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A 12-week feeding trial was conducted to investigate the effect of the same fishmeal protein level replaced by black soldier fly
larvae (Hermetia illucens) meal (BSFL) with different lipid contents on the growth performance and intestinal health of
juvenile turbot (Scophthalmus maximus L.) (initial body weight 12.64 g). Three isonitrogenous and isolipidic diets were
formulated: fish meal-based diet (FM), diets DF and FF, in which 14% fish meal protein of the FM diet was replaced by
defatted and full-fat BSFL, respectively. There were no significant differences in growth performance, intestinal morphology,
and mucosal barrier function between the DF and the FM group. However, diet FF markedly reduced the growth performance,
intestinal perimeter ratio, and the gene expression of anti-inflammatory cytokine TGF-β (P < 0:05). Compared to group FF, the
communities of intestinal microbiota in group DF were more similar to group FM. Moreover, diet DF decreased the
abundance of some potential pathogenic bacteria and enriched the potential probiotics, such as Bacillus. Diet FF obviously
altered the composition of intestinal microbiota and increased the abundance of some potential pathogenic bacteria. These
results suggested that the application of defatted BSFL showed more positive effects on fish growth and intestinal health than
the full-fat BSFL, and the intestinal microbiota was closely involved in these effects.

1. Introduction

Recently, more attention has been paid to insect meal since
insects serve as an important part of wild fish food. More
importantly, insects are economical and highly available feed
ingredients with a high protein content (30%-65%) [1, 2].
Black soldier fly larvae (Hermetia illucens L., BSFL), as a sap-
rophytic insect, can feed on livestock manure and household
waste. BSFL meal has been widely used in feeds of livestocks,
poultry, and aquaculture due to its rapid reproduction, large
biomass, high absorption rate, good palatability, and easy
management [3, 4].

The lipid content of BSFL meal products varies greatly
due to different processing techniques. In general, the lipid
content of defatted BSFL meal is below 30% while that of

full-fat BSFL meal is above 30% [5]. Previous studies have
shown that when used in diets, BSFL meal with different
lipid contents differently affected the growth performance
and health of fish. However, limited information has been
available about the comparison of the application efficacy
of BSFL with different lipid contents in fish feeds. Most pre-
vious studies showed that a diet with appropriate defatted
BSFL meal supplementation positively affected the growth
performance or physiological response of fish. For example,
diets with 5.3%-40% defatted BSFL meal (lipid content:
8%-25%) did not affect the growth performance, digestive
enzyme activity, and the liver and distal intestine mor-
phology in European seabass (Dicentrarchus labrax), Jian
carp (Cyprinus carpio var. Jian), Siberian sturgeon (Aci-
penser baerii), turbot (Psetta maxima), totoaba (totoaba
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macdonaldi), rainbow trout (Oncorhynchus mykiss), and
Eurasian perch (Perca fluviatilis) and even improved the
antibacterial ability of barramundi (Lates calcarifer) [6–13].
Moreover, the high lipid content of BSFL meal was also an
important alternative lipid source for fish feeds. However,
conflicting results have been reported when full-fat BSFL
meal were used in fish feeds. Negative effects on growth per-
formance were observed in pearl gentian grouper (Epinephe-
lus fuscoguttatus ♀×Epinephelus lanceolatus ♂) and Atlantic
salmon (Salmo salar) [14, 15], whereas in other studies,
dietary full-fat BSFL meal improved the growth performance
of Thai climbing perch (Anabas testudineus Bloch) and
Japanese seabass (Lateolabrax japonicas), as well as the
quality of Jian carp [16–18]. In addition, the application of
full-fat BSFL meal in largemouth black bass (Micropterus
salmoides) significantly improved the antioxidant capacity
and immunity of fish [19]. Therefore, a comparative study
on BSFL with different lipid contents used in fish feed is of
great significance.

