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An eight-week feeding trial explored the mechanism that supplemented methionine (0 g/kg, 4 g/kg, 8 g/kg, and 12 g/kg) in a high-
fat diet (120 g/kg fat) on intestinal lipid transportation and gut microbiota ofM. Albus (initial weight 25:03 ± 0:13 g) based on the
diet (60 g/kg fat), named as Con, HFD+M0, HFD+M4, HFD+M8, and HFD+M12, respectively. Compared with Con, gastric
amylase, lipase, trypsin (P < 0:05), and intestinal lipase, amylase, trypsin, Na+/K+ -Adenosinetriphosphatase, depth of gastric
fovea, and the number of intestinal villus goblet cells of HFD+M0 were markedly declined (P < 0:05), while intestinal high-
density lipoprotein-cholesterol, very low-density lipoprotein-cholesterol and microsomal triglyceride transfer protein of HFD
+M0 were markedly enhanced (P < 0:05); compared with HFD+M0, gastric lipase, amylase, trypsin, and intestinal lipase,
trypsin, Na+/K+ -Adenosinetriphosphatase, microsomal triglyceride transfer protein, very low-density lipoprotein-cholesterol,
and apolipoprotein -A, the height of intestinal villus and the number of intestinal villus goblet cells of HFD+M8 were
remarkably enhanced (P < 0:05). Compared with Con, intestinal occ, cl12, cl15, zo-1, zo-2 of HFD+M0 were markedly down-
regulated (P<0.05), while intestinal vldlr, npc1l1, cd36, fatp1, fatp2, fatp6, fatp7, apo, apoa, apob, apof, apoo, mct1, mct2, mct4,
mct7, mct12, lpl, mttp, moat2, dgat2 of HFDM0 were remarkably upregulated (P < 0:05); compared with HFD+M0, intestinal
gcn2 and eif2α of HFD+M8 were remarkably downregulated (P < 0:05), intestinal occ, cl12, cl15, zo-1, zo-2, hdlbp, ldlrap, vldlr,
cd36, fatp1, fatp2, fatp6, apo, apoa, apob, apof, apoo, mct1, mct2, mct8, mct12, lpl, mttp, moat2, and dgat2 were remarkably
upregulated (P < 0:05). Compared with Con, the diversity of gut microbiota of HFD+M0 was significantly declined (P < 0:05),
while the diversity of gut microbiota in HFD+M8 was significantly higher than that in HFD+M0 (P < 0:05). In conclusion, a
high-fat methionine deficiency diet destroyed the intestinal barrier, reduced the capacity of intestinal digestion and absorption,
and disrupted the balance of gut microbiota; supplemented methionine promoted the digestion and absorption of lipids, and
also improved the balance of gut microbiota.

1. Introduction

Soybean protein is a high-quality plant protein and, with a
short growth cycle, was widely used in aquatic feed to
replace a fish meal [1]. However, methionine is the most
lacking amino acid in soybean protein, it is also essential
amino acid for fish [2]. There have been lots of studies
reported that a higher proportion of soybean protein used

in aquatic feed replacing fish meal inhibits growth perfor-
mance and the body’s metabolism of fish [3–5]. Addition-
ally, methionine also regulates the body’s metabolism with
metabolites of methionine through transsulfuration [6],
transamination [7], and transmethylation [8]. Besides,
methionine can also be considered as a signal molecule
induce various metabolism for aquatic animals [9–11].
Methionine restriction not only inhibits protein synthesis
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but also damages the healthy state of fish [12–14] and
decreases intestinal digestive and antioxidant enzymes and
immunomodulatory of rohu (Labeo rohita) [15].

The gastrointestinal tract is mainly involved in digestion
and absorption. Gastrointestinal tract health and functional
integrity have significant effects on an animal’s overall healthy

Table 1: Experimental diets and level of nutrition (%).

Ingredients Con HFD+M0 HFD+M4 HFD+M8 HFD+M12

Fish meal 11 11 11 11 11

Soy protein concentrate 40 40 40 40 40

Fish oil 4 10 10 10 10
1DL-methionine 0 0 0.4 0.8 1.2

Lysine 0.36 0.36 0.36 0.36 0.36

Glycine 1.6 1.6 1.2 0.8 0.4

Glutamate 0.4 0.4 0.4 0.4 0.4
2Attractant 0.1 0.1 0.1 0.1 0.1

Wheat meal 7.84 7.84 7.84 7.84 7.84

Cellulose 6 0 0 0 0

α-Starch 20 20 20 20 20

Brewer yeast 5 5 5 5 5

Choline chloride 0.5 0.5 0.5 0.5 0.5

Ca(H2PO4)2 2 2 2 2 2
3Vitamin and mineral premix 1.2 1.2 1.2 1.2 1.2

Total 100 100 100 100 100

Proximate analysis

Dry matter (g/kg) 923.55 925.36 924.62 924.36 924.77

Crude protein (g/kg) 446.38 457.37 449.34 448.47 452.37

Crude lipid (g/kg) 67.95 126.26 127.37 127.72 126.13

Crude ash (g/kg) 101.16 100.36 102.32 101.25 100.47
1DL-Methionine (BR, 99%), 2attractant, and 3vitamin and mineral premix were referenced in our earlier study [32, 33].

Table 2: Contents of amino acids of experimental diets (g/kg).

