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This study compared and evaluated the effects of nine native macroalgae species on the tropic coast of China on the growth and
physiological health performance of white shrimp (Litopenaeus vannamei). Nine hundred juvenile shrimps weighing 1:6 ± 0:02 g
were fed with nine different types of macroalgae for 28 days. The experimental groups were as follows: Con (the diet without
macroalgae), CRA (Caulerpa racemosa), CLA (Caulerpa lentillifera), CSS (Caulerpa sertularioides), CLM (Chaetomorpha
linum), ULA (Ulva lactuca), GBE (Gracilaria bailiniae), ASA (Acanthophora spicifera), SVC (Sargassum ilicifolium var.
conduplicatum), and BGE (Betaphycus gelatinae). Results showed that the growth performance of shrimps fed on the
macroalgae meals was significantly higher than that of the control group (P < 0:05). The immune defense capacity (total
hemocyte count, phagocytosis respiratory bursts, prophenoloxidase system, hemagglutination activity, and antibacterial and
bacteriolytic activities) and antioxidant capacity (total antioxidant capacity, superoxide dismutase, catalase, glutathione
peroxidase, and malondialdehyde) of L. vannamei fed on macroalgae meals were significantly higher than those of the control
group (P < 0:05). Specifically, the shrimps in the ASA group had the significantly higher physiological health level than
shrimps in the other macroalgae groups (P < 0:05), and the expression of immune and antioxidation-related genes was also
significantly higher in the ASA group (P < 0:05). Principal component analysis (PCA) demonstrated that optimal growth and
physiological health efficacy were observed in the ASA group. In summary, this study suggested dietary manipulation using
macroalgae to improve the growth performance, immune performance, and antioxidant capacity of L. vannamei, with the
optimal macroalgae for the diet being Acanthophora spicifera.

1. Introduction

White shrimp (Litopenaeus vannamei) is one of the com-
mercially important species, which has been widely cultured
in the world [1]. However, fungal and bacterial diseases
threaten the healthy development of shrimp culture [2, 3].
Facing this problem, antibiotics are widely used to prevent
and treat bacterial diseases [4] and have improved shrimp
farming immensely. But excess use of antibiotics results in
ecological degradation, damage to immune balance in
aquatic animals, and environmental pollution [5]. Due to
these harmful side effects, numerous countries have legis-
lated the maximum residue limit of antibiotics and banned

the use of some antibiotics for the treatment of certain ani-
mal diseases [6]. Immunity performance and antioxidant
capacity are essential to maintain the physiological health
and excellent growth performance of shrimp under environ-
mental and pathogenic stress [7]. Therefore, it is necessary
to find suitable alternatives to antibiotics and chemicals
and enhance the shrimp immunity.

Macroalgae are widely distributed throughout the world.
In 2018, the total macroalgae production in 50 countries was
32.4 million tons [8]. Hainan, the second largest island in
southern China, has 252 macroalgae taxa [9]. In Asia,
macroalgae have been used as food, fodder, and medicine
since ancient times [10]. At the same time, natural active
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substances from macroalgae have received significant atten-
tion for their dietary ingredient potential as a source of
natural growth promoters [11], anticoagulant [12], antimi-
crobial [11], and antioxidant [13]. The available literature
has demonstrated that the n-6 fatty acids extracted from
macroalgae could improve the growth performance of
shrimps [14, 15]. Polysaccharides derived from macroalgae
have been shown to promote innate immunity and enhance
PO activity, phagocytosis, antimicrobial activity, and bacte-
riophagy in shrimps [16–18]. The polyphenols extracted
from macroalgae have been demonstrated to display strong
antioxidant properties [19]. Moreover, some scholars have
compared the additional amount of macroalgae. Several
studies have shown that a low proportion (5%) of macroalgae
dry powder supplement in the diet of shrimps improved their
growth rate and enhanced immune efficiency [19–21]. Nev-
ertheless, when macroalgae meal is included higher than
10%, the shrimp growth effect can be lost or deteriorated
compared to 0% macroalgae feed inclusion. All research
showed that macroalgae and its active substances could
potentially replace antibiotics because of their immunostim-
ulation of shrimps. However, the selection of macroalgae to
be utilized in improving shrimp growth and physiological
health requires careful discrimination, as the efficiency may
be significantly modified depending on the algal species. An
optimal candidate for a macroalgae diet should benefit the
best growth, immunity, and antioxidant capacity of shrimps.
This experiment has important implications for selecting
macroalgae and exploring its effective ingredients for the
development of feed additives.

In the present study, nine types of macroalgae with
widely distributed and elevated natural preservation rates
were collected from the tropic coast of Hainan Province
China, which were Chlorophyta (Caulerpa racemosa, Cau-
lerpa lentillifera, Caulerpa sertularioides, Chaetomorpha
linum, and Ulva lactuca), Rhodophyta (Gracilaria bailiniae,
Acanthophora spicifera, and Betaphycus gelatinae), and
Phaeophyta (Sargassum ilicifolium var. conduplicatum).
The effects of nine kinds of macroalgae on growth perfor-
mance, immune responses, and antioxidant capacity of
white shrimp (L. vannamei) shall be investigated, with the
expectation that not only is there practical evidence to
improve shrimp farming while reducing antibiotic use, but
the initial screening of algae has laid the foundation for addi-
tional research on macroalgae active substances.

