 0.00 0.08 0.16 0.25 0.33
Wheat middling 0.49 25.55 24.46 23.26 21.16 19.96
a-Starch 0.93 13.00 11.00 9.00 8.00 6.00
Soybean lecithin 0.96 0.50 0.50 0.50 0.50 0.50
Vitamin C? 2.29 0.02 0.02 0.02 0.02 0.02
Ca(H,PO,), 0.61 1.20 1.20 1.20 1.20 1.20
NaCl 0.09 0.20 0.20 0.20 0.20 0.20
Ethoxyquin (30%) 4.57 0.03 0.03 0.03 0.03 0.03
Choline chloride (40%) 1.04 0.30 0.30 0.30 0.30 0.30
Vitamin mixture* 4.29 0.50 0.50 0.50 0.50 0.50
Mineral mixture® 1.86 0.50 0.50 0.50 0.50 0.50
Proximate composition
Dry matter 90.79 88.09 89.85 89.04 88.61
Crude protein 40.72 41.41 41.45 41.27 41.12
Crude lipid 10.88 10.43 10.06 10.69 10.62
Ash 11.06 10.80 10.31 9.74 9.28
Cross energy (KJ/g) 20.59 20.40 20.61 20.71 20.72
Free gossypol (mg/g) - 0.10 0.20 0.29 0.39
Feed price (US$/kg) 1.40 1.35 1.31 1.27 1.23

'Supplied by Kunming Tianyuan Feed Co., Ltd. (Yunnan, China); fish meal, 73.6% crude protein, 9.0% crude lipid; cottonseed meal, 49.6% crude protein,
1.3% crude lipid; wheat middling, 13.5% crude protein, 0.86% crude lipid. *L-Ascorbate-2-polyphosphate (35%), supplied by Galaxy Chemicals Co., Ltd.
(Hubei, China). *Supplied by Shanghai Hanhong Chemical Co., Ltd. (Shanghai, China). *Vitamin premix (g/kg of mixture): retinyl acetate (2800000 IU/g),
2; cholecalciferol, 0.03; DL-a-tocopheryl acetate, 30; menadione, 3; thiamine hydrochloride, 8; riboflavin, 11; pyridoxine hydrochloride, 8; vitamin B,
0.02; ascorbic acid, 50; folic acid, 1; biotin, 0.1; niacin, 30; calcium D-pantothenate, 32; and inositol, 25. *Mineral premix (g/kg of mixture): MgSO,7H,0,
180; K1, 1; FeSO,oH,0, 260; ZnSO,eH,0, 180; CuSO,e 5H,0, 25; Na,Se, 05, 0.01; MnSO,eH,0, 180; and CoCl,e6H,0, 0.75. ®Price of feed ingredients is

calculated with the exchange rate of US$ to RMB at 7.00.

0.9% NaCl solution were transferred to a 5-mL centrifugal
tube and then homogenized. The homogenate was centri-
fuged at 6,000 g for 15 min at 4°C (MX-160; Tomy Industry,
Tokyo, Japan). The supernatant was transferred to a new test
tube for analysis of digestive enzyme activity. Pepsin, tryp-
sin, lipase, and amylase activities were assayed by commer-
cial kits (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China). One unit of pepsin/trypsin activity was
defined as 1 mmol of tyrosine equivalent released per min
at 37°C. One unit of lipase activity was defined as the
amount of enzyme required to produce 1pmol of p-
nitrophenol at 37°C for 1 minute. One unit of amylase activ-
ity was defined as the amount of enzyme hydrolyzing 0.1 mg
of starch in 30 minutes at 37°C. Specific enzyme activity was
expressed as enzyme activity per gram protein. The amount
of soluble protein in supernatant was determined following
the approach of Marion and Bradford [25].

2.4.3. Protein Metabolism-Related Parameters. Blood urea
nitrogen (BUN) and albumin contents as well as alanine
aminotransferase (ALT) and aspartate aminotransferase
(AST) activities in plasma were measured using commercial
kits (Nanjing Jiancheng Bioengineering Institute, Nanjing,
China). Plasma insulin, growth hormone (GH) and IGF-1
levels, and GDH and AMPD activities were measured by
enzyme-linked immunosorbent assay (ELISA) kits (R&D
Systems Inc., Minneapolis, MN). Hepatic GDH, AMPD,
AST, and ALT activities were determined using the same kits
as for plasma and expressed as enzyme activity per gram
protein. Hepatic y-glutamyl transferase (y-GT) activity was
measured by ELISA kit (R&D Systems Inc., Minneapolis,
MN) and expressed as enzyme activity per gram protein.

