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Chinese yam (Dioscorea polystachya Turczaninow) by-product produced in the water extraction process is commonly directly
discarded resulting in a waste of resources and environmental pollution. However, the value of Chinese yam by-product which
still contains effective ingredients is far from being fully realized; hence, it has the potential to be a safe and effective feed
additive in aquaculture. To investigate the impacts of Chinese yam by-product on growth performance, antioxidant ability,
histomorphology, and intestinal microbiota of Micropterus salmoides, juvenile fish (initial weight 13:16 ± 0:05 g) were fed diets
supplemented with 0% (control), 0.1% (S1), 0.4% (S2), and 1.6% (S3) of Chinese yam by-product for 60 days. The results
showed that no significant difference was found in weight gain, specific growth rate, and survival among all the experimental
groups (P > 0:05). Feed conversion ratios of the S1 and S3 groups were significantly lower than those in the control group
(P < 0:05). SOD activity of the S3 group and GSH contents of Chinese yam by-product groups were significantly higher than
those in the control group (P < 0:05). MDA levels of the S2 and S3 groups were significantly lower than those in the control
group and the S1 group (P < 0:05). Besides, Chinese yam by-product could protect liver and intestine health, as well as
increase the abundance of beneficial bacteria and decrease the abundance of potential pathogens. This study suggests that
Chinese yam by-product has the potential to be used as a functional feed additive in aquaculture, providing a reference for
efficient recovery and utilization of by-products from plant sources during processing and culturing high-quality aquatic products.

1. Introduction

Chinese yam (Dioscorea polystachya Turczaninow) is the
homology of medicine and food, and it is favored by people
for its good flavor, rich nutrition, and excellent health func-
tion. The main nutrient composition of Chinese yam
includes moisture (86.14%), ash (1.36%), total nitrogen
(0.154%), reducing sugar (0.83%), mucoitin (1.47%), starch
(6.57%), crude lipid (0.52%), and crude fiber (0.64%) [1].
The active functional ingredients of Chinese yam include
polysaccharide, allantoin, dioscin, polyphenol, and adeno-
sine [2]. Chinese yam by-product is mainly derived from
the processing of Chinese yam, the production of light

chemical products containing Chinese yam, and the decoc-
tion of Chinese yam medicine [3]. A large number of by-
products from plant sources such as Chinese yam during
processing are generally disposed by stacking (mainly in
the form of), landfilling, and incineration; meanwhile, they
are prone to decay, bacteria, and odor after long-term
stacking because of their high water content, leading to
severe resource waste and serious environmental pollution,
further posing high risks to human health [4, 5]. Influ-
enced by production methods and process conditions, at
least 30%-70% of the active ingredients are not completely
extracted and remain in by-products [6, 7]. Chinese yam
by-product still contains cellulose (up to 85.48%) [8], trace
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element, and active substance, indicating that Chinese yam
by-product has a high medicinal and commercial value for
development and utilization. Consequently, how to effec-
tively utilize Chinese yam by-product is a key problem
to reduce environmental pollution and make waste profit-
able [9]. Chinese yam by-product supplemented in animal
feed is a promising treatment method, which can reduce
the waste of resources, promote the healthy development
of aquaculture, and generate economic and environmental
benefits due to its low cost and readily availability. The
research showed that Rehmannia glutinosa and Chinese
yam by-product could improve the growth rate of Hu
sheep [10]. However, the potential usages of Chinese
yam by-product as a feed additive on aquatic animals have
received little attention.

Largemouth bass (Micropterus salmoides) is one of the
most important cultured freshwater fishes in China, with
an annual production of more than 0.7 million tons in
2021 [11]. However, intensive aquaculture has accelerated
water quality deterioration, causing poor growth, oxidative
stress, intestinal dysbacteriosis, and low immunity of fish.
It is necessary to find safe and effective feed additives in
high-density culture and achieve environment-friendly and
healthy aquaculture. Therefore, in this study, we aimed to
evaluate the effects of Chinese yam by-product supple-
mented in diets on growth performance, antioxidant ability,
histomorphology, and intestinal microbiota of juvenile M.
salmoides, providing a reference for efficient recovery and
utilization of by-products from plant sources during pro-
cessing and culturing high-quality aquatic products.