2. Materials and Methods

2.1. Diet Preparation. Nine macroalgae species were col-
lected from Qionghai city, Wenchang city, and Lingshui
county in Hainan province, China. The macroalgae powder
was prepared using a modified method of Schleder et al.
[22] and Ling et al. [11]. Briefly, first fresh macroalgae
(CRA 2.83 kg, CLA 2.083 kg, CSS 1.989 kg, CLM 2.604 kg,
ULA 1.138 kg, GBE 2.373 kg, ASA 1.026 kg, SVC 1.015 kg,
and BGE 1.685 kg) were scrubbed with seawater to remove
holdfasts and epiphytes and incubated in a ventilated oven
at 38°C for 48h; the dry weight of 9 kinds of macroalgae is
as follows: CRA 0.098 kg, CLA 0.057 kg, CSS 0.098 kg,

CLM 0.103 kg, ULA 0.114 kg, GBE 0.314 kg, ASA0.115 kg,
SVC 0.171 kg, and BGE 0.283 kg. Then, the macroalgae were
ground into powder through an 80-mesh sieve; at last, the
macroalgae powder was put in an airtight container and
stored at -20°C in a refrigerator.

The basal diet used in this study was based on the nutri-
tional requirements of L. vannamei. The isonitrogenous
(about 39.80% crude protein) and isolipidic (about 6.89%
crude lipid) diets were formulated with nine different kinds
of macroalgae powder, and in order to screen macroalgae
extensively the dietary macroalgae powder and not negatively
affect the shrimp, we preferentially selected the 5% dry pow-
der of macroalgae for experiments. The ingredients in the
experimental diets are indicated in Table 1. All ingredients
were ground, sieved through a 60-mesh sieve, and thor-
oughly mixed before pelleting in a feed extruder (CD 4-1
TS extruder at SCUT industrial factory, Guangzhou, China).
The pellets had a diameter of 1.5mm. The feeds were dried at
room temperature to a water moisture content < 10% mois-
ture and stored in the refrigerator at -20°C.

2.2. Experimental Animals and Experimental Design. Juve-
nile shrimps (L. vannamei) with an average weight of 1:6
± 0:2 g were purchased from a shrimp farm in Wenchang,
Hainan, China. The feeding trial was conducted at the Fish-
eries Sciences Research Base in Qionghai, Hainan. The
shrimps were acclimatized in 30 polyethylene drums (60 L)
containing clean natural seawater (salinity 26-28, pH8.0,
temperature 27 ± 2°C) for a week before the experiment.
During this period, half of the drum water was replaced
daily, and the shrimps were fed on a commercial diet (Alpha
Feed Company, Guangdong). At the beginning of the exper-
iment, 900 shrimps were randomly divided into ten groups,
each 3 replicates. During the experiment, the water quality
parameters maintained the same as those for the acclima-
tion. The shrimps were fed four times per day (07:00,
12:00, 17:00, and 23:00) 5% of their body weight, and the ini-
tial body length and weight were measured at the beginning
of the experiment.

2.3. Sample Collection. The experimental period was set to 28
days as described by Omont et al. and Su et al. [21, 23]. At
the end of the experiment, the final weight and body length
of the shrimps were measured and hemolymph and hepato-
pancreas were collected. Firstly, the hemolymph sample
(0.4mL) was drawn from the first abdominal segment of
each shrimp using a 1mL sterile syringe containing 0.2mL
of anticoagulant (450mM NaCl, 10mM KCl, 10mM
EDTA-Na2, and 10mM HEPES, pH = 7:45, 780mOsm/kg)
at a ratio of one to one [24, 25]. Thereafter, the preparation
of plasma was as follows: 6mL of the hemolymph sample
was centrifuged at 800 × g for 10min at 4°C; the supernatant
fluid (plasma) was stored at -80°C until further analyses,
including enzymatic of humoral immunity functions. Part
of the hemocyte precipitate was centrifuged at 700 × g for
10min, ultrasonically crushed, rinsed, and resuspended in
1.0mL sterilized normal shrimp saline to extract hemocyte
lysate supernatant (HLS) for measuring the phenol oxidase
(PO) activity of hemocyte. The rest of the hemocyte
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precipitates were resuspended in 1mL Trizol reagent
(TransGen, China) and stored at -80°C for total RNA extrac-
tion. The hepatopancreas was extracted and stored at -80°C
for further enzymatic activity and antioxidation activity
analyses [26].

2.4. Growth and Survival of Shrimp. The shrimp growth and
survival parameters were calculated using the following for-
mulas:

Weight gain %ð Þ = 100% × final weight gð Þ − initial weight gð Þð Þ
initial weight gð Þ ,

Specific growth rate %day−1
À Á

= 100% ×
Lnfinal weight − Lninitial weight
À Á

28 days ,

Condition factor = 100% × final weight gð Þ
body length cmð Þ3À ,

Survival %ð Þ = 100% × final shrimp number
initial shrimp number ,

Hepatosomatic index %ð Þ = 100% × wet hepatopancreas weight gð Þ
wet body weight gð Þ :

ð1Þ

2.5. Immunity Response Parameter Assay. Total hemocyte
count (THC) assay was measured using 0.1mL of hemo-
lymph in a hemocytometer in an inverted phase contrast
microscope (Nikon, E200, Tokyo, Japan).