2.4.4. Antioxidant-Related Parameters. Inmunoglobulin M
(IgM) and malondialdehyde (MDA) contents, alkaline



TABLE 2: Amino acid composition of the experiment diets (% dry
matter).

Dietary inclusion levels of cottonseed meal

0% 8.5% 17.2% 25.7% 34.4%
Essential amino acids
Arginine 2.16 2.42 2.69 2.94 3.21
Histidine 1.36 1.32 1.27 1.23 1.18
Isoleucine 1.40 1.35 1.30 1.24 1.19
Leucine 2.54 2.55 2.56 2.54 2.57
Lysine 2.86 2.89 2.87 2.83 2.86
Methionine 1.01 1.04 1.02 1.05 1.03
Phenylalanine 1.52 1.55 1.59 1.62 1.66
Threonine 1.40 1.35 1.30 1.25 1.20
Valine 1.96 1.92 1.88 1.83 1.79
Tryptophan' 044 043 0.43 0.42 0.41
Non-essential amino acids
Alanine 2.15 2.04 1.92 1.80 1.69
Aspartic acid 3.40 3.38 3.36 3.33 3.31
Cysteine 0.36 0.37 0.38 0.39 0.39
Glutamic acid 6.42 6.64 6.87 7.03 7.26
Glycine 2.39 2.28 2.17 2.06 1.95
Proline 1.84 1.80 1.76 1.70 1.66
Serine 1.37 1.37 1.38 1.37 1.38
Tyrosine 1.06 1.04 1.02 0.99 0.97

"Tryptophan content of experimental diets was estimated according to the
ingredient amino acid composition. The content of tryptophan in fish
meal, cottonseed meal, and wheat middling was 0.76, 0.51, and 0.17% of
dry matter, respectively.

phosphatase (AKP) activity in plasma; and superoxide dis-
mutase (SOD), catalase (CAT), peroxidase (POD), glutathi-
one peroxidase (GSH-Px), glutathione reductase (GR),
AKP, and lactate dehydrogenase (LDH) activities in liver
were analyzed using the commercial kits (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China). Nitric oxide (NO)
content in liver was measured using a nitrate reductase
method [26].

2.4.5. RNA Extraction, cDNA Synthesis, and Real-Time PCR
Analysis. The procedures of RNA isolation, reverse tran-
scription, and quantitative real-time PCR were performed
as described by Zhang et al. [20]. Briefly, total tissue RNA
was extracted with an RNAiso Plus Kit (Takara Bio, Inc.,
Dalian, China) and then quantified by a Nanodrop 2000
spectrophotometer (Thermo Scientific, Shanghai, China).
Agarose gel (1%) electrophoresis was used to confirm the
completeness of RNA sequences and then total RNA was
immediately reverse-transcribed to obtain cDNA (Thermo
Scientific Revert Aid Firs Strand cDNA Synthesis Kit), which
was stored at —20°C until use. The mRNA levels of target
genes were assessed using real-time PCR. Primers of target
genes were devised by using Primer Premier 5.0 software
in accordance with the nucleotide sequences of similar spe-
cies in GenBank. Gene sequences that could not be acquired
in GenBank were cloned, amplified, and sequenced. The new
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gene sequences were used to design specific real-time PCR
primers. All primers were synthesized by Sangon Biotech
Co., Ltd. (Shanghai, China). The template amount was nor-
malized by using the S-actin gene as an internal reference
(Table 3). The 2724t method was used to analyze the rela-
tive expression level of the above genes [27].

2.4.6. Calculation and Statistical Analysis. The following for-
mulas were used to calculate various parameters and indices:

Mean metabolic body weight (MBW)
; 0.75 0.75
~ [(wir000)°7 + (;/1000) |

>

2
DI/MBW
Feed intake (g/kg MBW per day) = /T ,
< ht oai (W - W)
Weight gain (WG) = Wi
U3 _ 13
Daily growth coefficient (DGC, %/d) = ~— x 100,
. DI
Feed conversion rate (FCR) = —,
W, - W,
W -W,

Protein efficiency ratio (PER) = ——————,
protein intake

Feed cost[US$/(kg fish gain)] = FP x FCR.
(1)

where W; and W_are the initial and final body weights (g); d
is the feeding days; and DI is the dry diet intake per fish (g
DM/fish); and FP (feed price, US$/kg feed) is calculated as
feed ingredients cost + manufacture cost.