Currently, most studies on insect meal application in fish
feeds focus on fish growth and nutrient digestion. As well
known, a healthy intestinal tract is crucial for the growth
performance and health of fish. The intestinal, mechanical,
and immunologic barriers are the primary line of defense
against pathogen infection [20–23]. Moreover, a beneficial
intestinal microbiota is essential for maintaining the health
of the intestine and host. In recent years, numerous studies
in fish have reported that the intestinal microbiota play
basilic roles in the host development, physiological response,
and metabolism [1, 24–27]. In general, the feed can shape
the community of intestinal microbiota. Consequently,
intestinal microbes can also affect a variety of physiolog-
ical activities of the host, including nutrient digestion
and absorption [1, 24, 28]. Therefore, it is crucial to
evaluate the fish intestinal microbiota in response to
insect ingredients.

Turbot (Scophthalmus maximus L.) is an important
marine culture fish species in the world. Because it is a car-
nivorous fish species, it is particularly urgent to look for
high-quality and low-price ingredients to replace fish meal
and fish oil in the turbot diets. The purpose of this study
was to comprehensively evaluate the effects of BSFL meal
with different lipid contents on the growth and intestinal
health of juvenile turbot. The results would provide useful
information for the BSFL meal application in fish feeds.

2. Materials and Methods

2.1. Experimental Diets. Three isonitrogenous and isolipidic
diets were formulated to contain about 52% protein and
12% lipid. The full-fat BSFL meal (the black soldier fly lar-
vae were propagated and grown on kitchen waste) was
provided by Guangdong Wuliang Biotechnology Co., Ltd.
(Guangdong, China). The defatted BSFL meal was obtained
by petroleum ether extraction in the laboratory (Soxtec™
8000, FOSS, Sweden). The crude protein of defatted BSFL
and full-fat BSFL were 43.45% and 31.37%, respectively,
while the crude lipid of them was 23.77% and 43.21%, respec-
tively. The main protein sources of the control diet (FM)

were the fish meal, wheat meal, and soybean meal. Other
two diets (DF and FF) were formulated, in which 14%
fishmeal protein was replaced by defatted BSFL and full-fat
BSFL, respectively (Table 1). The amino acid composition
of the three diets and three raw materials is shown in
Supplementary Table S1 and S2, and their fatty acid
composition is shown in Tables 2 and 3.

The feed was made, packed, and stored according to the
description of Chen et al. [29]. Firstly, the solid feed mate-
rials were thoroughly crushed through an 80-mesh screen
and evenly step-by-step mixed according to the feed for-
mula. Secondly, fish oil and soy lecithin were added and
thoroughly mixed. Finally, about 30% distilled water was
added and mixed thoroughly. The pellet feed with a diame-
ter of 3mm was prepared by Bait granulating machine
(version: EL, Huatong Printing and Dyeing Machinery Co.,
Ltd., China), dried for 12 h at 55°C, and then stored at -20°C.

2.2. Experimental Fish and Feeding. The juvenile turbots
were purchased from Shandong Kehe Marine High Technol-
ogy Co., Ltd. (Weihai, China). Before the experiment, tur-
bots were fed with commercial feed (Shandong Kehe
Marine High Technology Co., Ltd., Weihai, China) for 2
weeks to acclimate to the experimental condition. A total
of 360 fish with uniform size (initial body weight 12.64 g)
were randomly assigned to 9 glass fiber tanks (200 L). The
whole experiment was implemented in an indoor flow-
through water system in Yellow Sea Fisheries Co., Ltd.
(Haiyang, China). The fish were fed to apparent satiation
at 6 : 30 am and 6 : 30 pm every day for 12 weeks. The fish
in each tank were fed to apparent satiation. After feeding,
uneaten feeds were collected 15 minutes later and their
weight was calculated by getting an average weight of each
pellet. Finally, the accumulated feed intake of fish in 12
weeks was calculated to carry out the statistical analysis of
FI. During the feeding trial, dissolved oxygen was higher
than 7mg/L; water temperature ranged from 16°C to 21°C;
pH7.59-7.84; and salinity 28-30.

2.3. Sample Collection. All fish in each tank were weighed
and counted when the feeding experiment terminated. The
turbots were anesthetized with eugenol before sampling.
The distal intestine of three randomly selected fish from
each tank was collected and then fixed in Bouin’s fluid
(RS4141, G-CLONE, China) for distal intestine histological
analysis. The distal intestine of two randomly selected fish
from each tank was cut with a sterile dissector around the
alcohol lamp for intestinal microflora analysis. The distal
intestines were transferred to 1.8ml sterile tubes (Nunc,
America), immediately put into liquid nitrogen, and then
stored at -80°C. All fish-rearing practices and sampling pro-
tocols in this study were approved by the Animal Care and
Use Committee of the Ocean University of China.