2. Materials and Methods

2.1. Experimental Diets. Chinese yam by-product produced
in the water extraction process and its main active ingredients
determination (Table S1 and Figure S1-2) were provided and
analyzed by Guangdong Yifang Pharmaceutical Co., Ltd.
(Foshan, China). Based on the concentration of Chinese
yam [12] and yam extract [13] used in the previous
researches, the content of effective components in Chinese
yam by-product, and the nutritional requirement of juvenile
M. salmoides, the diets of four groups were supplemented
with 0% (control), 0.1% (S1), 0.4% (S2), and 1.6% (S3) of
Chinese yam by-product, respectively. All feed materials
were powdered and passed through a 40-mesh sieve,
precisely weighted, and remixed with a blender. The 2mm
diameter pellets were extruded by a pelletizer, air-dried, and
stored at −20°C until use. The chemical composition of the
experimental diets was detected by Chen [14]. Crude protein
was determined using the Kjeldahl method, and crude
lipid was determined using the Soxhlet extraction method.
Moisture was determined by drying in an oven at 105°C
for constant weight. The samples were carbonized to
smokeless in an electric furnace at about 100°C and then
burned in a muffle furnace at 550°C for a constant weight
to measure the ash content after the sample cooling. The
formulation and nutritional composition of experimental
diets are shown in Table 1.

2.2. Animals and Sampling. The experiment was conducted
according to the guidelines of the animal research ethics com-
mittee of Foshan University (approval number: 2020056).
Juvenile M. salmoides were purchased from Foshan Sanshui
Baijin Aquatic Seedling Co., Ltd. (Foshan, China). After accli-
mation for two weeks, 480 fish of similar weight (mean initial
weight: 13:16 ± 0:05g) were randomly assigned to four groups
(four replications in each group and 30 fish in each replica-
tion) in the circulating aquaculture system for 60 days. Fish
were fed twice daily to visual satiation at 8 : 00 and 18 : 00. Feed
intake and dead fish were recorded every day. During the
experiment, water temperature, pH, dissolved oxygen, and
NH4-N were maintained at 27-30°C, 7.7-8.2, >6.0mg/L, and
<0.1mg/L, respectively.

At the end of the feeding trial, the total body weight of all
fish in each tank was determined after fasting for 24 h. Fish
were anesthetized with 10mg/L buffered MS-222. The blood
samples were collected by caudal venipuncture using 1mL of
sterile syringes and stored in a tube containing heparin
sodium at 4°C for 1 h before being centrifuged (3500 rpm,
4°C). Then, the serum was collected and stored at -80°C until
analyzed. Livers and intestinal contents of six fish were sam-
pled and snap-frozen in liquid nitrogen before storage at
-80°C. Two fish were used to obtain liver and intestine sam-
ples used for histomorphology.

Table 1: Formulation and nutritional composition of experimental
diets (% dry matter).

