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An 8-week growth experiment was conducted to investigate effects of tributyrin (TB) supplementation on growth performance,
intestinal digestive enzyme activity, antioxidant capacity, and inflammation-related gene expression of juvenile large yellow
croaker (Larimichthys crocea) (initial weight of 12:90 ± 0:02 g) fed diets with high level of Clostridium autoethanogenum
protein (CAP). In the negative control diet, 40% fish meal was used as the major source of protein (named as FM), while 45%
fish meal protein of FM was substituted with CAP (named as FC) to form a positive control diet. Based on the FC diet, grade
levels of 0.05%, 0.1%, 0.2%, 0.4%, and 0.8% tributyrin were added to formulate other five experimental diets. Results showed
that fish fed diets with high levels of CAP significantly decreased the weight gain rate (WGR) and specific growth rate (SGR)
compared with fish fed the FM diet (P < 0:05). WGR and SGR were significantly higher than in fish fed diets with 0.05% and
0.1% tributyrin that fed the FC diet (P < 0:05). Supplementation of 0.1% tributyrin significantly elevated fish intestinal lipase
and protease activities compared to FM and FC diets (P < 0:05). Meanwhile, compared to fish fed the FC diet, fish fed diets
with 0.05% and 0.1% tributyrin showed remarkably higher intestinal total antioxidant capacity (T-AOC). Malondialdehyde
(MDA) content in the intestine of fish fed diets with 0.05%-0.4% tributyrin was remarkably lower than those in the fish fed the
FC diet (P < 0:05). The mRNA expressions of tumor necrosis factor α (tnfα), interleukin-1β (il-1β), interleukin-6 (il-6), and
interferon γ (ifnγ) were significantly downregulated in fish fed diets with 0.05%-0.2% tributyrin, and the mRNA expression of
il-10 was significantly upregulated in fish fed the 0.2% tributyrin diet (P < 0:05). In regard to antioxidant genes, as the
supplementation of tributyrin increased from 0.05% to 0.8%, the mRNA expression of nuclear factor erythroid 2-related factor
2 (nrf2) demonstrated a trend of first rising and then decreasing. However, the mRNA expression of Kelch-like ECH-
associated protein 1 (keap1) was remarkably lower in fish fed the FC diet than that fed diets with tributyrin supplementation
(P < 0:05). Overall, fish fed tributyrin supplementation diets can ameliorate the negative effects induced by high proportion of
CAP in diets, with an appropriate supplementation of 0.1%.
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1. Introduction

As the major source of protein, fish meal is widely used in fish
feed formulation for its nice palatability and balanced nutrition.
However, the conflict between high demand for fish meal and
shortage of fish meal supply has seriously restricted aquaculture
development [1, 2]. The aquaculture feed industry has spared
no effort to find alternative sources of proteins that are suitable,
low-cost, and available for substituting fishmeal. Clostridium
autoethanogenumprotein (CAP) is anovel bacterial proteinpro-
duced by Clostridium autoethanogenum (without toxic genes)
[3] fermented with carbon monoxide (CO). As a type of single-
cell protein (SCP), CAPhas pleasant quality of high protein con-
tent andbalanced profile of amino acids, showing great potential
toreplacefishmeal.Thestudiesonlargemouthbass (Micropterus
salmoides) (CAP replacement level ≤ 43%) and juvenile turbot
(Scophthalmus maximus L.) (CAP replacement level ≤ 45%)
suggested that an appropriate level of CAP replacing fish meal
did not have a significant negative effect on growth performance
[4, 5].However,fish growthperformancewas compromisedby a
high level of CAP replacing fishmeal in diets. For example, Jiang
et al. [6] found that thePacificwhite shrimp (Litopenaeus vanna-
mei)growthwassignificantly reducedandintestinalmorphology
and immunity were negatively affected as the CAP replacement
ratio was higher than 45%. Similarly, excessive CAP substitution
(≥45%) had a significant adverse impact on the growth of large
yellow croaker (Larimichthys crocea) [7].