2.4. Intestinal Histology. After 24 hours of fixation in Bouin’s
fluid, the intestine was dehydrated and then made into
paraffin blocks. Sections of 7μm were cut (MX35 Ultra
Microtome Blade, Thermo Scientific, USA) and stained with
haematoxylin-eosin (HE) (BC-DL-001, SenBeiJia Biological
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Technology Co., Ltd., China). The slides were observed by a
light microscope (DP72, Olympus, Japan) to acquire images.
The micrographs were analyzed by Image-Pro Plus (version
6.0.0.260 S/N 41M60032-00032, USA). The perimeter ratio
(PR) was determined according to the description of Dimi-
troglou et al. [30]. The PR of the intestine was the ratio of
the internal perimeter (IP) to the intestine lumen and the
external perimeter (EP) of the intestine (PR = IP/EP).

2.5. Real-Time Quantitative PCR. Total RNA was extracted
from distal intestines using RNAex Pro Reagent (Accurate
Biotechnology Co., Ltd., Hunan, China). The RNA concen-
tration was instrumented by NanoDrop®2000. The RNA
was reversed transcribed to cDNA with Evo M-MLV reverse
transcription premix kit.

The specific primers of genes were synthesized by
Sangon (Shanghai, China) (Table 4). The housekeeping gene
was β-actin. The qPCR assays were carried out in a quanti-
tative thermal cycler (Bio-Rad, USA) The reaction volume
was 20μL containing 10μL SYBR® Green Premix Pro Taq

HS qPCR Kit (AG11701, Accurate Biotechnology (Hunan)
Co., Ltd., China), 6.4μL RNase free water, 0.8μL primer F
(10μM), 0.8μL primer R (10μM), and 2μL of DNA tem-
plate (<100ng). The real-time PCR amplification program
started with 1min at 95°C, followed by 40 cycles “5 s at
95°C, 30 s at 60°C.” The expression levels of these genes were
calculated by the 2−ΔΔCT method [31].

2.6. Intestinal Microbiota Profiling. The total genome DNA
of distal intestine samples was extracted, amplified, and
sequenced by Novogene (Beijing, China). In order to ana-
lyze the diversity and composition of the intestinal bacte-
rial community, the V4 region of the 16S rRNA gene of
intestinal bacteria was amplified with 515f/806r primer
after extraction, using the Illumina NovaSeq platform to
sequence.

Table 1: Formulation and proximate composition of the experimental
diets (% dry matter).