All data were analyzed using one-way analysis of vari-
ance (ANOVA) in SPSS 17 (SPSS Inc., Chicago, IL, USA)
for Windows. If the difference was significant (P < 0.05),
Tukey’s test was used for multiple comparisons. All results
are expressed as mean * standard error (n =3). Regression
analysis was also performed to determine the degree of rela-
tionship between various parameters and replacement level
of FM by CSM.

3. Results

3.1. Growth Performance. After the feeding trial, the survival
rate of fish ranged from 96.67% to 98.89%, no statistical dif-
ference was found among the dietary groups (P >0.05;
Table 4). The final body weight (y=20.240 + 14.352x —
31.630x%, P=0.278), WG (y=5.353 +4.512x - 9.673x%, P
=0.318), and DGC (y=2.240+1.092x -2.397x2, P=
0.313) initially increased and then declined with the raising
dietary CSM content; the highest growth rate was observed
in the C17.2 group. Conversely, the feed cost firstly
decreased and then increased slightly with the raising dietary
CSM content; the lowest value was found in the C17.2 group
(y=1.251-0.382x +0.493x%, P=0.005). The PER (y=
2.747 - 0.414x, P=0.002) decreased but FCR (y=0.885+
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TABLE 3: Sequence of primers used for real-time quantitative PCR.

Name Primer sequence (53" L?Eg;h (Trcn)

AMPD1 Forward CCACTATTGACCCACAGTCATACC 24 56.7
Reverse TATGCTTGGATTCATCGTCAACAC 24

GDH Forward TCAAAATCAACCCCAAAAACTTCT 24 59.6
Reverse ATCAGGGGCAGGGACATCAATA 22

IGE-1 Forward GGGGACCGGGGCTTTTATT 19 60.1
Reverse GTGTGCCGTTGCTCTCGTA 19

MTOR Forward AAGCCGCGTCACATCACACC 20 59.1
Reverse ATCAAAGCGCTCCTCCATCAG 21

B-Actin Forward GGCCGTGACCTGACTGAATACCTC 24 61.3
Reverse AATGCCCATCTCCTGCTCAAAGTC 24

AMPD1: adenosine monophosphate deaminase 1; GDH: glutamate dehydrogenase; IGF-1: insulin-like growth factors-1; mTOR: mammalian target of

rapamycin.

0.133x, P=0.006) increased with the raising dietary CSM
content, but no significant differences were found among
the CO0, C8.5, and C17.2 groups. However, no statistical dif-
ference was found in the feed intake (g/kg MBW per day)
among the dietary groups (P > 0.05).

3.2. Digestive Enzyme Activity. The activities of pepsin
(y=15.430 +23.471x - 50.761x?, P=0.157) and intestinal
amylase (y=2.792+2.198x - 6.101x%, P=0.334) initially
raised and then decreased with the increasing dietary CSM
content (Table 5); the highest activities were observed in
the C17.2 group. The intestinal trypsin activity (y=1.309
-0.683x, P=0.007) decreased gradually with the raising
dietary CSM level, and that was significantly higher in the
CO group compared to the C25.7 and C34.4 groups
(P <0.05). However, no statistical difference was found in
the intestinal lipase activity among the dietary groups
(P> 0.05).

3.3. Protein Metabolism-Related Parameters. The plasma GH
content (y=17.758 + 56.866x - 103.737x*, P <0.001) and
AMPD activity (y = 14.234 + 57.976x — 97.520x2, P = 0.019)
as well as hepatic AST activity (y=13.362+ 111.039x -
204.613x%, P =0.005) initially increased and then decreased
with the increasing dietary CSM content; and these values
were lower in the CO group compared to the other groups
(P <0.05, Table 6). The plasma GDH content in the CO
group or hepatic AMPD activity in the C8.5 group were
higher than that in the other groups; in contrast, the hepatic
y-GT activity was lower in the CO group as compared to the
other groups (P<0.05). The plasma AST activity (y=
29.249 - 44.236x, P <0.001) gradually declined with the
raising dietary CSM content. However, no statistical differ-
ences were found in plasma albumin, BUN, insulin, IGF-1
contents, and ALT activity as well as hepatic GDH and
ALT activities among the dietary groups (P > 0.05).