Ingredients Control S1 S2 S3

Fish meal 40 40 40 40

Soybean meal 20 20 20 20

Peanut meal 10 10 10 10

Wheat flour 12 11.9 11.6 10.4

Vital wheat gluten 7 7 7 7

Beer yeast 3 3 3 3

Fish oil 3 3 3 3

Soya lecithin 1 1 1 1

Choline chloride (50%) 0.5 0.5 0.5 0.5

Monocalcium phosphate 1.5 1.5 1.5 1.5

Vitamin mixture Aa 1 1 1 1

Mineral mixture Bb 1 1 1 1

Chinese yam by-product 0 0.1 0.4 1.6

Proximate composition

Moisture 9.07 9.58 9.88 9.01

Crude protein 27.19 27.29 26.93 26.48

Crude lipid 11.75 11.49 10.05 12.68

Ash 12.57 12.28 12.62 12.41
aVitamin mixture A (IU or mg/kg diet): VA 250000 IU, VD3 45000 IU, VC
7000mg, riboflavin 750mg, cyanocobalamin 1mg, thiamine 250mg,
pyridoxine hydrochloride 400mg, menadione 250mg, folic acid 125mg,
biotin 10mg, alpha-tocopherol 2.5 g, inositol 8000mg, calcium pantothenate
1250mg, niacin 2000mg, and choline chloride 8000mg. bMineral mixture B
(mg/kg diet): NaCl 2.6 g, KCl 5.3 g, CaCO3 37.9 g, KI 0.04 g, CuSO4·5H2O
0.02 g, ZnSO4·7H2O 0.04 g, CoSO4·7H2O 0.02 g, FeSO4·7H2O 0.9 g,
MnSO4·H2O 0.03 g, CaHPO4·2H2O 9.8 g, and MgSO4·7H2O 3.5 g.
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2.3. Histological Observation. Fresh livers and intestines were
collected, fixed in 4% paraformaldehyde, dehydrated with a
graded alcohol series, embedded in paraffin, sectioned at
5μm, and stained with hematoxylin and eosin (H&E). Sec-
tions were observed with an optical microscope and photo-
graphed at 200 X. Besides, tissues were fixed in 2.5%
glutaraldehyde, rinsed with PBS buffer, and embedded in
resin. Thick sections were made on an ultramicrotome,
stained with 2% uranyl acetate for 15min and then lead cit-
rate for 5min, and examined using transmission electron
microscopy (TEM, HITACHI HT7700, 120 kv).

2.4. Biochemistry Assay. About 0.1 g of frozen liver samples
was homogenized in precooling 0.9% physiological saline at
a ratio of 1 : 9 (w/v). The homogenate was then centrifuged
for 15min (3000 rpm, 4°C) and the supernatant was collected.
The superoxide dismutase (SOD, WST-1 method), glutathi-
one (GSH, microplate test), malondialdehyde (MDA, thiobar-
bituric acid method), and total protein (TP, Bradford method)
of the liver by methods of Wen et al. [15] and Chen et al. [16],
as well as alanine aminotransferase (ALT, microplate test) and
aspartate aminotransferase (AST, microplate test) of serum by
the method of Reitman and Frankel [17], were determined fol-
lowing respective kit manufacturer guidelines (Nanjing Jian-
cheng Bioeng. Inst., China).

2.5. Intestinal Microbiome Analysis. The genomic DNA of
the intestinal content samples was extracted using the
QIAamp Fast DNA Stool Mini Kit (Qiagen) according to
the manufacturer’s instructions. PCR amplification was
done using 16S rRNA region V3–V4-specific primers 341F
(5′-CCTACGGGNGGCWGCAG-3′) and 806R (5′-GGAC
TACHVGGGTATCTAAT-3′). The amplified products were
extracted, purified, and quantified using QuantiFluor™. The
sequencing library was constructed and sequenced on the
Illumina PE250 platform by Genedenovo Biotechnology
Co., Ltd. (Guangzhou, China). Bioinformatic analyses were
done using Omicsmart.

2.6. Statistical Analyses. Analysis results were presented as
means ± standard error of the means (SEM). All data analy-
ses were done on SPSS 21.0 (Chicago, IL, USA) and analyzed
using one-way ANOVA. Where significant differences
(P ≤ 0:05) emerged after one-way ANOVA analysis, group
means were compared further using Duncan’s multiple range
test. If the variance of the data was uneven, Tamhane’s test
would be applied followed by pairwise multiple comparisons.
The comparison of alpha diversity indexes was calculated by
the Tukey HSD test. Statistical analysis of beta diversity was
conducted by the Adonis test. The differential abundance of
indicator species at the genus level and intestinal microbial
community was calculated by indicator analysis and LEfSe
analysis, respectively. 16S rRNA functional prediction was
inferred by PICRUSt2 analysis and Welch’s t-test.

3. Results

3.1. Growth Performance. The growth performance ofM. sal-
moides is shown in Figure 1. Survival, weight gain (WG), and

specific growth rate (SGR) did not differ significantly across
experimental groups for 60 days (P > 0:05). However, feed
conversion ratio (FCR) of the control group was significantly
higher than that of the S1 and S3 groups (P < 0:05).