Due to the implementation of relevant policies to reduce
or eliminate use of antibiotics, research on harmless additives
has gradually received more attention [8]. Butyric acid, a type
of short-chain fatty acid, is considered to be a promising feed
additive owing to its positive role in production applications
[9]. Butyrate was initially identified as the main energy source
for the intestines [10]. Moreover, butyrate can regulate inflam-
mation and intestinal barrier function through inhibition of
histone deacetylases and interactions with G protein-coupled
receptors [11]. The multiple beneficial effects on the intestine
of butyrate are well documented, which proved that butyrate
plays a regulatory role in immune regulation, enhances epithe-
lial defense barrier, and ameliorates oxidative stress and
mucosal inflammation, transepithelial fluid transport, intesti-
nal motility, and visceral perception [12]. However, the
unpleasant odor of butyrate limits the consumption of
butyrate-containing feeds [13], and butyrate is often absorbed
prematurely in the digestive tract rather than reach the colon
to function [14]. For better application of butyrate in fish spe-
cies, some production forms including butyric acid (BA),
butyrate glycerides (BG), microencapsulated sodium butyrate
(MSB), sodium butyrate (SB), and tributyrin (TB) were devel-
oped [15]. Tributyrin is composed of a glycerol backbone and
three butyric acid lipid molecules, which have higher stability
and produce more butyric acid in the gut compared to other
butyrate forms [16]. Tributyrin has been proved to regulate
gut health and inflammation. Previous studies found that tri-
butyrin supplementation attenuated ethanol-induced intesti-
nal inflammation in mice [17] and similar studies in piglets
[18]. In regard to aquatic animals, studies also reported posi-
tive effects of tributyrin on growth performance, intestinal
morphology, microbiota, and lipid metabolism of tributyrin

in black sea bream (Acanthopagrus schlegelii) [19], snake head
(Channa argus) [20], large yellow croaker [21], and yellow
drum (Nibea albiflora) [22].

Large yellow croaker is the major economic fish widely
farmed in southeast coastal areas of China [23]. To date,
extensive studies have been conducted on large yellow
croaker in the nutritional requirements and replacement of
fish meal [24–26]. Based on the research on carnivorous fish
including largemouth bass [4, 27], turbot [5], and large yel-
low croaker [7], we supposed that 45% may be a high level
of CAP replacement. To make CAP more widely applied,
growth performance, intestinal digestive enzyme activity,
antioxidant capacity, and inflammation-related gene expres-
sion were evaluated in large yellow croaker fed with different
levels of tributyrin supplementation in a high-CAP diet.

2. Materials and Methods

2.1. Ethical Approval. The use and care of animals were
approved by the Committee on the Ethics of Animal Exper-
iments of Ocean University of China and followed by Man-
agement Rule of Laboratory Animals (Chinese Order
NO.676 of the State Council, revised 1 March 2017).

2.2. Experimental Diets. Seven isonitrogenous and isolipid diets
(containing 42% crude protein and 12% crude lipid) were for-
mulated in this experiment. Fish oil and soybean lecithin were
the main source of lipid, and bread flour was the main source
of carbohydrate in diets. As the main protein source, the com-
position of CAP and fish meal was analyzed (Table 1). The neg-
ative control diet named as FM was designed with inclusion of
40% fish meal, while CAP was used replacing 45% fish meal
protein in the positive control named as FC. The amino acid
compositions of the FM and FC diets were analyzed (Table 2).
Based on FC, other 5 experimental diets supplementing graded
levels of 0.05%, 0.1%, 0.2%, 0.4%, and 0.8% tributyrin (Shanghai
Menon Animal Nutrition Technology Co., Ltd., Shanghai,
China) were formulated (Table 3). In brief, the raw ingredients
were thoroughly ground and sieved. The tributyrin was blended
into bread flour as premix. All ingredients were mixed with liq-
uid mixture of fish oil, soybean lecithin, and clean water to pro-
duce a stiff dough and then using a granulator to produce the
pellets (3mm × 5mm). All pellets were dried at 50°C overnight
then refrigerated at -20°C before use.

2.3. Feeding Procedure. All juvenile large yellow croakers were
supplied by Aquatic Seeds Farm of the Marine and Fishery
Science and Technology Innovation Base, Ningbo, China.
Before the experiment, juveniles were fed commercial diets
and acclimated in a floating sea cage (4m × 8m × 4m) for
14 days. After acclimation, juveniles (initial body weight:
12:90 ± 0:02 g) were randomly apportioned to 21 sea cages
(1m × 1m × 2m). Each experimental diet was allocated to
three cages containing 40 fish per cage. Juveniles were hand-
fed two times a day (05:00 and 17:00) until visual apparent
satiation for 8 weeks and growth with appropriate water envi-
ronmental conditions (temperature: 18.4 to 24.2°C; dissolved
oxygen level: 6.3 to 7.6mg/L, and salinity: 26.5 to 29.3‰) dur-
ing the experimental period.