Ingredients (%) FM DF FF

Fish meala 52.00 44.72 44.72

Defatted BSFLb 0.00 12.12 0.00

Full-fat BSFLc 0.00 0.00 16.36

Wheat meala 19.30 16.36 16.42

Corn gluten meala 10.00 10.00 10.00

Wheat glutena 2.00 2.00 2.00

Soybean meala 8.00 8.00 8.00

Fish oila 5.20 3.30 0.00

Soybean lecithin 1.00 1.00 0.00

Vitamin premixd 1.00 1.00 1.00

Mineral premixe 0.50 0.50 0.50

Choline chloride 0.30 0.30 0.30

Monocalcium phosphate 0.50 0.50 0.50

Ethyoxyl 0.05 0.05 0.05

Y2O3 0.10 0.10 0.10

Calcium propionate 0.05 0.05 0.05

Total 100.00 100.00 100.00

Nutrient composition of feed

Crude protein 52.27 51.72 51.79

Crude lipid 10.63 9.96 11.58
aFish meal: CP 70.49%, CL 10.59%; wheat meal: CP 16.42%; corn gluten
meal: CP 66.9%; gluten meal: CP 80.63% soybean meal: CP 49.32% (CP:
crude protein, CL: crude lipid). bDefatted BSFL meal: CP 43.45%, CL
23.77%. cFull-fat BSFL meal: CP 31.37%, CL 43.21%. dVitamin premix (g·kg-1
diet): vitaminA ≥ 1,140,000 IU; vitaminD3 ≥ 180,000 IU; DL − α − tocopherol
acetate ≥ 7:6 g; menadione acuity ≥ 1:2 g; thiamine nitrate ≥ 0:93 g; riboflavin
acuity 1.35 g; pyridoxine hydrochloride ≥ 1:10 g; cyanocobalamin acuity ≥
0:0075 g; calciumd − pantothenate ≥ 4:5 g; nicotinamide acuity ≥ 6:75 g; folic
acid ≥ 0:465 g; Dbiotin ≥ 0:0475 g; L − ascorbate − 2 phosphate ðcalculated by
L − ascorbateÞ ≥ 16:7 g; inositol ≥ 10 g; and moisture ≤ 10%. eMineral premix
(g·kg-1 diet): Fe ≥ 37:14 g; Zn ≥ 16:43 g; Mn ≥ 3:03 g; Cu ≥ 0:95 g; Co ≥ 0:1 g;
Se ≥ 0:04 g; I ≥ 0:1 g;moisture ≤ 10%.

Table 2: Fatty acid composition of three raw materials (% total
fatty acids).

Fatty acid Fish meal Defatted BSFL Full-fat BSFL

C12:0 0.33 16 15.43

C14:0 5.59 3.95 4.04

C15:0 0.57 0.12 0.12

C16:0 25.32 22.59 23.25

C17:0 1.58 0.22 0.22

C18:0 9.67 4.25 4.06

C20:0 2.8 0.23 0.18

C21:0 0.21 0.02 0.01

C22:0 0.71 0.11 0.06

C23:0 0.37 0 0

C24:0 1.79 0.07 0.05

ΣSFA 48.93 47.55 47.42

C15:1 0.44 0.14 0.1

C16:1 6.03 0.04 2.45

C17:1 1.08 0.03 0.2

C18:1trans 0.41 0.01 29.04

C18:1CIs 15.65 0.06 0.66

C22:1 0.15 0 0.04

ΣMUFA 23.76 0.28 32.49

C18:2n6t 0.07 0.03 0.04

C18:2n6c 4.6 16.45 16.17

C18:3 n-6 0.11 0.05 0.06

C20:2 n-6 0.09 0.08 0.08

C20:3 n-6 0.12 0.05 0.05

C20:4 n-6 1.02 0.46 0.44

n-6ΣPUFA 6.02 17.13 16.84

C18:3 n-3 0.64 1.36 1.37

C20:5 n-3(EPA) 7.33 0.41 0.42

C22:6 n-3(DHA) 10.48 0.04 0.05

n-3ΣPUFA 18.46 1.81 1.84

Abbreviations: SFA: saturated fatty acids; MUFA: monounsaturated fatty
acids; n-6PUFA: n-6 polyunsaturated fatty acids; n-3PUFA: n-3
polyunsaturated fatty acids.
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After the deletion of barcode and primer sequences and
splicing by FLASH, the raw tags were obtained. The high-
quality cleaning tags were obtained after strict filtering of
raw tags [32]. The effective tags were obtained by compari-
son with the species annotation database and by removing
the chimeric sequences [33]. All effective tags of all samples
were clustered using the UPARSE software, and Operational
Taxonomic Units (OTUs) with 97% consistency were the
sequence [34]. Species annotation analysis was performed
with the Mothur method and SSUrRNA database of
SILVA138 (threshold set at 0.8~1) to obtain taxonomic
information [35, 36]. The QIIME software was used to
calculate the alpha diversity index (observed species,
chao1, ace, Shannon index, and Simpson index) and the
unweighted UniFrac distance of beta diversity. Rarefaction
curve, PCoA plots, and UPGMA clustering were plotted

using the R software. Metastats analysis was performed
to identify bacterial taxa with differences between different
treatments at the genus level [37].

2.7. Calculations. The calculation formula was as follows:

Specific growth rate SGR,%/dayð Þ = 100 ×
ln WF – ln WI

t
,

Weight gain WG,%ð Þ = 100 ×
WF –WI

WI
,

Feed efficiency FEð Þ = WF –WI

D
,

Feed intake FI,%/dayð Þ = 100 ×D
WF +WIð Þ/2½ �/t

Survival %ð Þ = 100 ×
AF

AI
,

ð1Þ

where WF and WI are the final and initial fish weight,
respectively; t is the days of feeding duration; D is the total
feed intake which is calculated on a dry matter basis; and
AI and AF are the initial and final fish number, respectively.