Amino acids Con HFD+M0 HFD+M4 HFD+M8 HFD+M12

His☆ 9.61 9.71 9.74 9.57 9.78

Ser 18.75 18.82 18.87 19.02 18.83

Arg☆ 23.24 23.41 23.40 23.46 23.49

Gly 32.65 32.58 28.36 24.52 19.85

Asp 42.23 42.27 42.38 42.33 42.38

Glu 75.73 75.68 75.51 75.43 75.57

Thr☆ 15.52 15.37 15.32 15.62 15.53

Ala 19.64 19.55 19.73 19.54 19.84

Pro 19.97 19.70 19.75 19.86 19.86

Cys 1.03 1.04 1.06 1.03 1.07

Lys☆ 36.61 36.53 36.63 36.42 36.73

Tyr 9.88 9.70 9.78 9.79 9.84

Met☆ 2.14 2.03 6.22 10.02 14.21

Val☆ 18.53 18.41 18.37 18.74 18.53

Ile☆ 17.23 17.43 17.52 17.32 17.10

Leu☆ 29.64 29.73 29.71 29.86 29.52

Phe☆ 18.43 18.78 18.53 18.44 18.41

Trp / / / / /
∗Note: ☆for essential amino acids.
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statement and utilization of nutrients, and gastrointestinal
function includes digestion and absorption of nutrients by
epithelial and goblet cells, secretion of immunoglobulins and
mucins, also forming a barrier against harmful antigens and
pathogens [16]. A study reported that branched-chain amino
acid could promote intestinal morphology and cell breeding
and enhance intestinal amino acid absorption by inducing
intestinal amino acid transporters and promoting intestinal
protein turnover [17]. Methionine also benefits intestinal
morphology; besides, gut bacteria are related to extensive
catabolism of dietary methionine in the intestine [18]. A pre-
vious study on nursery pigs indicated that dietary methionine
improves small intestinal morphology by enhancing villous
height and reducing bacteria fermentation via improving
nutrient digestion and absorption [19].What is more, supple-
ment methionine could assist in producing glutathione and
enhance the morphology of the duodenum of the nursery
pig [20].

Gut microbiota could affect a host’s lipid metabolism
through multiple direct and indirect biological mechanisms
[21], even considered as an endocrine organ [22]. Semova
et al. [23] used fluorescent markers to image zebrafish

(Barchydanio rerio var) and found that gut microbiota could
stimulate the uptake of fatty acids and formation of lipid
droplets by intestinal epithelium and liver, sclerenchyma
enhances the absorption capacity of fatty acids by host’s
intestinal cells, thus promote to increase the amount of lipid
droplets. Meanwhile, the size of lipid droplets was increased
with the increasing abundance of bacteria, they demon-
strated that the golden rod bacteria (Chrysobacterium hispa-
nicum) and pseudomonas (Pseudomonas adaceae) are the
main bacteria regulating the size of host lipid droplets. [24]
reported that gut bacteria could ferment the indigestible car-
bohydrates, and digest the indigestible fiber of gut contents
into short-chain fatty acids. Additionally, gut microbiota
could promote the absorption of fatty acids by activating
the absorption capacity of intestinal epithelial cells. Our pre-
vious studies showed that a high-fat (fish oil) diet distur-
bance the homeostasis of intestinal microbiota, which
includes microbial population, an abundance of main micro-
biota, and an intestinal environment [25]. Meanwhile, dys-
biosis of gut microbiota induced by dietary oxidized fish
oil, while supplemented taurine could recover gut microbi-
ota homeostasis and restore intestinal function [26]. In

Table 3: Contents of fatty acids of experimental diets (mg/100 g).

Fatty acids Con HFD+M0 HFD+M4 HFD+M8 HFD+M12

C4:0 13.28 27.49 27.53 26.95 27.16

C8:0 5.17 10.21 10.05 10.04 10.2

C12:0 3.43 7.34 7.35 7.38 7.37

C13:0 11.14 22.17 21.32 22.46 22.74

C14:0 181.43 364.47 364.73 364.71 364.36

C14:1 2.43 5.12 5.08 5.2 5.13

C15:0 19.89 40.23 40.34 40.31 40.32

C16:0 603.12 1206.29 1209.21 1208.13 1206.77

C16:1 6.46 13.39 13.53 13.58 12.98

C17:0 13.4 26.63 26.75 26.34 26.24

C17:1 6.43 13.33 13.73 13.52 13.47

C18:0 120.35 241.39 241.87 241.88 241.73

18 : 1-T 16.23 32.84 32.53 32.46 32.71

C18:1N-9C 411.25 818.96 819.39 818.85 819.58

18 : 2-T 2.74 5.75 5.73 5.64 5.96

C18:2N-6C 16.35 33.71 33.34 32.85 33.12

C20:0 10.17 20.49 21.03 20.4 20.42

C20:1 26.84 53.47 53.49 53.86 54.95

C18:3N-3 235.36 472.02 471.15 471.33 471.11

C20:2 10.72 20.91 20.89 20.93 21.04

C22:0 5.94 11.89 11.78 11.68 11.93

C22:1N-9 198.23 394.76 395.38 395.69 394.88

C20:3N-3 32.37 64.19 63.24 65.13 64.18

C20:4N-6 25.25 50.49 50.54 50.36 50.51

C24:0 248.86 502.53 501.82 500.41 502.01

C20:5N-3 101.37 201.56 201.71 201.88 201.83

C24:1 21.06 42.18 41.93 42.3 42.32

C22: 6N-3 575.84 1143.39 1143.52 1145.11 1144.37

Note: C: Cis fatty acid; T: Transfatty Acids.
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addition, the abundance of firmicutes of gut microbiota
decreased with the supplementation of black soldier fly
(Hermetia illucens L.) larvae meal [27].