2 Aquaculture Nutrition



2.4. Sampling. At the end of the experiment, juveniles per
cage were anesthetized with eugenol (1: 10,000; Shanghai
Reagent, China) after being starved for one day. The number
of total fish in each cage was counted, and final body weight
was recorded to detect survival rate and growth perfor-
mance. The wet weight of the body, viscera, and liver was
measured to calculate the morphological indexes. Four fish
of each cage were randomly selected and refrigerated at

-20°C for whole-body composition analysis. Six fish of each
cage were sampled for serum samples and intestine samples
for further analysis. Use a 1mL syringe to collect blood from
the fishtail vein, refrigerate at 4°C overnight, and then centri-
fuge (4,000 rpm for 15min) to collect serum. Serum and
intestine samples were put into liquid nitrogen immediately
then stored at –80°C for further analysis.

2.5. Experimental Diets and Whole Fish Body Composition
Analysis. Moisture, crude protein, and crude lipid in the
whole fish body were analyzed by AOAC (1995). Moisture
was measured by drying samples at 110°C to a constant
weight. Crude protein was measured based on the Kjeldahl
method, and crude lipid was measured by the Soxhlet extrac-
tion method (FOSS, Soxtec 2050).

The freeze dryer (ALPHA 1–4 LD freeze dryer, Kleist,
Germany) was used to dry the raw materials and experimen-
tal diets to a constant weight at –50°C. The automatic amino
acid analyzer (L-8900, Hitachi) was used to determine the
amino acid profiles of freeze-dried samples after acid hydro-
lysis (6N HCl at 110°C for 24 h).

2.6. Serum Index Analysis. The serum alkaline phosphatase
(ALP), alanine transaminase (ALT), and aspartate transam-
inase (AST) were detected by commercial kits provided by
Nanjing Jiancheng Bioengineering Institute (Nanjing,
China). The preparation and operation of the reagents were
carried out strictly in accordance with the operating proce-
dures of the specific kits.

2.7. Intestinal Digestive Enzymes and Antioxidant Activity.
The intestinal digestive enzyme activity of amylase, trypsin,
and lipase and the intestine antioxidant capacity index of
total antioxidant capacity (T-AOC), superoxide dismutase
(SOD), malondialdehyde (MDA), and catalase (CAT) were
assessed by specific commercial kits. All kits were obtained
from Nanjing Jiancheng Bioengineering Institute (Nanjing,
Jiangsu, China). The preparation and operation of the
reagents were carried out according to the operating proce-
dures of the specific kits.

2.8. RNA Extraction and Real-Time Quantitative PCR. Total
RNAs of intestine were extracted in strict accordance with
the instruction of RNA isolation kit (Vazyme, Nanjing,
China). A NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific, USA) was used to detect the quality and
concentration of RNA. HiScript II Q RT SuperMix for qPCR
(+gDNA wiper) purchased from Vazyme (Nanjing, China)
was used to reversely transcribe RNA to cDNA in strict
accordance with the instruction of manufacturer. The CFX
Connect Real-Time System (Bio-Rad) was used to analyze
relative quantifies of target genes; then, a total volume of
qPCR was carried out as follows: 1μL cDNA primer, 2μL
cDNA product, 10μL ChamQ SYBR qPCR Master Mix
(Vazyme, Nanjing, China), and 7μL RNAase-free water.
Primers used in this study are shown in Table 4. The RT-
qPCR program was set according to previous research [28].
The amplification efficiency and specificity of the product
were confirmed by a standard curve and melting curve

Table 1: Compositions of fishmeal and the Clostridium
autoethanogenum protein (CAP) used in the present study (%,
dry matter).

Fish meal CAP

Arginine 4.35 3.23

Histidine 2.15 1.28

Isoleucine 2.70 5.50

Leucine 4.96 6.33

Lysine 5.15 8.49

Methionine 1.92 2.24

Phenylalanine 3.34 3.40

Threonine 2.60 4.10

Valine 3.12 5.32

Alanine 4.34 4.16

Aspartic acid 5.88 9.12

Cysteine 0.51 0.56

Glutamic acid 8.49 8.80

Glycine 3.93 3.98

Proline 2.59 2.32

Serine 2.49 3.05

Tyrosine 1.87 2.66

Table 2: Amino acid (AA) compositions of the FM and FC
experimental diets (%, dry matter).

FM FC

Arginine 2.64 2.41

Histidine 1.35 1.11

Isoleucine 1.50 1.83

Leucine 3.28 3.50

Lysine 3.06 3.39

Methionine 0.33 0.48

Phenylalanine 2.08 2.08

Threonine 1.94 1.95

Valine 1.73 1.84

Alanine 2.70 2.56

Aspartic acid 4.05 4.30

Cysteine 0.34 0.34

Glutamic acid 7.08 7.07

Glycine 2.15 2.07

Proline 2.21 2.15

Serine 2.09 2.07

Tyrosine 1.46 1.50
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Table 3: Formulation and proximate composition of the experiment diets (% dry weight).