3.2. Biochemistry Assay. As shown in Figure 2, the activity of
SOD of the control group was significantly higher than that
of the S1 and S2 groups (P < 0:05), but significantly lower
than that of the S3 group (P<0.05). The GSH content of
the control group was significantly lower than that of the
Chinese yam by-product groups (P < 0:05). MDA levels in
the control and S1 groups were significantly higher than
those in the S2 and S3 groups (P < 0:05). The AST activity
of the control group was significantly higher than those in
the S2 and S3 groups (P < 0:05); meanwhile, the ALT activity
of the control group was significantly higher than that of the
S1 and S3 groups (P < 0:05).

3.3. Histological Observation. Histopathological changes
including infiltration of hemocytes, lipid droplets, vacuoliza-
tion, and hepatocyte hypertrophy were observed in the con-
trol group (Figure 3(A)). Compared with the control,
Chinese yam by-product groups had less histopathological
damage (Figures 3(B)–3(D)). No histopathological abnor-
malities of the intestine were observed in all groups
(Figures 3(A)–3(D)). Besides, TEM analysis showed that
compared with the control, lipid droplet of hepatocytes
and vacuolation of the intestine significantly decreased in
the S3 group (Figure 4).

3.4. The Composition and Functional Changes of Intestinal
Microbiota. As shown in Figures 5(a)–5(c), there were sig-
nificant differences in Sob, Chao1, and Shannon between
the control and S2 groups (P < 0:01, P < 0:05). Meanwhile,
there were significant differences in Sob and Chao1 between
the control and S3 groups (P < 0:05). Venn diagram analysis
revealed that the control group, S2 group, and S3 group had
56, 6, and 32 unique genera, respectively (Figure 5(d)). The
PCoA based on the weighted UniFrac distances showed that
samples of the control clustered separately from those of the
S2 and S3 groups (Figure 5(e)). The P values obtained using
the Adonis test for distances were significant (P = 0:02). The
groups supplemented with Chinese yam by-product chan-
ged the composition and diversity of intestinal microbiota
at the phylum and genus levels. Tenericutes, Proteobacteria,
and Firmicutes were the most abundant phyla in the control
group and the S2 group, while Tenericutes, Proteobacteria,
and Cyanobacteria were the most abundant phyla in the S3
group (Figure 5(f)). At the genera level, compared to the
control, Mycoplasma in the S2 and S3 groups were signifi-
cantly increased, while unclassified and other bacteria were
significantly decreased (Figure 5(g)).

As revealed in Figure 6, LEfSe analysis showed that
Bacilli, Lactobacillales, Lactobacillaceae, Lactobacillus, Pseu-
domonas, Pseudomonadaceae, Anoxybacillus, Azospirillales,
Azospirillaceae, Azospirillum, Enterobacter, and Achromo-
bacter were the dominant genera in S3. Pseudonocardiaceae
and Pseudonocardiales were the dominant genera in S2.
Furthermore, there were 49 dominant genera in the
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control group, such as Rhizobiales, Betaproteobacteriales,
Rhodobacteraceae, Rhodobacterales, Bacteroidetes, Bacteroi-
dia, Bacteroidales, Dysgonomonadaceae, Beijerinckiaceae,
Lachnospiraceae, and Verrucomicrobiae. In addition, indi-
cator species analysis showed that compared with the con-
trol, Acetobacter and Commensalibacter in the S2 group, as
well as Pseudomonas, Stenotrophomonas, Enterobacter, and

Achromobacter in the S3 group increased, whereas Dysgo-
nomonas, Rahnella, Shinella, Tyzzerella 3, Leucobacter,
Tabrizicola, Pseudoxanthomonas, Gemmobacter, Roseomo-
nas, OM60NOR5, Aurantimicrobium, Dechloromonas, and
Sandaracinobacter decreased (Figure 7(A)).