2.8. Statistical Analysis. The data analysis software was IBM
SPSS Statistics 22. One-way analysis of variance and Tukey’s
multiple comparison were used to test the significance of the
difference between the mean values. Final results were pre-
sented as means with standard error (mean ± SEM). P <
0:05 was regarded as a significant difference between groups.

3. Results

3.1. Growth Performance. The FBW, SGR, WG, and FE of
turbot were significantly lower in the FF group than those
in the FM group (P < 0:05). However, no significant differ-
ence in these results was observed between the FM and DF
groups (P > 0:05) (Table 5).

3.2. Intestinal Histology. No obvious changes were observed
in the distal intestine of turbot from all treatments
(Figure 1). However, the lowest PR of the distal intestine
was observed in turbot-fed diet FF (Figure 2).

3.3. Intestinal Microbiota. A total of 1,460,860 raw tags
were obtained by high-throughput sequencing. After filtra-
tion, 1,452,459 clean tags were obtained. After merging,
1,292,666 tags were obtained from 18 samples, clustering
into 23,608 OTUs with over 97% sequence similarity in
total. The rarefaction curve showed that all samples had
reached the saturation stage, indicating that the sequencing
depth was sufficient and the data was reliable (Figure 3).

At the phylum, Proteobacteria and Firmicutes were the
predominant bacterial phyla in the intestine of turbot in this
study (Figure 4(a)). At the genus level, the dominant bacteria
in group FM were Vibrio (12.56%), Mycoplasma (9.24%),
Ralstonia (11.33%), Pseudoalteromonas (10.67%), and Pseu-
domonas (9.33%); the dominant bacteria in group DF were

Table 3: Fatty acid composition of three experimental diets (% total
fatty acids).

Fatty acid FM DF FF

C12:0 0.08 3.69 8.31

C14:0 5.4 5.03 4.74

C15:0 0.49 0.39 0.25

C16:0 22.02 22.52 23.09

C17:0 0.82 0.68 0.5

C18:0 5.45 5.22 4.61

C20:0 0.75 0.56 0.22

C21:0 0.11 0.08 0.06

C22:0 0.22 0.17 0.07

C23:0 0.5 0.39 0.23

C24:0 1.9 1.52 1.08

ΣSFA 37.73 40.25 43.16

C15:1 0.22 0.17 0.16

C16:1 6.5 5.6 4.63

C17:1 1.22 0.99 0.46

C18:1trans 0.21 0.2 22.61

C18:1CIs 15.47 18.38 2.13

C22:1 0.18 0.12 0.06

ΣMUFA 23.8 25.46 30.04

C18:2n6t 0.03 0.06 0.03

C18:2n6c 13.52 14.76 14.15

C18:3 n-6 0.16 0.14 0.12

C20:2 n-6 0.14 0.12 0.10

C20:3 n-6 0.14 0.12 0.11

C20:4 n-6 0.88 0.79 0.72

n-6ΣPUFA 14.88 15.99 15.23

C18:3 n-3 1.64 1.59 1.24

C20:5 n-3(EPA) 10.21 7.86 5.15

C22:6 n-3(DHA) 9.68 7.21 4.08

n-3ΣPUFA 21.53 16.65 10.47

Abbreviations: SFA: saturated fatty acids; MUFA: monounsaturated fatty acids;
n-6PUFA: n-6 polyunsaturated fatty acids; n-3PUFA: n-3 polyunsaturated
fatty acids; EPA: eicosapentaenoic acid; DHA: docosahexaenoic acid.
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Vibrio (31.84%), Mycoplasma (12.31%), and Lysinibacillus
(9.08%); the dominant bacteria in group FF were Vibrio
(29.70%), Ralstonia (18.78%), Pseudoalteromonas (7.59%),
and Pseudomona (13.83%) (Figure 4(b)). The alpha diversity
results showed that there was no significant difference in
diversity and richness among all treatments (P > 0:05)
(Table 6).