The phagocytic activity of the hemocytes was analyzed
using V. harveyi as described by Hu et al. [27] and Yue
et al. [28], but with minor modifications. Briefly, 100μL of
the bacterial suspension (1 × 107 cells/mL) and 100μL of
hemolymph (1 × 107 cells/mL) were added to plastic micro-
plates and incubated at 37°C for 30min. After incubation,
50μL of the mixture was pipetted onto a slide using a pipette
gun. The slide was stained with Giemsa stain, decolorized
with Milli-Q water, air-dried for 20min, and observed under
a Nikon light microscope (10x eyepiece, 100x objective lens
under oil immersion). The number of phagocytes among
100 random hemocytes was counted, and the phagocytosis
rate (PR) was calculated as follows:

Phagocytosis rate %ð Þ = phagocytosis hemocytes
total hemocytes

� �
× 100%:

ð2Þ

The respiratory bursts of the hemocytes were measured
using a modified Bell and Smith 1993 method [29]. The
hemolymph sample was centrifuged at 800 × g for 20min
and 4°C, and the supernatant was cultured for 30min at
room temperature in 100μL of zymosan in modified com-
plete Hank’s balanced salt solution (MCHBSS). After the
incubation, 100μL NBT solution (0.3%) was added, and
the mixture was incubated for 30 minutes. Finally, 120μL
KOH and 140μL of dimethyl sulfoxide (DMSO) were added
to dissolve the insoluble formazan crystals formed by the
reduction of NBT. The optical density of the shrimp’s RBs
was measured using a microplate reader at 630nm (Epoch,
BioTek, USA).

2.6. The Humoral Immunity Response Assay. The proPO
activity of hemocytes was measured as described by Smith
and Soderhall [30]. Trypsin (0.1%) was used as an activator;
then, add HLS (100μL) and incubate in the dark for 30min.
Thereafter, 100μL DOPA was added, followed by a 10min
incubation. One unit of enzyme activity was defined as an
increase of 0.001 per 247mg protein O.D.490 per minute
(U/min/mg pr) under experimental conditions.

PO activity in plasma was determined according to a
method described by Mason and J. Hernández-López et al.
[31, 32]. Briefly, 200μL of plasma was added to 200μL of
0.1% trypsin, and the mixture was incubated for 30min at
room temperature before adding 200μL of 0.3% L-DOPA.
The absorbance of the plasma was measured at 490 nm at
an interval of 2min for 30min. One unit of enzyme activity

Table 1: Dietary formulation and concentration of different
components.

Ingredients Formula of diet (g/kg)

Fish meal 250

Soybean meal 220

Peanut meal 150

Shrimp meal 50

Corn starch 150

Fish oil 10

Soy oil 10

Soy protein concentrate 15

Cholesterin 5

Vitamin mixa 20

Mineral mixb 20

CMC 30

Choline chloride 5

Butylated hydroxytoluene (BHT) 5

Cellulose 64.5

Macroalgae
0 (control group)

50 (nine different kinds of
macroalgae powder)

Proximate composition
(% dry diet)

Moisture 8.7

Crude protein 39.8

Crude lipid 6.89

Ash 9.8
aVitamin premix, diluted in cellulose, provided the following vitamins (mg/
kg diet): vitamin A (500,000 IU/g), 8; vitamin D3 (1,000,000 IU/g), 2;
vitamin K, 10; vitamin E, 200; thiamine, 10; riboflavin, 12; pyridoxine, 10;
calcium pantothenate, 32; nicotinic acid, 80; folic acid, 2; vitamin B12,
0.01; biotin, 0.2; choline chloride, 400; L-ascorbyl-2-polyphosphate
(150mg/g vitamin C activity), 60. bTrace mineral premix provided the
following minerals (mg/kg diet): zinc (as ZnSO4·7H2O), 150; iron (as
FeSO4·7H2O), 40; manganese (as MnSO4·7H2O), 15.3; copper (as CuCl2),
3.8; iodine (as KI), 5; cobalt (as CoCl2·6H2O), 0.05; selenium (as
Na2SeO3), 0.09.
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was demonstrated as an increase in absorbance of 0.001min/
mL/plasma.

For hemagglutination activity analysis, which was in
conformity with the method of Alpuche et al. and Pais
et al. [33, 34], blood samples were aseptically collected in
centrifuge tubes from mouse eyeballs in syringes containing
10mg/mL heparin sodium to prevent coagulation. The
blood was centrifuged at 700 × g for 10min at 4°C to precip-
itate the erythrocytes for subsequent experiments. Before the
test, the erythrocytes were first washed twice with normal
saline (0.15mol/L sodium chloride) and twice with calcium
(TBS-Ca) (0.01mol/L Tris-HCl, 0.14mol/L NaCl, and
0.01mol/L CaCl2, pH7.4) through centrifugation (800 × g,
10°C, 10min) at each interval. The erythrocytes (2%) were
suspended in TBS-Ca buffer. Hemagglutination assays were
then performed using 96-well microtiter plates. In each well,
25mL of hemolymph was diluted twice in TBS-Ca and
mixed with an equal volume of erythrocyte suspension.
Hemagglutination was observed after incubation at room
temperature for 1 h. The hemagglutination activity was
reported as the reciprocal of the last dilution with visible
agglutination activity [34].