The results of functional change were inferred from
PICRUSt2 analysis. At KEGG level 2, compared with the
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control S2 and S3 groups, endocrine system and neurode-
generative diseases were enriched in the control group,
respectively (Figures 7(a) and 7(c)). Functional pathways at
level 3, including nitrogen metabolism, insulin signaling
pathway, and ribosome biogenesis in eukaryotes were
enriched in the control group (Figures 7(b) and 7(d)).

4. Discussion

This is the first study to evaluate the growth performance,
antioxidant ability, histomorphology, and intestinal micro-
biota of juvenile M. salmoides fed with yam by-product in
diets. In this study, the result showed that Chinese yam by-
product did not exert a significant effect on WG, SGR, and
survival. Similar with this study, after the 56-day feeding

trial, Chinese yam at concentrations of 1% and 2% had no
remarkable difference in WG, SGR, and survival of Cyprinus
carpio [18]. Yam extract at concentrations of 0.1%, 0.2%,
and 0.4% [13] and Chinese yam peel at concentrations of
0.5%, 1%, and 2% [19] had no significant difference in WG
and SGR of fish after the 56-day feeding trial. However, after
the 28-day trial, Chinese yam at concentrations of 1% and
2% [20] and Dioscorea opposita beans at concentrations of
3% and 5% [21] could significantly improve the growth of
weaned piglets. Chinese yam at a concentration of 4% signif-
icantly improved the daily gain, feed intake, and FCR of
black-bone chicken after the 8-week trial [22]. Based on
the result in this study, we speculated that the low concen-
trations of Chinese yam by-product supplemented in diets
did not exert a significant impact on the growth of juvenile
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M. salmoides. Besides, compared to livestock and poultry,
the utilization of Chinese yam by fish and the environment
could affect the effects of Chinese yam by-product as a feed
additive on the growth of fish [23]. Besides, the results of
H&E staining and TEM analysis indicated that Chinese
yam by-product could reduce histopathological damage
and protect the structural integrity of the liver and intestine,
in agreement with previous studies [18, 24]. A study showed
that compared with the control group, the groups added
with concentrations of 0.5%, 1%, and 2% yam peel could
increase the intestinal villus height and muscle thickness of
Carassius auratus (P > 0:05) and contribute to hepatocyte
integrity after an 8-week feeding trial [19]. In addition, the
permeability of the cell membrane increases when the hepa-
tocytes are damaged, and ALT and AST in the liver are
released into the blood, leading to the elevation of ALT
and AST levels in the serum [25]. In this study, the AST
activity in the control group was significantly higher than

those in the S2 and S3 groups; meanwhile, the ALT activity
in the control group was significantly higher than those in
the S1 and S3 groups. It further indicated that Chinese
yam by-product could protect liver health.

Antioxidant defense mechanism in organisms mainly
includes antioxidant enzymes and nonenzymatic complexes
[26]. SOD is the most important antioxidant enzyme in
eukaryotes [27]. GSH, an endogenous antioxidant and exog-
enous antidote, is involved in metabolic regulation [28].
MDA, one of the final products of polyunsaturated fatty acid
peroxidation in the cells, is commonly known as a marker of
oxidative stress and antioxidant status [29]. This study
showed that the SOD activity of the S3 group and GSH con-
tents of the Chinese yam by-product groups were signifi-
cantly higher than those in the control; meanwhile, MDA
levels in the control and S1 groups were significantly higher
than in the S2 and S3 groups. It indicated that Chinese yam
by-product had significant antioxidant stress effects. Similar
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Figure 6: Continued.
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with this study, previous studies have reported that Chinese
yam [30] and yam polysaccharides [31] could increase SOD
activity and decrease MDA level in mice. Aqueous extract of
yam had obvious oxidative stress resistance in H2O2-
induced Caenorhabditis elegans [32]. Chinese yam polysac-
charides have a good antioxidant effect and can potently
scavenge DPPH radical, hydroxyl radical, and superoxide