The PCoA results showed that the distance between the
FM and DF groups was shorter, and both of them were far
from the FF group. This was consistent with the UPGMA
clustering tree results (Figure 5).

The Metastat analysis showed that the relative abun-
dance of Candidatus_Arthromitus, Chryseobacterium, and
[Eubacterium]_fissicatena_group was significantly decreased
(P < 0:05) in the DF diet compared with the FM diet
(Figure 6(d)). However, the abundance of Bacillus was sig-
nificantly higher (P < 0:05) in the fish-fed DF diet compared

with group FF or FM (Figure 6(b)). The relative abundance
of Lactobacillus, Dubosiella, and Bifidobacterium was signif-
icantly lower (P < 0:05) in the FF group than those in the
FM group (Figure 6(c)). The relative abundance of Chryseo-
bacterium was significantly higher (P < 0:05) in the FF group
than those in the FM group (Figure 6(a)). Compared with
diet DF, diet FF remarkably (P < 0:05) increased the relative
abundance of Lachnoclostridium, Romboutsia, Aeromonas,
and Chryseobacterium (Figure 6(e)).

3.4. Intestinal Mucosal Barrier Function. Compared to the
FM diet, the DF and FF diets significantly increased the
expression of Tricellulin (P < 0:05). The expression of Clau-
din-3 was significantly upregulated in the turbot-fed DF diet
than those fed the FF diet (P < 0:05) (Figure 7(a)). The FF
diet significantly decreased the gene expression of TGF-β
(P < 0:05). No significant differences in the expression of
IL-1β and TNF-α were observed among the three groups
(P > 0:05) (Figure 7(b)).

4. Discussion

In this study, fish meal replacement by black soldier fly lar-
vae (BSFL) meal with different lipid content had different
effects on the growth performance of turbot. Dietary
defatted BSFL (DF) did not affect growth performance,
which was consistent with previous studies on large yellow
croakers, Eurasian perch, Japanese seabass, Nile tilapia, and
Jian carp [10, 12, 38–40]. However, dietary full-fat BSFL
(FF) significantly reduced the growth performance (SGR,
WG, and FE) of turbot. The effects of full-fat BSFL applica-
tion in fish have been controversial among different studies.
Dietary full-fat BSFL meal at 30% had positive effects on the

Table 4: Primers used in quantitative real-time PCR.

Target genes Sequences of primers (5′-3′) GenBank number

Claudin-like
F: ATGTGGAGGGTGTCTGCC

KU238181
R: CTGGAGGTCGCCACTGAG

Claudin-3
F: GCCAGATGCAGTGTAAGGTC

KU238180
R: CCGTCCAGGAGACAGGGAT

JAM
F: CCAAGATGGACACCGGAACT

MT787206
R: CCTCCGGTGTTTAGGTCACG

Tricellulin
F: GCCTACATCCACAAAGACAACG

KU238183.1
R: TCATTCCCAGCACTAATACAATCAC

ZO-1
F: CGCCACCAGCAAAACCAGTC

AY008305.1
R: CGATGAAGATGCCCACGTCG

IL-1β
F: CGCTTCCCCAACTGGTACAT

AJ295836.2
R: ACCTTCCACTTTGGGTCGTC

TNF-α
F: GGACAGGGCTGGTACAACAC

AJ276709.1
R: TTCAATTAGTGCCACGACAAAGAG

TGF-β
F: ATGATCGACGACGAAGGCTC

KU238187.1
R: TGGCTTTGTAGACCTCTGCG

β-Actin
F: CAGGCACCAGGGAGTGATG

AY008305.1
R: ACAATACCGTGCTCGATGGG

Table 5: The growth performance of turbot.