The hepatic IGF-1 expression level was higher in the CO
group compared to the C8.5 and C17.2 groups (P <0.05,
Table 7). Conversely, the hepatic mTOR expression level

was higher in the C8.5 group compared to the CO0, C25.7,
and C34.4 groups (P < 0.05). The relative expression levels
of hepatic AMPD and muscle GDH were higher in the C0
group compared to the other groups (P < 0.05). The hepatic
GDH expression level was higher in the CO0, C17.2, and
C34.4 groups compared to the C8.5 and C25.7 groups
(P <0.05). The muscle AMPD expression level was lower
in the C8.5 group compared to the C17.2 and C34.4 groups
(P <0.05).

3.4. Immune and Antioxidant-Related Indexes. The plasma
IgM content (y=0.061+ 0.743x - 1.455x?, P=0.002) and
hepatic GR activity (y=28.452+ 14.149x - 37.782x*, P=
0.049) initially increased and then decreased with the
increasing dietary CSM content; and the highest values were
found in the C17.2 group (P < 0.05; Table 8). The plasma
MDA content (y=4.497 +28.814x, P <0.001) increased
gradually with the raising dietary CSM content, whereas no
statistical difference was observed among the C0, C8.5,
C17.2, and C25.7 groups (P > 0.05). Conversely, the plasma
AKP (y=16.747-31.908x, P <0.001) and hepatic SOD
activities (y = 33.946 — 9.580x, P = 0.047) declined generally
with the raising dietary CSM content. The hepatic NO con-
tent was higher in the CO group compared to the C8.5 group
(P < 0.05). However, no statistical differences were observed
in the hepatic CAT, POD, GSH-Px, AKP, and LDH activities
among the dietary groups (P > 0.05).

3.5. Whole-Body Composition. The whole-body crude lipid
content (y=10.746 - 2.125x, P=0.004) declined generally
with the increasing dietary CSM content; and that was lower
in the C34.4 group compared to the CO and C17.2 groups
(P <0.05, Table 9). Conversely, the whole-body moisture
content (y = 69.971 + 2.244x, P = 0.035) increased gradually
with the raising dietary CSM content, and that was higher in
the C34.4 group compared to the CO group (P < 0.05). How-
ever, no statistical differences in the whole-body crude pro-
tein and ash contents were observed among the dietary
groups (P> 0.05).
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4. Discussion

CSM is a potentially cost-effective alternative plant protein
source for fish, but the inclusion level of CSM in aquafeeds
was limited due to the potential toxic effect of free gossypol
and the deficient in essential amino acids (EAAs) such as
lysine, methionine, and leucine [7, 28]. However, CSM is
rich in arginine and phenylalanine [7]. In this study, lysine,
methionine, and leucine were supplemented to the diets
containing CSM to attain concentrations like the control diet
(Table 2); arginine concentration in the experimental diets
increased from 2.16% (Diet C0) to 3.21% (Diet C34.4) with
the increase of dietary CSM level. Except for the above-
mentioned amino acids, other EAAs were similar among
the experimental diets. Additionally, free gossypol content
in the diets raised from 0g/kg (Diet C0) to 0.39 g/kg (Diet
C34.4), the highest value exceeded the tolerance limit of tila-
pia Tilapia aurea (0.18 g/kg) [29], rainbow trout Oncorhyn-
chus mykiss (0.25-0.29 g/kg) [30, 31], and channel catfish
Ictalurus punctatus (0.30 g/kg) [32], but less than that of cru-
cian carp Carassius auratus gibelioQ x Cyprinus carpiod
(0.64 g/kg) [33].