Ingredients
Diets

FM FC TB0.05 TB0.1 TB0.2 TB0.4 TB0.8

Fish meal1 40.00 22.00 22.00 22.00 22.00 22.00 22.00

Krill meal1 3.00 3.00 3.00 3.00 3.00 3.00 3.00

Soybean protein concentrate1 12.00 12.00 12.00 12.00 12.00 12.00 12.00

Bread flour1 31.25 31.25 31.25 31.25 31.25 31.25 31.25

Clostridium autoethanogenum protein1,2 0 16.00 16.00 16.00 16.00 16.00 16.00

Pregelatinized starch 2.00 2.00 1.95 1.90 1.80 1.60 1.20

Fish oil 6.00 8.00 8.00 8.00 8.00 8.00 8.00

Choline chloride 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Soybean lecithin 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Vc polyphosphate 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Ca(H2PO4)2 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Vitamin premix3 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Mineral premix4 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Attractant5 0.20 0.2 0.2 0.2 0.2 0.2 0.2

Mould inhibitor 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Ethoxy quinoline 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Tributyrin6 0 0 0.05 0.1 0.2 0.4 0.8

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Analyzed nutrient composition (% dry matter basis)

Crude protein 43.08 43.67 42.95 43.46 43.51 43.62 43.29

Crude lipid 11.38 11.45 11.27 11.86 11.54 11.78 11.72
1Fish meal (71.22% crude protein, 11.12% crude lipid); krill meal (53.18% crude protein, 13.10% crude lipid); soybean protein concentrate (64.77% crude
protein); bread flour (17.39% crude protein, 0.34% crude lipid); Clostridium autoethanogenum protein (82.30% crude protein). 2Clostridium
autoethanogenum protein was provided by Hebei Shoulang New Energy Technology Co., Ltd., Hebei, China. 3Vitamin premix (mg/kg diet), retinal
acetate, 32; alpha-tocopherol, 240; menadione, 10; thiamin, 25; pyridoxine HCl, 20; vitamin B12, 10; riboflavin, 45; pantothenic acid, 60; cholecalciferol, 5;
folic acid, 20; niacin 200; biotin, 60; inositol, 800; microcrystalline cellulose, 13473. Vitamin C was supplied in the form of vitamin C polyphosphate.
4Mineral premix (mg/kg diet), MgSO4·7H2O, 1200; FeSO4·H2O, 80; ZnSO4·H2O, 50; CuSO4·5H2O, 10; MnSO4·H2O, 45; CoCl2·6H2O, 50; Na2SeO3, 20;
H2CaIO4, 60; zeolite powder, 13485. 5Attractant, glycine and betaine. 6Tributyrin was provided by Shanghai Menon Animal Nutrition Technology Co.,
Ltd., Shanghai, China.

Table 4: Primers used in the quantitative real-time PCR analysis1.

Gene Forward (5′-3′) Reverse (5′-3′) AE Reference

tnf-α ACACCTCTCAGCCACAGGAT CCGTGTCCCACTCCATAGTT 0.97 [53]

il-1β CATCTGGAGGCGGTGGAGGA GGGACAGACCTGAGGGTGGT 0.98 [53]

il-6 CGACACACCCACTATTTACAAC TCCCATTTTCTGAACTGCCTCT 0.95 [53]

il-10 AGTCGGTTACTTTCTGTGGTG TGTATGACGCAATATGGTCTG 1.01 [53]

ifn-γ TCAGACCTCCGCACCATCA GCAACCATTGTAACGCCACTTA 0.99 [53]

nrf2 GATGGAAATGGAGGTGATGC CATGTTCTTTCTGTCGGTGG 0.97 [54]

keap1 AACTCCAGTCTGTCTTCCCGAATC GCGTTAATGGCACTTTGAACTCTAC 0.99 [54]

β-Actin GACCTGACAGACTACCTCATG AGTTGAAGGTGGTCTCGTGGA 1.06 [53]
1AE: amplification efficiency; tnfα: tumor necrosis factor α; il-1β: interleukin-1β; il-6: interleukin-6; il-10: interleukin-10; ifnγ: interferon γ; nrf2: nuclear factor
erythroid 2-related factor 2; keap1: Kelch-like ECH-associated protein 1.
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Figure 1: Effects of tributyrin supplementation on survival and growth performance of juvenile large yellow croaker fed diets with high level
of Clostridium autoethanogenum protein replacing fish meal. Values are means (n = 3), with the vertical bars represent the standard error.
Data in bars sharing the common letters indicated no significant difference determined by Tukey’s test (P > 0:05).
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analysis. The gene expression levels were analyzed using the
2−ΔΔCT methods.