Rice field eel (Monopterus albus, M. albus) is subtropical
freshwater benthic fish [28], and prey on frog eggs, insects,
earthworms, and water earthworms in nature [17]. M. albus
has a gastrointestinal system, that needs better quality and
higher levels of protein, and optimum protein/lipid ratio

[29]. We found that when fish meal is replaced by soybean
meal [30], soy protein concentrate [31] declines the growth
performance of M. albus. Our earlier study showed that
methionine deficiency inhibits the growth performance of
M. albus [32, 33], also reduces bodies and hepatic lipid depo-
sition, and mainly declined fatty acid synthesis [34]. Addi-
tionally, a deficiency of methionine damages gastric and
intestinal structure reduces the function of the intestinal

Table 4: Primer sequence for qPCR.

Gene Forward (5′-3′) Reverse (5′-3′) ∗Accession no. Size (bp)
1gcn2 GGAACTCGTCCTGAACTG TGGTGAAGAACTTGCCTAT XM_020586241.1 298
2eif2a CCCCTTCCTTTGTTCGTC GCTGAGGCTTTCTTGTTCC XM_020621840.1 121
3lpl CGTTGACATCGGAGACCTGA CAAAGACCACCTTGGACTGAG XM_020613041.1 146
4moat2 TCTCCCTGCCTCTCTTTCA TGTCCACTCCATAGTTGCCT XM_020622089.1 213
5dgat2 ACTTCCGCTTTCCCTTG ATTCCCTGTCTCGTTATGTG XM_020622054.1 104
6mttp AAGATGCTCCAGGCTTTGTT TGTCAGGACCCTCTAAAATCAG XM_020602163.1 172
7hdlbp CCACCCCAGACGACAAAGAC GGCGAGCAACAAAATAACGA XM_020609988.1 165
8ldlrap CAGGAAGACAAAAGCAAGAAGG CGAGTGGGGTTACTATGAGGC XM_020617284.1 194
9vldlr ACATCCGTCGTTTGGGTCTA GTGGTAGTGTCCCCTCGTTT XM_020601062.1 169
10npc1l1 TTGGAGTCCCAGTTTATTT TACACTTGCGTCCACATT XM_020590431.1 297
11mct1 TCCTATGCCTTCCCTAAAT AAGTTGAATGCCAGTCCC XM_020586598.1 287
12mct2 TGGGCTTGTCACCATTAT CTCCTCGTCCAGTTTCTT XM_020589687.1 181
13mct4 GAGGAGCAGTGGTGGATG GGGAAGGCGTAGGAGAAA XM_020608921.1 112
14mct7 GTTGTCATTGGCACCCTT ACCTGAGTCCTCCGAACC XM_020608232.1 210
15mct8 CAGCAGGACCTTCCAAAT AAAGTAGCCCAGGACAGC XM_020592011.1 271
16mct12 GTTGGCGTATGGGATTGC TTTGGCGAGATTTGGATGT XM_020616669.1 223
17cd36 TTGAAAGGGATTGAGGTG TCTCGCAAGGATGGACTA XM_020616796.1 212
18fatp1 GCGAGCCAGGTATGTTAG CAGCAAGGCACTGAGGAC XM_020587461.1 263
19fatp2 CTTTGATTACAGCCTTGC CTTTCCGTTGTCCTTTCT XM_020602138.1 100
20fatp6 CAGTAGGACTTTGGGCATTT GTCGCACTTTGTGAACTTTATC XM_020618747.1 267
21fatp7 ACTGTAATCATCAGCCAAGA GGTTTCGTCAAACTCCTC XM_020588511.1 105
22apo GGGCTGCTCTGGATGTCT CCCGCAAAGCACTAATCT HQ603782.1 147
23apoa CAAGAAGGTCCAGGTTGA TTAGTAAGGGATTGGTAGAGG XM_020590134.1 147
24apob TGCCAATAACTATCCGCTAC TCTTCCTGACATCATCCC XM_020615697.1 247
25apoc GCTGCTGGTCGTTACTGT AGTCCCTAATGGTTTCTATG XM_020590135.1 176
26apoe CGCTGCGTGGAAGGAAAC CTGCCAGAGCAAGGATGAGA XM_020590131.1 220
27apof AGGTGGTAAGCCTGATAGA CCAACCCTCATAGTGTCC XM_020592847.1 185
28apoo GCTCAGGTTCGGTTTGTT GGTGGCAACTCTGGGTAT XM_020595548.1 207
29occ TGTCGGGGAGTGGGTAAA TCCAGGCAAATAAAGAGGCT XM_020616177.1 130
30zo-1 GGCATCATCCCCAACAAA GCGAAGACCACGGAACCT XM_020621576.1 111
31zo-2 AGCCGAGGTCGCACTTTA GCTTTGCTTCTGTGGTTGAT XM_020615114.1 246
32cl-12 TCACCTTCAATCGCAACG ATGTCTGGCTCAGGCTTATCT XM_020607277.1 250
33cl-15 CTCGCTGCTTGCTTTGACT TTGAAGGCGTACCAGGACA XM_020611334.1 225
34rpL17 CGAGAACCCGACTAAATCA GTTGTAGCGACGGAAAGG XM_020587712.1 169
1gcn2: general control nonderepressible; 2eif2a: eukaryotic translation initiation factor 2; 3lpl: lipoprotein lipase; 4moat2: monoacylglycerol O-acyltransferase 2;
5dgat2: diacylglycerol acyltransferase 2; 6mttp: microsomal triglyceride transfer protein; 7hdlbp: high-density lipoprotein binding protein; 8ldlrap: low-density
lipoprotein receptor adapter protein; 9vldlr: very low-density lipoprotein receptor; 10npc1l1: NPC1 like intracellular cholesterol transporter 1; 11mct1:
monocarboxylate transporter 1-like; 12mct2: monocarboxylate transporter 2-like; 13mct4: monocarboxylate transporter 4-like; 14mct7: monocarboxylate
transporter 7-like; 15mct8: monocarboxylate transporter 8-like; 16mct12: monocarboxylate transporter 12-B-like; 17cd36: CD36 molecule; 18fatp1: fatty acid
transport protein 1; 19fatp2: fatty acid binding protein 2; 20fatp6: fatty acid transport protein 6; 21fatp7: fatty acid binding protein 7; 22apo: apolipoprotein;
23apoa: apolipoprotein A; 24apob: apolipoprotein B; 25apoc: apolipoprotein C; 26apoe: apolipoprotein E. 27apof: apolipoprotein F; 28apoo: apolipoprotein O;
29occ: Occludin-like; 30zo-1: tight junction protein ZO-1-like; 31zo-2: tight junction protein ZO-2-like; 32cl-12: Claudin 12; 33cl-15: Claudin 15; 34rpL17:
ribosomal protein L17, it is reference gene. ∗NCBI reference sequence.