radical [33]. Its hydroxyl radical scavenging activity can
reach the same level of vitamin C [34]. Allantoin and pheno-
lics from the water extract of yam peel also have antioxida-
tive effects [35]. Therefore, we speculated that Chinese yam
by-product displayed superior properties in antioxidation
associated with the principal component of polysaccharide,
allantoin, and phenolics.
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d: Subgroup_6
e: Fodinicola
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i: Pseudonocardiaceae
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Figure 6: LEfSe analysis of intestinal microbial community in the control group and the groups supplemented with Chinese yam by-product
at 0.4% (S2) and 1.6% (S3) for 60 days. (a) Columnar graph of LDA analysis, LDA > 2. (b) Evolutionary branch diagram.
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Intestinal microbiota can prevent the colonization of
infectious agents, enhance the host mucosal immunity
and function, and promote the digestion and absorption
of nutrients [36, 37]. In this study, the most abundant
phyla in the control and S2 groups were Tenericutes, Pro-
teobacteria, and Firmicutes. Similarly, Tenericutes, Proteo-
bacteria, and Firmicutes were the dominant bacteria in M.
salmoides in all groups after the 60-day Azomite feeding
test [38], while Tenericutes, Proteobacteria, and Cyanobac-
teria were the top three abundant phyla in the S3 group.
The results showed that Chinese yam by-product signifi-
cantly affected the composition of intestinal bacteria of
juvenile M. salmoides, and there might be a competitive
relationship among the top three phyla. At the genus level,
Chinese yam by-product affected the abundance of benefi-
cial bacteria such as Lactobacillus, Bacilli, Enterobacter,
Acetobacter, and Achromobacter and potential pathogens
such as Bacteroidetes, Shinella, Stenotrophomonas, Dechlor-
omonas, and Rhodobacter. For instance, Lactobacillus,
Enterobacter, and Pseudomonas are the common probio-
tics used in aquaculture [39]. Acetobacter can produce
by-products such as acetic and gluconic acids, effectively
inhibiting the growth of some common pathogenic bacte-
ria associated with food poisoning [40]. Although Steno-
trophomonas species are considered to be opportunistic
pathogens affecting human and plants, they can secrete
important secondary metabolites and have a promising
biocontrol efficacy in recent times [41]. Achromobacter
can reduce oxidative stress by increasing amounts of
superoxide anion and improving SOD activity [42]. A
study has reported that Spirulina platensis polysaccharide
could increase the abundance of Achromobacter of Caenor-
habditis elegans to regulate SOD [43]. Thus, in this study,
Chinese yam by-product at a concentration of 1.6% poten-
tially regulated the abundance of Achromobacter to
improve the antioxidant capacity by regulating the SOD
activity. Due to its obvious inhibition of some intestinal
bacteria such as potential pathogens, there was a decline
in the diversity of intestinal bacteria in M. salmoides fed
with Chinese yam by-product for 60 days as indicated by
the low values of Sob, Chao1, and Shannon indexes.
Although these disease-related bacteria were not necessar-
ily pathogenic, these bacteria might suggest that the intes-
tine of M. salmoides was in a potentially pathogenic
environment. Therefore, Chinese yam by-product may
have a positive impact on reducing the number of patho-
genic bacteria and increasing the number of beneficial bac-
teria to enhance the homeostasis of the intestinal
microbiota. Remarkably, previous studies reported that
Chinese yam significantly improved the diversity of intes-
tinal flora in mice [44, 45]. Diet supplemented with con-
centrations of 1% and 2% Chinese yam [18] and yam
peel [23] changed the microbial community characteristics
and markedly increased Shannon and Simpson of Cypri-
nus carpio after an 8-week feeding trial. These studies were
inconsistent with the present study. A possible reason for
this finding was that the experimental species are different.
Further research is needed to investigate the exact mecha-
nism of Chinese yam by-product in M. salmoides.

5. Conclusion

Overall, the present study demonstrated that the addition of
Chinese yam by-product to the diet of M. salmoides could
result in significant improvements in antioxidant capacity,
liver and intestine health, and intestinal flora after a 60-day
feeding trial. These findings suggest that Chinese yam by-
product has the potential to be served as a valuable func-
tional feed additive in aquaculture, allowing for the conver-
sion of waste into a valuable resource.
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