The antibacterial and bacteriolytic activities were mea-
sured as described by Hultmark et al. [35]. Microbes (Vibrio
parahaemolyticus and Micrococcus lysodeikticus) were resus-
pended in PBS (0.1mol/L, pH = 6:4, OD570 nm = 0:3), and
3.0mL of the bacterial suspension was mixed with 100μL
of plasma on ice. The absorbance was measured at 570 nm
(A0, A0 ′). The mixture was incubated in a water bath at
37°C for 30 minutes and thereafter on ice for 10 minutes
to stop the reaction. The absorbance was then measured at
570nm (A, A′). Bacteriolytic activity (UB) and antibacterial
activity (UA) were calculated using the following formula:

UA =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0 −Að Þ

A

r
,

UB =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0′ −A′

� �
A′

vuut
ð3Þ

2.7. The Antioxidant Property Assay. Ten percent hepato-
pancreas tissue fluid was prepared by adding 0.1 g hepato-
pancreas to 0.9mL normal saline. The mixture was
homogenized on ice and centrifuged at 3000 rpm for 5min
at 4°C. The antioxidant enzyme activity and gene expression
were measured in hepatopancreas tissue fluid. The total pro-
tein content, MDA, and enzyme activity of T-AOC, SOD,
GPX, and CAT in the hepatopancreas were measured using
commercial kits (A045-4, A003-1,A015-2-1, A001-3-2,
A005-1-2, and A007-1-1) purchased fromNanjing Jiancheng
Bioengineering Institute, Nanjing, China (http://www.njjcbio
.com/), according to the manufacturer’s instructions.

Briefly, the T-AOC was measured as described by Akin-
rinde et al. [36], which used the ferric reducing antioxidant
potential (FRAP) method, and a standard curve of FeSO4
× 7H2O was produced to assess the FRAP activity of all
samples.

SOD activity was based on S. Marklund and G. Mark-
lund [37]; the reduction of Tris-HCl buffer (pH8.3) by
superoxide anions was generated by the xanthine oxidase
reaction and detected at 550nm at 37°C. One unit of SOD
activity was defined as a 50% inhibition of the oxidation pro-
cess (U/mgport).

CAT activity was determined according to the method of
Sun et al. [38]. This assay was based on measurement of the
rate of decomposition of H2O2, and the change in absor-
bance at 240 nm is measured as one unit of enzymatic activ-
ity per minute, with one unit of CAT activity which means
1mg of enzyme in tissue proteins can be reduced by 1μmol
H2O2 in a second (U/mgport).

GPX activity was monitored according to the method of
Yan et al. [26]. It was based on GPX enzyme catalyzing the
consumption of GSH by H2O2. Consumption of 1μmol/L
glutathione catalyzed by 1mg of tissue proteins in 1min at
37°C was defined as one unit of GPX activity (U/mgport).

MDA content was measured as described by Jia et al.
[39]. It was based on thiobarbiturate method; malondial-
dehyde can react with thiobarbituric acid at 95°C to pro-
duce a red malondialdehyde-thiobarbituric acid product,
which can be measured spectrophotometrically at 532 nm.
MDA content was expressed as nanomoles per milligram of
protein.

2.8. Immune and Antioxidant-Related Gene Expression
Assay. Total RNA was extracted from hemocytes using Tri-
zol (TransGen, China) and reverse transcribed to cDNA
using SMARTer™ PCR cDNA Synthesis Kit (Clontech,
USA). The PCR instrument in this experiment was LightCy-
cler96 (Roche, Switzerland). The primers for the 9 genes and
β-actin (internal control) were designed by TianyiHuiyuan
(Beijing, China) (Table 2).

The relative expression ratio (R) was calculated using the
following equation:

R = Etargetð Þ△Cp target control−sampleð Þ

Erefð Þ△Cp ref control−sampleð Þ 26½ �: ð4Þ

2.9. Statistical Analysis. Continuous normally distributed
data were expressed as means ± standard error (n = 3). Sta-
tistical analysis was performed using SPSS software, version
24.0. Differences among groups were analyzed using one-
way ANOVA, then the Duncan multiple range tests were
used for analyzing differences among the groups. P < 0:05
was considered statistically significant.

3. Results

3.1. Growth Performance. Table 3 shows the effects of differ-
ent macroalgae diets and basal diet on the growth perfor-
mance of L. vannamei. Compared with the control group
(basal diet), weight gain, specific growth rate, and condition
factors of the nine macroalgae groups were significantly
higher (P < 0:05). One-way ANOVA revealed that shrimps
in the ASA and CSS group had the highest final body weight,
weight gain, specific growth rate, and condition factor
(P < 0:05), followed by the CLM group. In addition, no
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differences were observed in the survival rate and hepatoso-
matic index among the groups (P > 0:05).