2.9. Calculations and Statistical Methods.

Weight gain rate WGR,%ð Þ = 100 × Wt −Wo

Wo
,

Specific growth rate SGR,%/dð Þ = 100 × LnWt − LnWo

d
,

Hepatosomatic index HSI,%ð Þ = 100 × liver weight
body weight ,

Viscerasomatic index VSI,%ð Þ = 100 × visceral weight
body weight ,

Feed intake FI,%/dayð Þ = 100 × F
d × Wt +Woð Þ/2 ,

Feed efficiency ratio FERð Þ = wetweight gain
F

,

Protein efficiency rate PER,%ð Þ = wet weight gain
total protein fed ,

Survival rate SR,%ð Þ = 100 × FN
IN ,

ð1Þ

whereWt was the final weight andWo was the initial weight
of fish in the cage, d was the experiment period, F was the
total feed consumption (g, dry matter), and FN and IN were
the final and initial numbers of fish.

SPSS Statistics 25.0 software (IBM, USA) was used to
analyze the data by using one-way analysis of variance
(ANOVA), and then, specific differences were assessed by
Tukey’s test. All the data were expressed as means ± SEM

(standard error of themean). The level of significant difference
was indicated by P < 0:05.

3. Result

3.1. Survival, Growth Performance, and Morphological
Indexes. SR ranging from 0.05% to 0.8% tributyrin showed
no significant difference (P > 0:05). WGR and SGR in fish
fed the FC diet were significantly lower compared with fish
fed the FM diet. The supplementation of 0.05% and 0.1% tri-
butyrin significantly increased the WGR and SGR compared
to fish fed with the FC diet (P < 0:05). No remarkable differ-
ences were observed in HSI, VSI, and FER in all treatments
(P > 0:05) (Figure 1).

3.2. Body Composition. No remarkable differences were
detected in the moisture and crude protein of whole fish
body in all tributyrin treatments (P>0.05). The highest
whole body crude lipid content was observed in the fish
fed with the FM diet, but not significantly different in all tri-
butyrin treatments (P > 0:05) (Table 5).

3.3. Serum Biochemical Indexes. No remarkable differences
were was observed in serum alkaline phosphatase (ALP)
activity (P > 0:05). As the tributyrin level elevated from
0.05% to 0.8%, serum alanine transaminase (ALT) activity
showed a first decreasing then increasing trend. The activity
of serum ALT in fish fed diets with 0.05-0.2% tributyrin was
significantly lower than that that in fish fed the FC diet. The
activity of serum AST in fish fed tributyrin supplementation
diets had significantly lower than that that in fish fed the FC
diet (P < 0:05) (Table 6).

3.4. Intestinal Digestive Enzyme Activity. No remarkable dif-
ferences were detected in the activity of amylase in all tribu-
tyrin treatments (P > 0:05). As the tributyrin level elevated
from 0.05% to 0.8%, the activity of lipase showed increasing

Table 5: Effects of tributyrin supplementation on whole body proximate composition (wet weight, %) in juvenile large yellow croaker fed
diets with high level of Clostridium autoethanogenum protein replacing fish meal (means ± SEM, n = 3)1.

Index
Diets

FM FC TB0.05 TB0.1 TB0.2 TB0.4 TB0.8

Moisture 74:29 ± 0:17 75:67 ± 0:94 74:45 ± 0:59 75:53 ± 0:36 75:36 ± 0:98 75:04 ± 0:90 75:45 ± 0:65
Crude protein 15:62 ± 0:67 15:06 ± 0:50 15:86 ± 0:65 15:59 ± 0:43 15:36 ± 0:38 16:16 ± 0:85 16:18 ± 0:28
Crude lipid 6:53 ± 0:45 7:05 ± 0:23 6:42 ± 0:34 6:41 ± 0:27 6:47 ± 0:35 6:27 ± 0:23 6:18 ± 0:24
1Data sharing the same superscript letter in the common row indicated no significant difference determined by Tukey’s test (P > 0:05).

Table 6: Effects of tributyrin supplementation on serum indexes of juvenile large yellow croaker fed diets with high level of Clostridium
autoethanogenum protein replacing fish meal (means ± SEM, n = 3)1.