The present study indicated that the growth rate of H.
wyckioides improved with the increasing dietary CSM con-
tent up to 17.2% and then decreased; 25.7% CSM could be
incorporated into the diet without causing growth depres-
sion, but the inclusion level of 34.4% CSM depressed the
growth of H. wyckioides. Similar results were reported in
previous studies with grass carp [7], turbot [10], tilapia
[34], and southern flounder Paralichthys lethostigma [35],
the inclusion of suitable CSM replacing FM markedly
improved the growth performance and feed utilization. Fur-
thermore, FM can be completely replaced by CSM in diet of
snubnose pompano Trachinotus blochii without adverse
effect on growth, metabolism, and general health [12]. How-
ever, Wang et al. [9] suggested that dietary CSM inclusion
linearly depressed the growth rate of red drum Sciaenops
ocellatus. These discordant findings may be explained by
the differences in fish species and size, CSM quality, diet
composition, and culture conditions. The amount of CSM
that can be incorporated in aquafeeds depends mainly on
the balance of amino acid and the tolerance of fish to free
gossypol [36]. In this study, the supplements of methionine,
lysine, and leucine were added as needed to ensure that each
diet contained the same concentrations of limiting amino
acids. However, dietary arginine concentration gradually
increased from 2.16% to 3.21% with the raising inclusion
level of CSM. Thus, the growth promoting effect of 17.2%
CSM (2.69% arginine) in diet was directly related to the
improvement of dietary arginine level in this study. Addi-
tionally, the inclusion level of CSM was also determined by
the tolerance of H. wyckioides to free gossypol. The present
study found no growth depression in fish fed diets containing
free gossypol levels ranging from 0.10 to 0.29 mg/g; however,
the growth rate was depressed when free gossypol concentra-
tions reached 0.39 mg/g. Thus, the current study demonstrate
that 0.29 mg/g free gossypol is the tolerance threshold for H.
wyckioides, the value is similar to that for rainbow trout
(0.29 g/kg) [31] and channel catfish (0.30 g/kg) [32].
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Additionally, feed cost is the main indicator reflecting
economic benefit of FM replacement. In this study, the feed
cost initially decreased and then increased with the raising
dietary CSM levels with the lowest value in the C17.2 group,
which indicating that feeding diets containing 17.2% CSM
apparently reduced the feed cost and FM reliance of H.
wyckioides farming.

As is well known, the digestibility and utilization of
nutrients mainly depend on digestive enzyme activity [37].
Specifically, the hydrolysis of protein firstly depends on pep-
sin, and the subsequent digestive process is carried out by
trypsin and chymotrypsin in intestine [38]. Lipase can be
detected throughout the intestine but is most active in mid-
gut [20]. Omnivorous fish can utilize carbohydrate more
efficiently than carnivorous fish because of their higher
intestinal amylase activity [39]. In this study, the activities
of pepsin and amylase increased with the raising dietary
CSM concentrations up to 17.2% but then decreased at
higher CSM levels; trypsin activity did not decrease signifi-
cantly until dietary CSM content reached up 25.7%. These
findings indicated that the suitable dietary arginine concen-
trations (2.69%) induced by dietary CSM inclusion
enhanced the digestive capacity of H. wyckioides, but further
inclusion of dietary CSM depressed the activities of digestive
enzymes. The reduced digestive enzymes activities in fish fed
high levels of CSM in this study might be attributable to the
high content of free gossypol in high CSM-based diets. Pre-
vious studies reported that the free gossypol from CSM may
directly inhibit certain enzymes (e.g., pepsinogen, pepsin,
and trypsin) by binding the free epsilon amino groups of
lysine in the gastrointestinal tract, and thereby depressed
the intestinal digestive enzymes activities [7, 40].

Protein metabolism is a dynamic process involving the
balance between the synthesis and degradation of protein
[41]. The mTOR is a serine/threonine kinase, which regu-
lates the protein synthesis [19]. As upstream molecules,
insulin/IGF-1 regulate the TOR signaling pathway and par-
ticipate in a series of physiological processes including cell
growth and proliferation [42]. Additionally, GH can activate
the TOR signaling pathway, and thereby accelerate protein
synthesis [43]. In this study, the plasma GH level and rela-
tive expression of hepatic mTOR firstly enhanced and then
declined with the increasing dietary CSM content, consistent
with the trend of growth performance. These results indi-
cated that the suitable dietary CSM inclusion (8.5%-17.2%)
might enhance the protein synthesis and thereby improved
the growth performance of H. wyckioides, but those were
restrained by the inclusion of 25.7% or more. The promoting
effect of low CSM inclusion on protein synthesis may be
related to the improvement of amino acids balance
(increased arginine content) in diets, while the depressed
protein synthesis might be explained as an effect of excessive
free gossypol in diets with higher CSM concentrations. A
similar observation has been found in blunt snout bream
[44], turbot [45], and crab Portunus trituberculatus [4] fed
diets with moderate CSM inclusion.