3.2. Cellular Immunity. The cellular immunity parameters of
the shrimp are shown in Figure 1. Total hemocyte count,
phagocytic activity, respiratory burst, and the expression of
dynamin gene were highest in the ASA group, followed by
the CRA group and the BGE group (P < 0:05). All cellular
immunity indicators were also significantly higher in the
macroalgae diet group than those in the control group
(P < 0:05).

3.3. Humoral Immunity. The proPO system of L. vannamei
fed on different macroalgae diets and the control diet is
shown in Figure 2. The expression of PPA (Figure 2(a))
and proPO (Figure 2(b)) was significantly higher in the
ASA group followed by the CRA group and the BGE group
(P < 0:05). Similarly, the proPO activity (Figure 2(c)) and
PO activity (Figure 2(d)) were significantly higher in the
ASA group than in the other groups (P < 0:05), followed
by the CRA group and the BGE group. The proPO system
of the shrimp genes and the activities of enzymes in all
macroalgae diet groups were significantly higher than those
of the control group (P < 0:05).

The hemagglutination activity, antibacterial activity, and
bacteriolytic activity of L. vannamei fed on different macro-
algae diets and the control diet are shown in Figure 3. The
expression of CTL, Cru, and Lys (Figures 3(a), 3(c), and
3(e)) was significantly higher in the ASA group than in other
groups (P < 0:05), followed by the CRA group and the BGE
group. Similarly, the hemagglutination activity (Figure 3(b)),
antibacterial activity (Figure 3(d)), and bacteriolytic activity
(Figure 3(f)) were significantly higher in the ASA group than
in the other groups (P < 0:05), followed by the CRA group
and the BGE group. The humoral immunity of the shrimp
genes and the activities of enzymes in all macroalgae diet
groups were significantly higher than those of the control
group (P < 0:05).

3.4. Antioxidant Capacity. The antioxidant capacity of L.
vannamei fed with different macroalgae diets and the con-
trol diet is shown in Figure 4. The expression of SOD,
CAT, and GPX was significantly higher in the ASA group
than in other groups (P < 0:05), followed by the CRA group
and BGE group. The T-AOC, SOD activity, CAT activity,
and GPX activity were significantly higher in the ASA group
than in the other groups (P < 0:05), followed by the CRA
group and BGE group. The antioxidant capacity and enzyme
activities in all macroalgae groups were significantly higher

Table 2: Primer information.

Gene GenBank number Forward (5′-3′) Reverse (5′-3′)
Dynamin LOC119582967 TGGTACTAAGTCCCGTGTTGTCT ATTCCTCCGAGCTGGTGTAT

PPA JX644452.1 GGTTCCGCTGGTCACTG CTTCCGTCCTTCCAACAAT

proPO AY723296.1 CGGTGACAAAGTCCTCTTC GCAGGTCGCCGTAGTAAG

C type lectin GU206552.1 ATGACATCACCTCGGACTTG GATGATTACAGTCAGGGTTCATTC

Crustin AY486426.1 CGTCGGGTACGTCTGCT CTGCCACGATGGGTTTG

Lysozyme AY170126.2 CAGCACGGACTACGGCATCTTC TATGACAAATGGGAACAAAG

SOD DQ005531.1 CGGGGGTCAGTCCTGTAAT AGAGTCGCCGAGCAGAGTG

CAT AY518322.1 ATCCATTCGACCTTACCA ACGCAATCTGCTCCACCT

GPX LOC113816684 GGCACCAGGAGAACACTAC CGACTTTGCCGAACATAAC

β-Actin AF300705 TGGACTTCGAGCAGGAGATG GGAATGAGGGCTGGAACAGG

Table 3: Effect of macroalgae diet on growth performance in L. vannamei.

Treatments FW (g) WG (%) SGR (% day−1) CF (%) HI (%) SR (%)

Con 3:27 ± 0:05a 104:56 ± 1:4a 2:55 ± 0:05a 0:55 ± 0:01a 5:57 ± 0:03 86:67 ± 1:36
CRA 4:22 ± 0:06d 163:9 ± 1:64c 3:47 ± 0:04c 0:72 ± 0:04c 5:76 ± 0:12 89:33 ± 2:88
CLA 4:03 ± 0:07bc 151:87 ± 2:01b 3:29 ± 0:06b 0:64 ± 0:02b 5:82 ± 0:27 85:33 ± 1:09
CSS 4:39 ± 0:08e 174:37 ± 2:22d 3:60 ± 0:06d 0:78 ± 0:09d 5:56 ± 0:14 86:67 ± 1:36
CLM 4:29 ± 0:07d 168:33 ± 2:09c 3:52 ± 0:05c 0:73 ± 0:01c 5:68 ± 0:23 85:00 ± 2:36
ULA 3:95 ± 0:03b 146:62 ± 0:88b 3:22 ± 0:03b 0:60 ± 0:05b 5:55 ± 0:09 83:33 ± 1:36
GBE 3:84 ± 0:06b 140:23 ± 1:82b 3:13 ± 0:06b 0:61 ± 0:04b 5:99 ± 0:16 89:67 ± 0:27
ASA 4:47 ± 0:02e 179:68 ± 0:88d 3:67 ± 0:02d 0:82 ± 0:08d 5:73 ± 0:3 93:67 ± 1:52
SVC 4:04 ± 0:08c 153:11 ± 2:61bc 3:31 ± 0:08bc 0:70 ± 0:02b 5:77 ± 0:11 88:39 ± 3:47
BGE 4:03 ± 0:16c 152:24 ± 4:79bc 3:30 ± 0:14b 0:68 ± 0:01c 5:65 ± 0:31 88:33 ± 1:36
Data are presented as mean ± SE. Data indicated with different letters (a-d) were significantly different (P < 0:05) among treatments.
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than those in the control group (P < 0:05). On the contrary,
the MDA content of the ASA group was significantly lower
than that of the other groups (P < 0:05).