Index
Diets

FM FC TB0.05 TB0.1 TB0.2 TB0.4 TB0.8

ALP (U/L) 15:58 ± 1:12 14:51 ± 0:74 16:20 ± 0:48 16:80 ± 0:65 15:28 ± 0:39 16:49 ± 0:72 16:43 ± 0:41
ALT (U/L) 5:64 ± 0:27bc 7:97 ± 0:55a 4:43 ± 0:57bc 3:42 ± 0:74c 5:40 ± 0:50bc 6:02 ± 0:21ab 6:64 ± 0:48ab

AST (U/L) 9:24 ± 0:83b 15:49 ± 0:86a 10:32 ± 0:54b 9:42 ± 0:70b 9:74 ± 0:21b 9:58 ± 0:29b 10:36 ± 1:10b
1Data sharing the same superscript letter in the common row indicated no significant difference determined by Tukey’s test (P > 0:05). ALP: alkaline
phosphatase; ALT: alanine transaminase; AST: aspartate transaminase.
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followed by decreasing trends. The activity of lipase was
remarkedly higher in fish fed with 0.1% tributyrin than in
fish fed the FC diet (P < 0:05). The activity of trypsin was
remarkedly higher in fish fed diets with 0.05% and 0.1% tri-
butyrin compared to those fed FM and FC diets (P < 0:05)
(Table 7).

3.5. Intestinal Antioxidant Capacity and the mRNA Expression
of Antioxidant-Related Genes in the Intestine. No remarkable
differences were detected in T-AOC, SOD, and CAT between
fish fed with FM and FC diet (P > 0:05). The activity of T-
AOC was significantly increased in fish fed with 0.05% tribu-
tyrin than that in the FC diet, while the activity of SOD was
significantly increased in fish fed with 0.1% tributyrin than
that in the FC diet (P < 0:05). The supplementation of
0.05%-0.4% tributyrin significantly decreased MDA content
compared with fish fed with FC diet (P < 0:05). Moreover,
the activity of CAT in fish fed the diet with 0.8% tributyrin
was notably decreased compared to those fed with FC diet
(P < 0:05) (Table 8).

In regard to antioxidant-related genes, with the tribu-
tyrin level elevated from 0.05% to 0.8%, mRNA expressions
of nrf2 showed increasing followed by decreasing trends.
0.1% tributyrin supplementation had notably increased the
expression level of nrf2 (P < 0:05). Besides, the expression
levels of keap1 were notably downregulated in fish fed with

0.1%-0.8% tributyrin diets compared with the FC diet
(P < 0:05) (Figure 2).

3.6. The mRNA Expression of Inflammation-Related Genes in
the Intestine. The expression of proinflammatory genes in
fish fed the FC diet were upregulated compared to the FM
diet. With the tributyrin level elevated from 0.05% to 0.8%,
mRNA expressions of tnf-α, il-1β, and ifn-γ showed decreas-
ing trends followed by increasing trends (P < 0:05). Com-
pared to the FC diet, mRNA expression of tnf-α and il-1β
was remarkably downregulated in fish fed with tributyrin
(P < 0:05). The mRNA expressions of ifn-γ and il-6 in fish
fed the diet with 0.05-0.2% tributyrin were markedly lower
than those in fish fed the FC diet (P < 0:05). Moreover, when
the tributyrin level elevated from 0.05% to 0.8%, mRNA
expression of anti-inflammatory genes il-10 increased
followed by decreased and was remarkably higher in fish
fed with 0.2% tributyrin diet than those fed the FC diet
(P < 0:05) (Figure 3).

4. Discussion

Tributyrin had a positive effect on the growth performance of
large yellow croaker. In this study, substituting 45% of fish
meal protein with CAP significantly degraded the growth of
large yellow croaker, which indicated that high level of CAP

Table 8: Effects of tributyrin supplementation on activities of MDA content and antioxidant enzymes in the intestine of juvenile large
yellow croaker fed diets with high level of Clostridium autoethanogenum protein replacing fish meal (means ± SEM, n = 3)1.

Index
Diets

FM FC TB0.05 TB0.1 TB0.2 TB0.4 TB0.8

T-AOC (U/mg protein)2 0:41 ± 0:02bc 0:39 ± 0:02c 0:52 ± 0:02a 0:49 ± 0:02ab 0:43 ± 0:01bc 0:46 ± 0:02abc 0:44 ± 0:02abc

SOD (U/mg protein)2 91:93 ± 3:39ab 87:24 ± 3:45b 97:8 ± 2:29ab 102:69 ± 1:81a 92:96 ± 3:45ab 92:04 ± 1:49ab 88:36 ± 2:04b