4 Aquaculture Nutrition



barrier and inhibits the ability of intestinal lipid and fatty
acid transportation of M. albus (Hu et al., [32, 33]). What
is more, a study reported that suitable methionine restriction
improved gut function by regulating gut microbiota and its
metabolite profiles in a high-fat diet on mice [35]. However,
how gut microbiota adaptively change and regulate the
host’s metabolism under the condition of methionine
restriction and methionine affect lipid transportation by
gut microbiota remains unknown. Here, we made methio-
nine deficiency experimental feed according to our previous
study [32, 33]; additionally, made a high-fat diet based on
our previous study that the high-fat model on M. albus
[36]. We explored methionine and how to regulate intestinal
lipid transportation and the gut microbiome of M. albus.

2. Materials and Methods

2.1. Experimental Feed. The basic feed (60 g/kg fat) was
made according to our previous paper [32, 33], named
Con; and the high-fat basic feed (120 g/kg fat) was based
on our study onM. Albus [36], different levels of methionine
(0, 4 g/kg, 8 g/kg, and 12 g/kg) were supplemented into high-
fat diet obeyed the principle of equal nitrogen referenced our
study [32, 33], named as, HFD+M0, HFD+M4, HFD+M8,
and HFD+M12, respectively. Experimental diets and levels
of nutrition is shown in Table 1.

The method of proximate analysis (moisture, crude pro-
tein, crude lipid, and ash) of experimental feed was referenced
in our paper [37]. Amino acids were determined by an auto-
matic amino acid analyzer (Agilent-1100, Agilent Technolo-
gies Co., Ltd., Santa Clara, CA, USA) referenced by the
method reported by Wiriduge et al. [38], fatty acids were ana-
lyzed by GC-MS (Agilent 7890B-5977A, Agilent Technologies
Co., Ltd., Santa Clara, CA, USA) referenced the method
reported by Jin et al. [39], as shown in Tables 2 and 3.

2.2. Feeding Trial. The uniform size of M. albus
(25:03 ± 0:13 g) was randomly raised in 15 cages
(2:0 × 1:5 × 1:5m), and every group contained triplicates
with 60 fish, referenced to our study [32, 33]. Each cage
was covered by 95% of the fresh alternanthera philoxeroides
(Mart.) Griseb to simulate the natural environment for M.
albus, water temperature 25 ± 6°C, dissolved O2 ≥ 6:0mg/L,
NH4

+-N < 0.5mg/L, respectively). The feeding rate was 3-
4% of body weight and adjusted every two weeks. The feed-
ing trial was lasting for 8 weeks.

2.3. Ethics Statement. Our study was approved by the Com-
mittee of Laboratory Animal Management and Animal Wel-
fare of Hunan Agricultural University (Changsha, China)
No. 094.

2.4. Sample Collection and Analyses. Stomach and intestine
were obtained from six fish per cage, stored at -80°C until
use. A gastric digestive enzyme (amylase, lipase, and trypsin)
and intestinal biochemical indices (amylase, lipase, trypsin,
Na+/K+ -Adenosinetriphosphatase, high-density lipoprotein
cholesterol, and low-density lipoprotein cholesterol) were
determined by a kit of NanJing JianCheng Bioengineering
(Nanjing, China). Intestinal very-low-density lipoprotein
cholesterol, microsomal triglyceride transfer protein, and
Apolipoprotein-A were determined by a kit of Shanghai
Enzyme-linked Biotechnology Co., Ltd (Shanghai, China).

The stomach and intestine of five fish in each cage were
taken for observing organizational structure. Intestinal
H&E-stained sections were referenced in our paper [40],
and intestinal sections were made by cryostat microtome,
stained with Oil Red O [32, 33], and observed by
CaseViewer.