It is well known that the activities and relative expression
levels of GDH, MAPD, y-GT, AST, and ALT are correlated
with the protein or amino acid catabolism [21]. As an
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essential enzyme in glutamate metabolism, GDH reversibly
catalyzes deamination of glutamate with the production of
ammonia [46]. AMPD is an indispensable contributor to
ammonia production through its catalysis of the irreversible
hydrolysis of AMP to IMP and NH," [20]. It is well known
that ALT and AST can catabolize amino acids and transfer
amino groups to a-keto acid [47]; y-GT is linked to amino
acid transport via the y-glutamyl cycle [48]. In this study,
dietary CSM inclusion regardless of level depressed the
plasma GDH and AST activities as well as relative expression
of AMPD in liver, GDH in liver and muscle, but increased
the hepatic y-GT and AST activities. The response discrep-
ancies of these parameters in different tissues have been
observed in several earlier studies with Ussuri catfish [5]
and turbot [10] fed diets with various contents of CSM.
These results indicated that dietary CSM inclusions altered
the amino acid catabolism in H. wyckioides, which may be
related to the synchronous influences of dietary arginine
and free gossypol contents. The improvement of amino
acids balance (increased arginine content) in diets might
inhibit the protein degradation, while free gossypol had cer-
tain negative effect on protein metabolism. Free gossypol is
easy to combine with lysine, resulting in the decrease of
lysine activity [4]. Thus, the high level of arginine present
in CSM can promote protein synthesis but inhibit protein
degradation as energy source, and thereby improved the
growth performance, whereas the high concentration of free
gossypol may disturb the protein metabolism of H.
wyckioides.

As one of the most significant immune components in
teleost, IgM is the primary antibody involved in the innate
immune response of fish [49]. Additionally, antioxidant
enzymes including SOD, CAT, POD, GSH-Px, and GR are
essential constituents of the complex immune system and
key components of the enzymatic defense mechanism pro-
tecting organisms from oxidative damage [20, 21]. MDA is
the end product of lipid peroxidation and an important indi-
cator of oxidative stress, which can be used to evaluate free
radical activity [21]. The biological production of NO plays
a key role in nonspecific host defense; but NO overproduc-
tion can also damage animal tissue health by stimulating
tumorigenesis [50]. In this study, low inclusion level
(<17.2%) of CSM generally enhanced the plasma IgM level
and hepatic GR activity, while higher CSM inclusion
(>25.7%) generally increased the plasma MDA level but
decreased the plasma AKP activity as well as hepatic SOD
and GR activities. These findings indicated that lower CSM
concentrations enhanced the immune capacity of H. wyck-
ioides to some extent, but higher dietary CSM inclusion
may depress the antioxidant capacity of H. wyckioides,
which may be mainly related to the free gossypol present
in CSM. The suppression of free gossypol on antioxidant
capability has been verified in other aquatic animals includ-
ing Ussuri catfish [5], grass carp [7], and Pacific white
shrimp Litopenaeus vannamei [51].

Previous studies have shown that dietary FM replace-
ment with CSM has different effects on the proximate com-
positions of different fish species. The whole-body protein
[8] or lipid [9, 52] contents of fish showed a decreasing trend
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with the increasing replacing levels of FM by CSM, while
dietary CSM inclusion has no significant effect on the prox-
imate composition of blunt snout bream [6] and grass carp
[7]. In this study, the whole-body crude lipid content of H.
wyckioides showed a decreasing trend with the increased die-
tary CSM inclusion level, which might be mainly related to
the free gossypol present in CSM. The potential toxicological
effects of dietary free gossypol have been shown to impair
the protein and lipid deposition of fish [9, 32, 52, 53]. For
example, tilapia fed CSM-based diet had a lower whole-
body lipid level than fish fed CSM-based diet supplemented
with iron for detoxification of gossypol [53]; the whole-body
lipid content of channel catfish linearly decreased with the
increasing dietary gossypol concentrations [32].

5. Conclusion

The suitable CSM inclusion (17.2%) enhanced the amino
acids balance (increased arginine content), then improved
the digestive enzymes activities and protein metabolism,
and thereby promoted the growth performance of H. wyck-
ioides. However, excess dietary CSM inclusions (>34.4%)
overall decreased the digestive enzyme activity and antioxi-
dant capacity of H. wyckioides, and thereby depressed the
growth rate of H. wyckioides, which may be attributed to
excess free gossypol in high CSM-based diets. Additionally,
appropriate amount of CSM (17.2%) inclusion in diets for
H. wyckioide was helpful to reduce the feed cost. CSM is a
potentially cost-effective alternative plant protein source in
aquafeeds.
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