MDA (nmol/mg protein)2 1:66 ± 0:28c 4:53 ± 0:32a 2:76 ± 0:18bc 2:22 ± 0:23bc 3:06 ± 0:45abc 2:80 ± 0:53bc 3:51 ± 0:16ab

CAT (U/mg protein)2 14:39 ± 0:56a 13:67 ± 0:72ab 14:51 ± 0:31a 11:62 ± 0:33b 10:36 ± 0:64bc 11:63 ± 0:89b 8:97 ± 0:13c
1Data sharing the same superscript letter in the common row indicated no significant difference determined by Tukey’s test (P > 0:05). 2T-AOC: total
antioxidant capacity; SOD: superoxide dismutase; MDA: malondialdehyde; CAT: catalase.
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Figure 2: Effects of tributyrin supplementation on the expression of antioxidant-related genes in the intestine of juvenile large yellow
croaker fed diets with high level of Clostridium autoethanogenum protein replacing fish meal. Values are means (n = 3), with the vertical
bars represent the standard error. Data in bars sharing the common letters indicated no significant difference determined by Tukey’s test
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8 Aquaculture Nutrition



replacing fish meal can have a negative effect on fish growth.
This result ties well with previous studies in pacific white
shrimp [6] and largemouth bass [27]. The decline in growth
performance may be attributed to the lack of arginine in
CAP and some unknown growth factors in fish meal [6].
However, the WGR and SGR were increased with the appro-
priate tributyrin supplementation (0.05% and 0.10%) in diet
with high levels of CAP, indicating that the growth perfor-
mance of large yellow croaker could be improved by tributyrin
supplementation, which was consistent with previous research
in our lab [21]. Similar results were found in marine fish
including golden pompano [29], turbot [30], and sea bream
[31]. A study in tawny puffer showed that WG, SGR, feed effi-
ciency (FE), and protein efficiency ratio (PER) of fish were
increased with the increasing TB level in diets [32]. In our
study, tributyrin supplementation improved feed efficiency
and protein utilization compared to FC, but did not reach a
significant level. The difference could be due to different spe-
cies, supplementation levels, and CAP replacement levels. Pre-
vious studies have shown that the supplementation of butyrate
and its derivatives in the diets of animal production species
including pigs [33], poultry [34], and ruminants [35, 36] facil-
itates the development of the gastrointestinal tract, promotes
the digestion and absorption of nutrients, and improves the
gut health of animals. The result of these improvements is
often related to an observed increase in growth performance
[13]. Our experiment also found that an appropriate amount

of tributyrin can improve the digestive enzyme activity and
antioxidant capacity of the intestine and reduce inflammation.
However, dose-response experiments reported that high buty-
rate in diet had no positive effect or even had an adverse effect
on the growth performance of fish [15]. A previous study on
black sea bream showed that adverse effects on growth perfor-
mance could be observed when the tributyrin supplementa-
tion reached 0.8% in the diet [19]. In our study, a similar
result was observed. Presumably, high levels of butyrate prod-
ucts have a strong odor and bitter taste [37], whichmay reduce
fish feed intake and reduce fish growth performance.

Digestive enzyme activity affects the feed utilization of
fish, which is an important factor in optimizing dietary for-
mula [38]. Previous studies have demonstrated the substitu-
tion of SCP for fish meal seems to have little effect on the
digestive enzyme activity of aquatic animals. In pacific white
shrimp, the activities of digestive enzymes did not signifi-
cantly affect when diet fish meal replaced by SCP [39]. In
the present study, the digestive enzyme activities in fish fed
with 45% CAP were decreased without a significant differ-
ence compared with the FM diet. CAP has been proven to
have good absorbing properties in fish. The apparent digest-
ibility of CAP by largemouth bass was 82.77%, 87.44%, and
97.48%, respectively [40]. 45% CAP substitution ratio may
not be enough to inhibit digestion and absorption of large
yellow croaker. However, tributyrin supplementation signif-
icantly increased digestive enzyme activities compared with
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Figure 3: Effects of tributyrin supplementation on the expression of inflammation-related genes in the intestine of juvenile large yellow
croaker fed diets with high level of Clostridium autoethanogenum protein replacing fish meal. Values are means (n = 3), with the vertical
bars represent the standard error. Data in bars sharing the common letters indicated no significant difference determined by Tukey’s test
(P > 0:05). tnfα: tumor necrosis factor α; il-1β: interleukin-1β; il-6: interleukin-6; il-10: interleukin-10; ifnγ: interferon γ.
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the FC diet. In intrauterine retarded piglets, tributyrin sup-
plementation significantly increased lipase activity in the
ileum and trypsin activity in the ileum and jejunum [33].
It was also reported that dietary supplementation of 2.5 g/
kg tributyrin increased the activities of lipase and protease
in snakehead [20]. As the major energy source for intestinal
epithelial, butyric acid plays a vital role in absorption, feed
digestion, and promoting intestinal development [41]. Sup-
plementation of tributyrin may participate in releasing buty-
rate, thus promoting the absorption of CAP nutrients by fish
to improve growth performance to some extent.