Group FM DF FF

IBW (g) 12:64 ± 0:02 12:63 ± 0:04 12:66 ± 0:04
FBW (g) 70:09 ± 0:23a 64:48 ± 3:11ab 58:05 ± 1:57b

SGR (%/day) 2:21 ± 0:00a 2:10 ± 0:06ab 1:96 ± 0:04b

WGR (%) 454:44 ± 2:09a 410:55 ± 22:96ab 358:68 ± 13:67b

FE 1:33 ± 0:02a 1:27 ± 0:03ab 1:21 ± 0:03b

FI (%/day) 1:33 ± 0:01 1:38 ± 0:02 1:38 ± 0:04

SR (%) 100 ± 0:00 99:17 ± 0:83 100 ± 0:00

The letters with different superscripts in the same row mean (n = 3) the
difference was significant (P < 0:05).
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growth performance of sturgeons [41]. However, a diet with
15% full-fat BSFL supplementation suppressed the growth
performance (FCR and WG) of Atlantic salmon and pearl
gentian grouper [14, 42]. The lower feed efficiency of diet
FF might contribute to the differences in the present study.
Moreover, fish-fed diet FF had a lower perimeter ratio of
the intestine. In general, the lower the PR value, the smaller
the intestinal absorption area is, which represents the worse
digestion and absorption capacity of fish [30]. Based on the
BSFL meal level in experimental diets and the reported chi-
tin content in BSFL, it can be calculated that the content of
chitin in diet DF is about 1.16% and that in diet FF is about
0.59% [9, 43]. The presence of chitin could reduce the
growth performance of fish [15, 42, 44, 45]. Besides,
Kroeckel et al. [9] had shown that chitin-degrading enzymes
did not exist in the intestine of turbot. Besides, there was no
additional fish oil in diet FF because of the high lipid content
of full-fat BSFL meal. Therefore, the contents of DHA and
EPA in diet FF are significantly lower than those in diet
DF. According to previous studies, insufficient DHA and
EPA could impair the development of fish [46–49]. In

addition, it has been reported that n-3 long-chain-
polyunsaturated fatty acids (mainly DHA and EPA) could
enhance intestinal immune functions and positively shape
the host microbial ecosystem [50, 51]. The DHA and EPA
contents in the DF group were higher compared to the FF
group in this study.

The intestinal microecology is a complex and dynamic
ecosystem and intestinal microbiota can play various func-
tions in hosts [27, 52–54]. At the phylum level, Firmicutes
and Proteobacteria were the dominant bacteria in all groups,
which was consistent with previous studies in turbot
[55–58]. At the genus level, Vibrio, Mycoplasma, Ralstonia,
Pseudoalteromonas, Lysinibacillus, and Pseudomonas were
the dominant microbiota in this study. Vibrio is a genus of
ubiquitous heterotrophic bacteria in aquatic environments
[59]. Some species are opportunistic pathogens and some
of them also can act as potential probiotics to improve the
intestinal digestion function of turbot and disease resistance
of sturgeon [60, 61]. Mycoplasma has been known as a
pathogen, but recently, it has also been shown that the
abundance of Mycoplasma in the intestine was negatively
correlated with the abundance of potentially pathogenic
bacteria in trout and Atlantic salmon [62, 63]. Besides, the
Lysinibacillus facilitated the degradation of protein-like sub-
stances [64]. Species of Pseudoalteromonas are used as pro-
biotics in aquaculture for their antibacterial, bacteriolytic,
and algicidal activities [65–68]. Ralstonia and Pseudomonas
were usually regarded as an opportunistic pathogenic bacte-
rium [69–71]. The results of the TOP genus showed a higher
abundance of Vibrio,Mycoplasma, and Lysinibacillus in fish-
fed diet DF. In addition, the PCoA and UPGMA plot results
showed that the distance between group FM and DF was
short, but both of them were far from group FF. Collectively,
these results indicate that diet DF has a more positive effect
on the intestinal microbiota composition than diet FF.