Intestinal total RNA was obtained from 6 fish per cage
by Monzol reagent (Monad, Shanghai, China). RNA was

Table 5: Effects of high-fat diet supplemented different levels of methionine on gastric and intestinal biochemical indices.

Index Con HFD+M0 HFD+M4 HFD+M8 HFD+M12 P value

Stomach
1Lip 422:47 ± 16:44ab 348:79 ± 22:08a 466:69 ± 20:73bc 550:2 ± 33:75c 535:46 ± 25:71c <0.001
2Amy 215:62 ± 4:03c 164:06 ± 3:12a 167:53 ± 1:69a 195:58 ± 6:73b 195:05 ± 3:67b <0.001
3Try 2110:3 ± 90:1b 1666:38 ± 100:43a 1777:93 ± 87:84ab 2078:42 ± 64:78b 2007:85 ± 53:95b 0.002

Intestine
1Lip 324:5 ± 6:31b 272:77 ± 5:95a 366:83 ± 12:62b 423:26 ± 16:29c 427:97 ± 13:47c <0.001
2Amy 251:62 ± 9:04c 165:11 ± 5:1a 175:83 ± 4:21ab 181:19 ± 9:17ab 195:48 ± 4:54b <0.001
3Try 2175 ± 30:88b 1634:52 ± 55:78a 1952:71 ± 70:79b 1965:78 ± 60:36b 1941:81 ± 72:86b <0.001
4Na+/K+-ATP 342:25 ± 7:67bc 204:17 ± 7:81a 309:2 ± 30:77b 412:47 ± 10:82c 410:7 ± 6:38c <0.001
5HDL-C 9:64 ± 0:31a 12:13 ± 0:64bc 10:57 ± 0:39ab 13:99 ± 0:42c 11:5 ± 0:89ab <0.001
6LDL-C 48:02 ± 2:43 54.92± 2.91 57:1 ± 4:16 53:83 ± 3:73 58:92 ± 3:27 0.224
7VLDL-C 120:4 ± 1:11a 134:28 ± 0:79b 129:99 ± 2:74b 141:86 ± 1:02c 159:5 ± 1:82d <0.001
8MTTP 43:87 ± 0:61a 52:96 ± 0:45b 64:37 ± 0:85d 65:32 ± 1:31d 60:18 ± 0:67c <0.001
9ApoA 65:27 ± 3:87a 64:1 ± 5:54a 71:92 ± 3:6ab 88:91 ± 6:39b 83:33 ± 5:11ab 0.005

Note: values are presented asmeans ± SEM (n = 3). Letters in the same row with the same superscript or absence of superscripts are not a significant difference
(P > 0:05). 1Lip: Lipase (U/g protein); 2Amy: Amylase (U/g protein); 3Try: Trypsin (U/g protein); 4Na+/K+-ATP: Na+/K+ -Adenosinetriphosphatase (mmolPi/
mg prot/hour); 5HDL-C: High-density lipoprotein cholesterol (mmol/g prot); 6LDL-C: low-density lipoprotein cholesterol (mmol/g prot); 7VLDL-C: very
low-density lipoprotein cholesterol (mmol/g prot); 8MTTP: Mirosomal triglyceride transfer protein (pg/mg prot); 9Apo-A: Apolipoprotein -A (ug/g prot).
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reversed by MonScript (Monad, Shanghai, China) and
obtained cDNA. Primers were synthesized by Biosune Bio-
technology, Inc. (Shanghai, China), as shown in Table 4.
Quantitative real-time PCR (qPCR) referenced our earlier
paper [41]. The amplification efficiency was between 0.96
and 1.10, calculated by formula E = 10∗ð−1/slopeÞ − 1, and
5-fold serial dilutions of cDNA (triplicate) were used to gen-
erate the standard curve. Relative mRNA expression was cal-
culated by 2-△△Ct [42].

2.5. Gut Microbiota Analysis. Gut bacterial DNA was
obtained from the gut content of three groups (Con, HFD
+M0, and HFD+M8) by Power Fecal DNA Isolation Kit
(MoBio Laboratories, Inc), and gut bacterial high-
throughput sequencing by Illumina MiSeq platform, all
sequences were classified into operational taxonomic units
(OTUs) above the level of 97% similarity by quantitative
insights into microbial ecology (QIIME) after removing
low-quality scores (Q score, 20) with FASTX-Toolkit (Han-
non Lab, USA).

2.6. Statistical Analysis. Data among groups (Con, HFD
+M0, HFD+M4, HFD+M8, and HFD+M12) were analyzed
by one-way analysis of variance (ANOVA), and remarkable
differences among all groups were assessed by Turkey’s
multiple-range test. Values among groups (Con and HFD
+M0; HFD+M0 and HFD+M8, respectively) were calculated
by independent T-test by SPSS 22 software. Values were
indicated as means ± SEM (standard error of the mean),
and a significant difference was considered at P < 0:05.

3. Result

3.1. Gastric and Intestinal Biochemical Indices. Compared
with Con, gastric amylase and trypsin were remarkably
decreased in HFD+M0 (P < 0:05); intestinal lipase, amylase,
trypsin, and Na+/K+ -Adenosinetriphosphatase were mark-
edly decreased in HFD+M0 (P < 0:05), while intestinal
high-density lipoprotein cholesterol, very-low-density lipo-
protein cholesterol, and microsomal triglyceride transfer
protein were significantly enhanced (P < 0:05). Compared

Table 6: Effects of a high-fat diet supplemented with methionine on the gastric H&E-stained sections (100 times and 400 times).