3.5. Principal Component Analysis (PCA). The principal
component analysis (PCA) loading plot (Figure 5(a)) and
score plot (Figure 5(c)) of L. vannamei are shown in
Figure 5. The first two principal components were 93.4%,
over 85% (Figure 5(a) 79.2% and 14.2%). As shown in
Figure 5(a), CAT, GPX, MDA, SOD, T-AOC, PO, proPO,
THC, RB, PR, antibacterial activity, and bacteriolytic activity
were all related to physiological health, which were at the
bottom right of PC1. The WG, SGR, CF, HI, and SR, all
related to growth performance, were at the upper right side
of PC2. The scores for the combined growth and physiolog-
ical health indicators for each group are shown in the score
plot (Figure 5(c)). The groups are ranked as follows: ASA
group, CRA group, BGE group, CLA group, SVC group,
GBE group, ULA group, CSS group, CLM group, and the

control group. The heat map for Pearson’s correlation anal-
ysis of all detection indexes is presented in Figure 5(b). The
main parameters were grouped into two aspects (growth
and physiological health), which were minimally or not
correlated.

4. Discussion

4.1. Effects of Macroalgae Diet on the Growth Performance of
L. vannamei. Previous studies have demonstrated that die-
tary macroalgae supplements significantly promote the
growth performance of aquatic organisms [40]. For instance,
macroalgae supplementation in the basal diet enhances the
growth performance of shrimps, striped catfish, and Euro-
pean sea bass [41, 42]. Putra et al. revealed that the gain of
weight in a black tiger shrimp (P. monodon) was signifi-
cantly higher in the green algae (Caulerpa lentillifera) group
than that in the control group [43]. Feeding white shrimp (L.
vannamei) with brown algae (Sargassum ilicifolium) also
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Figure 1: Effects of macroalgae diet on the cellular immunity of L. vannamei. Total hemocyte count (a), relative expression of dynamin (b),
phagocytic rate (c), and respiratory burst activity (d) of L. vannamei in different groups. All data are expressed as mean ± SE (n = 3). The
mean column of different superscript letters (A–E) was significantly different (P < 0:05).
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Figure 2: Effects of macroalgae diet on the proPO system of L. vannamei. Relative expression of prophenoloxidase-activating enzyme (a),
relative expression of prophenoloxidase (b), prophenoloxidase activity (c), and phenol oxidase activity (d) of L. vannamei in different
groups. All data were expressed as mean ± SE (n = 3). The mean column of different superscript letters (A–E) was significantly different
(P < 0:05).
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Figure 3: Effects of macroalgae diet on the hemagglutination activity, antibacterial activity, and bacteriolytic activity of L. vannamei.
Relative expression of C-type lectin (a), hemagglutination activity (b), relative expression of crustin (c), antibacterial activity (d), relative
expression of lysozyme (e), and bacteriolytic activity (f) of L. vannamei in different groups. All data were expressed as mean ± SE (n = 3).
The mean column of different superscript letters (A–F) was significantly different (P < 0:05).
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Figure 4: Continued.
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significantly increased its final biomass and FCR [44]. In this
experiment, we confirmed that macroalgae diet can promote
the growth performance of shrimp, including weight gain,
specific growth rate, and condition factors, which may be

because macroalgae were wealthy in fatty acids and essential
amino acids, and minerals and vitamins C and E can be used
as nutritional supplements for shrimps [45]. Interestingly,
the best growth performance of the shrimp was observed
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Figure 4: Effects of macroalgae diet on the antioxidant capacity of L. vannamei. Total antioxidant capacity (a), malonaldehyde activity (b),
relative expression of superoxide dismutase (c), superoxide dismutase activity (d), relative expression of catalase (e), catalase activity (f),
relative expression of glutathione peroxidase (g), and glutathione peroxidase activity (h) of L. vannamei in different groups. All data were
expressed as mean ± SE (n = 3). The mean column with different superscript letters (A–E) showed a significant difference (P < 0:05).
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in the red algae A. spicifera, green algae C. sertularioides, and
C. linum; this may because Rhodophyta and Chlorophyta
contain dimethyl-sulfonyl-propionate (DMSP), which
increased feed intake [21]. Rhodophyta also contains higher
n-6 unsaturated fatty acids, which were used as energy
resources to promote the growth of shrimps [21, 46]. How-
ever, the specific effective components of macroalgae in
promoting shrimp growth need to be investigated further.