According to the MetaStat analysis, the abundance of
Bacillus was significantly increased in fish-fed diet DF. Sim-
ilarly, the abundance of Bacillaceae (including Bacillus) was
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Figure 1: Effects of dietary different lipid content BSFL meal on the distal intestinal morphology in turbot. H&E staining. The intestinal
tissue of all treatment groups was well formed without inflammatory cell infiltration.
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Figure 2: The intestinal perimeter ratio in turbot. The different
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mean values (n = 6) between the groups (P < 0:05).
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higher in rainbow trout-fed diets with 30% BSFL meal,
especially defatted BSFL meal [72]. In this study, the higher
content of DHA and EPA in diet DF than that in diet FF
might be responsible for variation in Bacillus abundance.
In mice, dietary EPA or DHA enriched the beneficial bacte-
ria such as Lactobacillus in the intestine [73, 74]. As known,
insects contain chitin, which could affect the digestion
capacity and growth performance of fish [9, 75, 76]. Studies
have shown that Bacillus could produce chitin-degrading
enzymes in the intestine of Atlantic salmon and rainbow
trout [72, 77, 78]. In this study, a higher abundance of
Bacillus in fish-fed diet DF may reduce the chitin content
to some extent, ultimately improving feed efficiency and
growth of turbot. Besides, the relative abundance of Candi-
datus_Arthromitus, Chryseobacterium, and [Eubacterium]_
fissicatena_group was lower in the DF group than that in
the FM group. These bacteria were frequently considered
as a pathogenic bacterium [79–83]. However, the relative
abundance of potential probiotics Lactobacillus, Dubosiella,

and Bifidobacterium [84–86] was decreased in the FF
group, and the potential pathogen Chryseobacterium [81]
was increased in this group. Dubosiella was considered a
potential probiotic because it is positively correlated with
butyric acid levels [87]. Bifidobacterium is butyrate-
producing bacteria, and the increased short-chain fatty
acids were crucial to the improvement of immunity in
hosts [88–91]. In the present study, diet FF also increased
the abundance of pathogenic bacterium Lachnoclostridium,
Romboutsia, Chryseobacterium, and Aeromonas. Lachno-
clostridium can cause metabolic disorders in mice [92].
Romboutsia was the main reason for diarrheal shellfish
poisoning events in human beings over the world [93].
Aeromonas can easily lead to deadly and contagious dis-
eases for marine fish [94]. Overall, the intestinal microbi-
ota of turbot is sensitive to the lipid content and other
dietary compositions and may play key roles in the utiliza-
tion efficiency of BSFL meal by a fish host. Although this
experiment can illustrate the changes of the intestinal
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Table 6: Alpha diversity index of the intestinal microbiota of turbot.

Group
Richness estimates Diversity estimates

Observed species chao1 Ace Simpson Shannon

FM 533:00 ± 127:00 551:00 ± 126:00 559:00 ± 126:00 0:79 ± 0:05 4:41 ± 0:53

DF 441:00 ± 45:00 479:00 ± 51:00 494:00 ± 54:00 0:66 ± 0:09 3:34 ± 0:54

FF 378:00 ± 44:00 415:00 ± 46:00 428:00 ± 46:00 0:83 ± 0:06 4:16 ± 0:50

The letters with different superscripts in the same row mean (n = 6) the difference was significant (P < 0:05).
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microbiota of turbot by replacing fish meal with defatted
and full-fat BSFL, it would be better if there are more
intestine samples used. Future relevant studies may use a
bigger sample number.

In this study, both the DF and FF diets upregulated the
gene expression of Tricellulin, while diet FF downregulated
the Claudin-3 expression. The expression of TGF-β was also

significantly downregulated by diet FF. As well known, tight
junction proteins are important parts of the intestinal
mechanical barrier [95], and TGF-β plays a vital role in the
control of immune homeostasis and prevention of intestinal
inflammation [96, 97]. The present results suggested that
dietary full-fat BSFL meal has a negative effect on the intes-
tinal mucosal barrier.
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Figure 5: Beta diversity of intestinal microbiota of turbot. (a) Group UPGMA clustering tree. (b) PCoA plot.
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Figure 6: Metastat analysis on the distal intestine of turbot at the genus level. The different letters on the bar chart represent significant
differences in the mean values (n = 6) between the groups (P < 0:05).
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5. Conclusions

In the case of replacing the same fishmeal protein level, the
BSFL meal with different lipid contents had significantly
different effects on the growth performance and intestinal
health of turbot. The BSFL with lower lipid content
(23.77%) had no adverse effect on growth performance and
increased the abundance of some potential probiotics includ-
ing Bacillus. However, the BSFL with full-fat (43.21%) sup-
pressed the growth performance and disrupted the balance
of intestinal microbiota. More attention should be paid to
the lipid content of BSFL meal and the changes of fatty acid
composition in the diet when it is used in fish feeds. In partic-
ular, the roles of intestinal microbiota in the BSFL meal
effects need to be further explored.
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