Further investigation showed the effect of tributyrin on
enhancing antioxidant capacity. Oxidative stress results from
an imbalance between the generation of oxygen-derived radi-
cals and the antioxidant defenses of organism. Organisms
have evolved a system to prevent and repair the impact of oxi-
dative stress. Prevention comes in the antioxidant form, which
can be enzymatic [42]. Antioxidant capacity is a crucial index
for evaluating the health and oxidative stress status of fish. Tri-
butyrin supplementation reducedMDA content and increased
the activities of T-AOC and SOD in intestine. Results in this
study showed that 45% CAP replacement of fish meal could
cause slight oxidative damage to juvenile large yellow croaker
intestine, and this negative effect could be alleviated by tribu-
tyrin supplementation. Moreover, at the gene level, our results
indicated that the mRNA expression of the antioxidant-
related gene nrf2 was remarkably upregulated in the 0.1% tri-
butyrin treatments, while the mRNA expression of keap1 was
downregulated. A previous study in goats [43] lead the con-
sisted result suggesting that butyrate may increase the antiox-
idant enzyme activity by regulating the Nrf2 signaling
pathway, thus alleviating oxidative damage. Sodium butyrate
supplementation can also enhance the intestinal physical bar-
rier function of grass carp through the Nrf2 signal path-
way [44].

Oxidative stress is usually accompanied by elevated levels
of inflammation; appropriate amounts of inflammatory fac-
tors are involved in damaged tissue regeneration, which can
repair and heal wounds. Severe inflammation will impair tis-
sues and cells, causing various inflammatory diseases and seri-
ously compromise the normal immune performance of fish
[45, 46]. Therefore, intestinal inflammatory status was
assessed in this study. The result indicated that high level of
CAP replacing fish meal could upregulate the expression of
proinflammatory genes and downregulate the expression of
anti-inflammatory genes, suggesting that the immune func-
tion of the intestine may be impaired. Similar findings were
observed in the study of Pacific shrimp, in which 30% CAP
replacement significantly upregulated the immune genes such
as cox1 and cox2, and the damage appeared to be more severe
when the replacement level reached 70% [6]. Our results also
found that tributyrin supplementation could remarkably sup-
press inflammation. The mRNA expression of genes related to
anti-inflammatory cytokines il-10 was significantly elevated in
fish fed the tributyrin treatment diets compared to the FC diet,
while expression of pro-inflammatory cytokines (tnf-α, il-1β,
il-6, and ifn-γ) showed a reverse trend. In accordance with
findings in our study, mammals reported that tributyrin
reduces content of TNF-α, IL-6, and IL-1β in macrophages

of mice fed a high-fat diet [47]. Wang et al. [18] found that
intestinal inflammation and oxidative stress could be attenu-
ated by tributyrin supplementation in diquat-challenged pigs.
The anti-inflammatory properties of butyrate have also been
reported in aquatic animals. Ding et al. [9] found tributyrin
could significantly reduce lipid peroxidation and intestinal
protein carbonylation levels and degrade tnf-α and il-16
expression levels in the intestine of shrimp. A similar conclu-
sion was found in grass carp [48] and common carp [49].
Moreover, the mechanism of this anti-inflammatory effect
could be due to butyrate which plays an immunomodulatory
role by inhibiting the activation of nuclear factor kappa B
(NF-κB) signaling pathway and then suppressed the initiation
and expression of downstream proinflammatory cytokines
and a group of chemokine genes [48, 50, 51]. Previous studies
indicated NF-κB activation may suppress the myosin light
chain kinase (MLCK) expression, then enhance intestinal
integrity, and reduce the permeability of the intestinal mucosal
epithelium to pathogens to exert anti-inflammatory effects
[22, 52].

5. Conclusion

In conclusion, this study indicated appropriate supplemen-
tation of tributyrin has a positive effect on the growth per-
formance of large yellow croaker fed with a high level of
CAP-replaced fish meal, which is mainly attributed to the
enhancement of intestinal digestive enzyme activity and
antioxidant capacity and reduced the inflammatory response
of large yellow croaker. In terms of this study, the optimal
tributyrin level was approximately 0.1% with CAP replaced
45% fish meal protein in a diet for juvenile large yellow
croaker.
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