4.2. Effects of Macroalgae Diet on Cellular Immunity of L.
vannamei. L. vannamei relies on the innate immune system
to defend itself against invading pathogens and environ-
mental stress [47]. The innate immune system consists
primarily of cellular and humoral immunity. Cellular
immunity is an essential part of the innate immunity of
crustaceans and for defending against invading pathogens
through phagocytosis, nodule formation, and encapsulation
by hemocytes [48]. One study showed that supplementing

brown algae (Sargassum cristaefolium) to basal feed signifi-
cantly increased the THC of L. vannamei and enhanced
resistance to ammonia stress [49]. Meanwhile, Niu et al.
also found that the supplementation of Porphyra haitanen-
sis powder in the diet increased the THC of shrimps. In this
study, dietary macroalgae significantly increased the THC of
L. vannamei, which was consistent with previous studies
[50]. This may be that macroalgae stimulate the hematopoi-
etic tissue of shrimps, improving the THC of shrimps by
enhancing mitosis [51].

Phagocytosis is regarded as a requisite part of innate
immunity, which is initiated by recognizing the target parti-
cle and binding it to the phagocyte, then the immune-
related genes such as dynamin involved in the control of
endocytosis via clathrin-mediated endocytosis [26, 52–54].
It is reported that the phagocytic activity of Fenneropenaeus
indicus was higher in seawater containing brown algae (Sar-
gassum glaucescens) [55]. Another study showed that the
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addition of S. cristaefolium to feed significantly enhanced the
phagocytic activity of L. vannamei and effectively enhanced
the disease resistance of white shrimp [49]. Similarly, in this
experiment, the macroalgae diet significantly enhanced the
phagocytic activity and expression of dynamin in L. vanna-
mei compared to the control diet. However, this experi-
ment found that the addition of A. spicifera to the feed
led to the most significant improvement in phagocytosis
activity compared to different macroalgae species. Interest-
ingly, this was consistent with the THC results
(Figure 5(b)). For this phenomenon, some studies have
also showed that THC of shrimp is positively correlated
with phagocytic activity [49]. It may be that the algae
enhance the number of hyaline cells in shrimp, which are
involved in phagocytosis of crustaceans [49, 56]. However,
the mechanisms underlying this phenomenon are not fully
understood and require additional research.

After the engulfing of microbial pathogens, the respira-
tory burst (RB) that occurs during the phagocytosis process
is oxygen-dependent to produce superoxide anion and oxy-
gen species (ROS) formation, which can kill invading bacte-
ria [51, 57, 58]. Previous studies showed that dietary
supplementation with polysaccharides extracted from green
algae (C. racemosa) and brown algae (Sargassum wightii)
enhanced the innate immunity and RB of L. vannamei [17,
59]. Brown algae Sargassum epiphyllum var. Chinense signif-
icantly increases the survival rates and RB activity of white
shrimp under WSSV challenge [60]. Similarly, the present
study showed that macroalgae powder in feed significantly
increased the RB of hemocytes in shrimps, caused by high
phagocytic activity and oxygen-dependent sterilization
mechanism.

4.3. Effects of Macroalgae Diet on Humoral Immunity of L.
vannamei. Humoral immunity contains the proPO system,
lectins, crustin, and lysozyme, which can trigger various
immune responses through intercellular communication
and plays an essential role in immune defense [61]. The
proPO system is controlled and regulated by proteins capable
of binding to proteinases, proteinase inhibitors, and micro-
bial compounds, including proPO and prophenoloxidase-
activating enzyme (PPA) [26, 62]. Studies have shown that
dietary brown algae (Padina tetrastromatica and Sargassum
ilicifolium) significantly increased the PO activity of P. mono-
don [63]. Wongprasert et al. reported that sulfated galactan
extracted from red macroalgae (Gracilaria fisheri) signifi-
cantly increased the phenoloxidase activity of shrimps by
interacting with β-1, 3-glucan binding protein on the mem-
brane of hemocytes [64]. Moreover, the sulfated galactosides
contained in red algae can stimulate receptors on hemocyte
membranes and the subsequent generation of active pheno-
loxidase enzymes [64]. The present study has demonstrated
that the addition of macroalgae to the feed significantly
increased the phenoloxidase activity of L. vannamei com-
pared to the control group, consistent with the above studies,
and the activity of proPO and PO and the expression of PPA
and proPO genes were higher in A. spiculata than those in
other macroalgae groups. We speculate that macroalgae
(especially A. spiculata) contain additional sulfated galacto-

centrics, which had been reported that galactose performs
the major function in the A. spicifera compared to the other
monosaccharides [59, 65]. However, the specific components
in this macroalgae and the mechanisms underlying their
function require further investigation.