Index Con HFD+M0 HFD+M8
P value

∗ #
1GF 673:41 ± 29 541:53 ± 21:1∗∗ 602:85 ± 29:31 0.004 0.12
2GMT 122:1 ± 3:39 114:96 ± 3:47 121:07 ± 4:32 0.172 0.296

The values are displayed as means ± SEM (n = 3). The ∗ expressed that there is a significant difference between the Con and HFD+M0 groups, and the
#expressed that there is a significant difference between the HFD+M0 and HFD+M8 groups. The same below, 1GF: gastric fovea (μm); 2GMT: gastric
muscular thickness (μm).

Figure 1: Effects of a high-fat diet supplemented with methionine on the gastric H&E-stained sections(1) and (2) were shown as gastric
fovea and gastric muscular thickness, respectively.
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with HFD+M0, dietary 8 g/kg methionine remarkably
increased gastric lipase, amylase, and trypsin (P < 0:05),
also significantly increased intestinal lipase, trypsin and
Na+/K+ -Adenosinetriphosphatase, very-low-density lipo-
protein cholesterol, microsomal triglyceride transfer pro-
tein, and Apolipoprotein-A (P < 0:05) (Table 5).

3.2. Gastric and Intestinal Sections. Compared with Con,
gastric fovea remarkably decreased in HFD+M0 (P < 0:01),
while dietary methionine increased gastric fovea (P > 0:05)
(Figure 1, Table 6). Compared with Con, intestinal villus
height and intestinal muscular thickness decreased in HFD
+M0 (P > 0:05), and amounts of intestinal goblet cells per
root in HFD+M0 were markedly decreased (P < 0:05), while
dietary 8 g/kg methionine markedly improved intestinal vil-
lus height and goblet cells per root, remarkably decreased
crypt depth (P < 0:05) (Figure 2, Table 7). Additionally,
intestinal Oil Red O-stained sections showed that the con-
tent of lipid droplets of intestinal villi and the mucosal layer
was as follows: Con < HFD+M0<HFD+M8 (Figure 3).

3.3. Intestinal mRNA Expression. Compared with Con, the
intestinal occ, cl12, cl15, zo-1, and zo-2 markedly downregu-
lated in HFD+M0 (P < 0:001, P < 0:001, P < 0:001, P < 0:001
, and P < 0:01, respectively), while intestinal vldlr, npc1l1,
cd36, fatp1, fatp2, fatp6, fatp7, apo, apoa, apob, apof, apoo,
mct1, mct2, mct4, mct7, mct12, lpl, mttp, moat2, and dgat2
were markedly upregulated in HFD+M0 (P < 0:001, P <
0:001, P < 0:001, P < 0:05, P < 0:001, P < 0:01, P < 0:01, P
< 0:001, P < 0:01, P < 0:001, P < 0:01, P < 0:001, P < 0:05,
P < 0:01, P < 0:01, P < 0:05, P < 0:001, P < 0:01, P < 0:01, P
< 0:01, and P < 0:001). Compared with HFD+M0, intestinal
gcn2 and eif2α downregulated in HFD+M8 (P < 0:001, P <
0:05), while intestinal occ, cl12, cl15, zo-1, zo-2, hdlbp, ldlrap,
vldlr, cd36, fatp1, fatp2, fatp6, apo, apoa, apob, apof, apoo,
mct1, mct2, mct8, mct12, lpl, mttp, moat2, and dgat2 signifi-
cantly upregulated (P < 0:001, P < 0:001, P < 0:001, P <
0:001, P < 0:01, P < 0:01, P < 0:001, P < 0:001, P < 0:01, P
< 0:05, P < 0:001, P < 0:01, P < 0:01, P < 0:01, P < 0:001, P
< 0:05, P < 0:01, P < 0:01, P < 0:01, P < 0:01, P < 0:01, P <
0:01, P < 0:01, P < 0:05, and P < 0:001) (Figure 4).

Table 7: Effects of high-fat diet supplemented methionine on the intestinal H&E-stained sections (100 times and 400 times).

Index Con HFD+M0 HFD+M8
P value

∗ #
1IVH 594:57 ± 39:59 508:66 ± 20:05 638:69 ± 31:46## 0.082 0.006
2CD 24:72 ± 1:58 25:96 ± 1:49 20:25 ± 1:45# 0.580 0.021
3IMT 105:1 ± 3:2 104:57 ± 3:33 95:62 ± 3:51 0.911 0.094
4AIGC 36 ± 1 31 ± 1∗ 38 ± 3# 0.020 0.046
1IVH: intestinal villus height (μm); 2CD: crypt depth (μm); 3IMT: intestinal muscular thickness (μm); 4AIGC: amounts of intestinal goblet cells per root.

HFD+M8 (8g/kg)

HFD+M8 (8g/kg)

HFD+M8 (8g/kg)

(1)(1)(1)

(2)

(2)

(2)

(3) (3)(3)

Goblet cell
Goblet cell

Goblet cell

HFD+M0 (0g/kg)

HFD+M0 (0g/kg)

HFD+M0 (0g/kg)

Con

Con

Con

Figure 2: Effects of high-fat diet supplemented methionine on the intestinal H&E stained sections: (1), (2), (3), and (4) were shown
intestinal villus height, crypt depth, intestinal muscular thickness, and intestinal goblet cell, respectively.
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3.4. Gut Bacterial Diversity Indices. Compared with Con, the
gut bacterial Chao1, OTUs, Shannon, Simpson, and Faith_
pd in HFD+M0 were markedly declined (P < 0:001, P <
0:001, P < 0:001, P < 0:01, and P < 0:001). Compared with

HFD+M0, gut bacterial Chao1, OTUs, Shannon, Simpson,
and Faith_pd in HFD+M8 were significantly enhanced
(P < 0:05, P < 0:05, P < 0:01, P < 0:05, and P < 0:001)
(Table 8).
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Figure 4: Effects of high-fat diet-supplemented methionine on intestinal mRNA expression (n = 3), ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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Figure 3: Effects of high-fat diet supplemented methionine on the intestinal oil red O stained sections (×100).
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3.5. Gut Bacterial Levels of Phylum and Genus. Firmicutes,
Fusobacteria, and Proteobacteria were the main populations
at the phylum level, and Clostridium, Cetobacterium, and
Plesiomonas were the main populations at the genus level.
Compared with Con, the proportions of Firmicutes and
Fusobacteria of the phylum and Clostridium and Cetobac-
terium of the genus were increased in HFD+M0, and the
proportion of Proteobacteria of phylum and Plesiomonas
of genus decreased. Compared with HFD+M0, Firmicutes
of the phylum and Clostridium of the genus were decreased
in HFD+M8, and the proportion of Fusobacteria and Pro-
teobacteria of the phylum and Cetobacterium and Plesiomo-
nas of the genus were increased in HFD+M8 (Figure 5).

3.6. Gut Bacterial Functional Classification of KEGG. The gut
bacterial predictive main function was fatty acid biosynthe-
sis, glutamine, glutamate, and alanine metabolism; valine,
leucine, and isoleucine biosynthesis; and also including
starch and sucrose metabolism (Figure 6).

4. Discussions

Recently, we found that dietary methionine restriction
inhibits muscle fiber growth, development, and differentia-
tion in M. albus, declines the growth performance in M.
albus [32, 33], and induces hepatic lipid metabolism disor-
der and declined lipid content of M. Albus [34]. What is
more, methionine deficiency also affected gastric and intesti-
nal structure, damaged the intestinal barrier, and declined
intestinal lipid and fatty acid transportation of M. albus
[32, 33]. In this study, compared with the Con, gastric amy-
lase and trypsin were remarkably decreased in the high-fat
and methionine deficiency diet; also intestinal lipase, amy-
lase, and trypsin were remarkably decreased in HFD+M0,
while supplemented 8 g/kg methionine markedly increased
gastric lipase, amylase, and trypsin, also markedly increased
intestinal lipase and trypsin. From intestinal H&E-stained
images, compared with Con, gastric fovea remarkably
decreased in HFD+M0, while dietary methionine increased
gastric fovea. Compared with Con, intestinal villus height
and muscular thickness decreased in HFD+M0, and the
number of intestinal goblet cells of root in HFD+M0 was
markedly decreased, while dietary 8 g/kg methionine mark-
edly improved intestinal villus height and goblet cells per
root, remarkably decreased crypt depth. We inferred that a
high-fat diet inhibited gastric-intestinal digestive capacity.
Additionally, methionine sufficiency improved the gastric-

intestinal main digestive enzymes (amylase, lipase, and tryp-
sin) of M. albus, which is consistent with the study on grass
carp (Ctenopharyngodon idella) [43].

MTTP promotes the transportation of fat by assisting
triglyceride-rich apolipoprotein [44], such as ApoA1 [45].
HDL, LDL, and VLDL are major lipoproteins that carry cho-
lesterol [46]. Na+/K+ -Adenosinetriphosphatase is the main
enzyme involved in assisting the intestinal absorption and
transportation of nutrients (such as amino acids, lipids,
and glucose) [47]. Here, compared with Con, intestinal
Na+/K+ -Adenosinetriphosphatase was remarkably
decreased in HFD+M0, while intestinal HDL-C, VLDL-C,
and MTTP were remarkably increased. Meanwhile, supple-
mented 8 g/kg methionine markedly increased intestinal
Na+/K+ -Adenosinetriphosphatase, VLDL-C, MTTP, and
ApoA. This indicated that an intestinal high concentration
of fatty acids stimulated lipoprotein secretion [48], and die-
tary methionine could promote lipid transportation. This
meant that the capacity of intestinal absorption declined,
and the intestinal barrier was damaged [49].

Furtherly, we chose Con, HFD+M0, and HFD+M8 to
explain the molecular mechanism of how methionine regu-
lates gastrointestinal lipid digestion and absorption of M.
albus. gcn2 and eif2a can sense essential amino acid depriva-
tion and regulates their downstream relative genes to adapt
to nutrient deficiency [50]. In this study, compared with
HFD+M0, intestinal gcn2 and eif2α downregulated in HFD
+M8, which meant that methionine deficiency could be
sensed by M. albus. Occludens, claudin, and zonula are
intestinal tight junction proteins, also important in pro-
tecting barrier integrity and preventing infiltration [51].
Here, compared with Con, the intestinal occ, cl12, cl15,
and zo-1, zo-2 remarkably downregulated in HFD+M0,
dietary methionine markedly upregulated intestinal occ,
cl12, cl15, zo-1, and zo-2 expression. This explained that
high-fat diet-induced free fatty acids damaged the intestine
causes by which termed “intestinal lipotoxicity” [52], and
methionine repaired the gastric and intestinal structure,
also improved the intestinal barrier as we reported [32,
33]. MTTP promotes fatty transportation by assisting the
secretion of lipoproteins [44]. lpl is involved in lipolysis
[53], while mogat2 and dgat2 are the main enzymes
involved in lipogenesis [54, 55]. In this study, compared with
Con, the intestinal lpl, mttp, moat2, and dgat2 were upregu-
lated markedly in HFD+M0 upregulated, while dietary
methionine significantly upregulated intestinal lpl, mttp,
moat2, and dgat2 expressions, which indirectly explained