Hemolymph coagulation prevents hemolymph leakage
from the site of crustacean injury, resisting the spread of
the bacteria [66]. Lectins can recognize and bind to a specific
saccharides by agglutinating the hemocyte by binding to cell
surface glycoproteins and glycoconjugates, and C-type lectins
(CTLs) are one of the lectin superfamilies, which can be used
in pathogenic invasion of the shrimp [26]. The previous
study found that L. vannamei oral administration of alginate
and Cystoseira trinodis fucoidan significantly increased the
expression of the C-type lectin gene compared to the control
group [1, 67]. Although macroalgae have been rarely studied
to enhance the hemagglutination activity in shrimps, previ-
ous studies had demonstrated that sodium alginate can
significantly improve specific immune responses such as
hemagglutination activity in juvenile grouper (Epinephelus
fuscoguttatus) [68]. It had also been reported that sodium
alginate is widely distributed in different macroalgae and
accounts for a significant percentage of the dry weight of
macroalgae [69]. The present study also showed that the
addition of macroalgae powder to the feed significantly
increased hemagglutination and the expression of the C-
type lectin gene in L. vannamei, which may be related to
the abundance of sodium alginate in macroalgae.

Antimicrobials and lysozyme are essential components
of nonspecific immunity in crustaceans. Antimicrobial pep-
tides protect against pathogenic microbial invasion, and
lysozyme can catalyze the hydrolysis of bacterial cell walls
in shrimps, protecting these shrimps against infection by
pathogenic bacteria [70–72]. The antimicrobial activity of
P. monodon was enhanced by the addition of fucoidan from
Undaria pinnatifida to the macroalgae diet [73]. Additional
studies have shown that shrimps fed with brown algae (S.
filipendula) powder increased the production of antimicro-
bial peptides [20]. Salehpour et al. found that the addition
of Cystoseira trinodis fucoidan to the diet significantly
increased lysozyme activity and gene expression in L. vanna-
mei [1]. Lysozyme activity was significantly increased in
Indian white shrimp (Penaeus indicus) reared in recircula-
tory aquaculture systems containing macroalgae (Gracilaria
tenuistipitata) [74]. Similarly, this study revealed that dietary
supplementation of macroalgae significantly improved anti-
microbial and lysozyme activity in shrimp. It may be that
metabolites induced by macroalgae could inhibit bacterial
infections in shrimps, and some studies have reported anti-
fungal activity in the water extracts of red algae, Hypnea
flagelliformis, and brown algae, Cystoseira myrica and Sar-
gassum boveanum [75].

4.4. Effects of Macroalgae Diet on Antioxidation in L.
vannamei. The hepatopancreas is the main detoxification
organ in crustaceans, which reflects the antioxidation level
in organisms [76]. T-AOC, SOD, CAT, GPX, and MDA are
important indicators for assessing antioxidant systems [77].
It has been reported that banana shrimps (Fenneropenaeus
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merguiensis) fed with polysaccharides extracted from macro-
algae Enteromorpha significantly increased the T-AOC of the
animal [16]. Ethanolic extract of red algae (Jania adhaerens)
significantly increased the enzyme activities of SOD, GPX,
and CAT and reduced the content of MDA in shrimps (L.
vannamei) [78]. Similarly, in this study, we found that adding
macroalgae in shrimp diet significantly enhanced the expres-
sion genes and enzyme activities of antioxidation in shrimp,
and the MDA decreased significantly. Macroalgae have
numerous polyphenols with antioxidation properties [79,
80]. Anaya et al. found that red macroalgae (G. vermiculo-
phylla) contains higher phenolic content than other green
and brown algae [19], and another study reported that A. spi-
cifera had the highest total antioxidant activity in vitro than
the other red macroalgae [81]. Therefore, we speculate that
A. spicifera contains abundant polyphenols and higher total
antioxidant activity in vitro that promote antioxidant activi-
ties in shrimps. However, the specific composition and con-
tent of these polyphenols remain to be validated.

4.5. Principal Component Analysis. In order to compare the
comprehensive effect of each index, PCA revealed that all
physiological health indicators (immune response, antioxi-
dant capacity) were distributed in the first PC1 variable,
and indicators related to growth performance were distrib-
uted in the second PC2 variable, which were consistent with
the correlation analysis among the indicators (Figure 5(b)).
A comprehensive evaluation of immunity and growth indi-
cators of the two variables showed that immunity and
growth performance of shrimps were the highest in the red
algae (A. spicifera) group, followed by the green algae (C.
racemosa) and the red algae (B. gelatinae) groups. PCA
results were consistent with the above growth and physio-
logical health index results.

5. Conclusion

In order to initially screen and compare the health effects of
macroalgae, in this study, we compared the effects of nine
kinds of local macroalgae on the tropic coast of China on
the growth and physiological health of the white shrimp
(L. vannamei). We found that the growth performance of
L. vannamei was significantly improved by adding macroal-
gae powder to the diet. Similarly, compared with the control
group, macroalgae also significantly improved the immune
performance of shrimp. A. spicifera, C. Sertularioides, and
C. linum are macroalgae that enhance the growth of shrimps
the most. A. spicifera, C. racemosa, and B. gelatinae are the
macroalgae that enhance the physiological health of shrimps
the most. Based on the significant growth and physiological
health enhancement effects, A. spicifera powder should be
supplemented in shrimp feed to improve the shrimp culture
and reduce antibiotics.
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