Table 8: Effects of high-fat diet supplemented methionine on gut bacterial diversity indices (n = 3).

Index Con HFD+M0 HFD+M8
P value

∗ #

Chao1 213:47 ± 19:72 55:25 ± 4:42∗∗∗ 80:04 ± 6:96# <0.001 0.013

OTUs 212 ± 19 55 ± 4∗∗∗ 80 ± 6# <0.001 0.013

Shannon 3:6 ± 0:23 1:85 ± 0:08∗∗∗ 2:2 ± 0:06## <0.001 0.008

Simpson 0:77 ± 0:05 0:52 ± 0:03∗∗ 0:62 ± 0:02# 0.001 0.015

Faith_pd 19:74 ± 2:35 7:49 ± 0:47∗∗∗ 16:1 ± 0:91### <0.001 <0.001
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Figure 5: Effects of high-fat diet-supplemented methionine on gut bacterial indices of the phylum (a, c, e) and the genus (b, d, f) (n = 3).
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that why supplementing methionine enhanced gastric and
intestinal digestive enzyme, also promoted the capacity of
digestive. dlbp plays a pivotal role in the regulation of lipids
and cholesterol [56], ldlra pathway is related to reducing cir-
culating cholesterol [57]. npc1l1 is mainly charged in choles-
terol absorption [58]. cd36 is related to fatty acid absorption
and transportation [59, 60]. Apolipoprotein can bind and
transport lipoproteins [61]. mct mainly transports short-
chain monocarboxylates, including lactate, pyruvate, and
ketone bodies [62]. Here, compared with Con, the intestinal
vldlr, npc1l1, cd36, fatp1, fatp2, fatp6, fatp7, apo, apoa, apob,
apof, apoo, mct1, mct2, mct4, mct7, mct12, lpl, mttp, moat2,
and dgat2 were significantly upregulated in HFD+M0. Com-
pared with HFD+M0, intestinal hdlbp, ldlrap, vldlr, cd36,
fatp1, fatp2, fatp6, apo, apoa, apob, apof, apoo, mct1, mct2,
mct8, mct12, lpl, mttp, moat2, and dgat2 remarkably upregu-
lated. In addition, intestinal oil red O stained sections showed
that the content of lipid droplets in intestinal villi, and the
mucosal layer was as follows: Con < HFD+M0<HFD+M8.

We inferred that a high-fat diet damaged intestinal mucosal
growth and reduces intestinal epithelial cells breeding, dam-
aged the intestinal barrier [49, 63], then, increased intestinal
permeability, intestinal lipid, and fatty acids transportation.
While supplemented sufficiency methionine (8 g/kg) restores
the intestinal barrier and improved intestinal function.

Compared with Con, the gut bacterial Chao1, OTUs,
Shannon, Simpson, and Faith_pd in HFD+M0 were signifi-
cantly decreased; compared with HFD+M0, the gut bacte-
rial Chao1, OTUs, Shannon, Simpson, and Faith_pd in
HFD+M8 were significantly increased. In addition, Firmi-
cutes, Fusobacteria, and Proteobacteria were the main popu-
lations at the phylum level, and Clostridium, Cetobacterium,
and Plesiomonas were the main populations at the genus
level. What is more, compared with Con, the proportion of
Firmicutes and Fusobacteria of the phylum and Clostridium
and Cetobacterium of the genus were increased in HFD
+M0, and the proportion of Proteobacteria of the phylum
and Plesiomonas of the genus were decreased; compared
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Figure 6: Effects of high-fat diet-supplemented methionine on gut bacterial COG function classification (n = 3).
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with HFD+M0, Firmicutes of the phylum and Clostridium
of the genus were decreased in HFD+M8, and the propor-
tion of Fusobacteria and Proteobacteria of the phylum and
Cetobacterium and Plesiomonas of the genus were increased
in HFD+M8. We considered that a high-fat diet disturbed
the balance of the bacterial community and induced micro-
bial dysfunctions, the phenomenon was similar to our earlier
study [25, 26], while supplemented methionine improved
the gut microbiota homeostasis, and also promoted lipid
metabolism. Meanwhile, the gut bacteria also had the pre-
dictive main function was fatty acid biosynthesis, glutamine,
glutamate, and alanine metabolism; valine, leucine, and iso-
leucine biosynthesis; also including starch and sucrose
metabolism.

In conclusion, the high-fat methionine deficiency diet
affected the gastric and intestinal function of M. albus, dam-
aged the intestinal barrier, reduced the capacity of intestinal
digestion and absorption, and disrupted the balance of gut
microbiota; supplemented methionine could improve the
intestinal function, promoting the digestion and absorption
of lipids, and also improving the gut microbiota balance.
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