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This study developed a recombinant Bacillus subtilis to carry the LGSPDVIVIR peptide (cmP4) isolated from the hydrolyzed
products of cottonseed meal with excellent antioxidant and immune-enhancing properties in vitro. It was carried as a tandem of
five cmP4 peptides (cmP4’) to be stably expressed on a large scale. Then, its effectiveness was evaluated in Chinese mitten crab
(Eriocheir sinensis) based on growth performance, redox defense, and innate immunity. A total of 280 crabs (mean body weight:
41.40Æ 0.14) were randomly assigned to seven diets including a control one (without B. subtilis) and six experimental ones with
different doses (107,108, and 109 CFU/kg) of unmodified and recombinant B. subtilis, respectively, for 12 weeks. Each diet was
tested in four tanks of crabs (10/tank). In terms of bacterial dosages, the final weight (FW), weight gain (WG), hemolymph and
hepatopancreatic activities of superoxide dismutase (SOD), catalase (CAT), lysosome (LZM), acid phosphatase (ACP) and alkaline
phosphatase (AKP), and hepatopancreatic transcriptions of cat, mitochondrial manganese superoxide dismutase (mtmnsod),
thioredoxin-1 (trx1), and prophenoloxidase (propo) all increased significantly with increasing B. subtilis dosages, while hemolymph
and hepatopancreatic malondialdehyde (MDA) content and the transcriptions of toll like receptors (tlrs), NF-κB-like transcription
factor (relish), and lipopolysaccharide-induced TNF-α factor (litaf ) all decreased remarkably. In terms of bacterial species, the
recombinant B. subtilis group obtained significantly high values of FW, WG, hemolymph, and hepatopancreatic activities of SOD,
CAT, LZM, ACP, and AKP, and the transcriptions of mtmnsod, peroxiredoxin 6 (prx6), and propo compared with the unmodified
B. subtilis, while opposite results were noted in hemolymph and hepatopancreatic MDA content and the transcriptions of tlrs,
relish, and litaf. These results indicated that dietary supplementation with 109 CFU/kg of recombinant B. subtilis can improve the
growth performance, redox defense, and nonspecific immunity of E. sinensis.

1. Introduction

Over the last few decades, aquaculture has become the fastest
growing sector of animal food for human consumption. As the
world’s population continues to grow, a large-scale and inten-
sive culture mode is not only necessary to upgrade the aqua-
culture industry, but also to feed the increasing population
[1, 2]. This culture mode guarantees a high production of
aquatic products in a limited space, as boosts the economic
efficiency. However, aquatic animals are inevitably subjected
to a high-stocking density, and often suffer from health

problems due to the reduced antioxidant capacity and com-
promised immunity. Currently, the increase in aquaculture
production from high-stocking densities parallels the increase
in the number of disease outbreaks [3, 4]. The industry-wide
economic losses due to aquatic animal diseases exceed 6-billion
dollars annually [5]. In crustacean aquaculture (e.g., shrimp),
losses due to diseases even exceed 40% of the total value of
production [6]. This negatively affects aquatic animal welfare,
aquaculture production, and economic efficiency, and does not
satisfy the needs of sustainability transitions of the aquaculture
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industry [7]. This emphasizes the urgency to promote the
health status of aquatic animals.

With the development of feed processing technologies,
plant protein hydrolysates have attracted the attentions of
aquaculturists due to their merits in growth enhancement,
antimicrobial functions, and antioxidant capacities [8]. Previ-
ous studies have excavated multiple functions of cottonseed
meal protein hydrolysates in aquatic species, including an
improved intestinal digestion and absorption function in
Megalobrama amblycephala [9], and the enhancements in
appetite, organic matter accumulation, and immune function
in Eriocheir sinensis [10, 11]. These benefits have been mainly
attributed to the bioactive peptides derived from the fermen-
tation process. However, these peptides are still poorly char-
acterized until now. In a recent study, the peptide sequences of
cottonseed meal protein hydrolysates have been assessed by
the electrospray ionization–liquid chromatography–tandem
mass spectrometry (ESI–LC–MS/MS) method [9]. Accord-
ingly, a bioactive decapeptide (leucine-glycine-serine-pro-
line-aspartate-valine-isoleucine-valine-isoleucine-arginine
(LGSPDVIVIR), cottonmeal P4 (cmP4)) has been found with
excellent antioxidant and immune-enhancing properties in
vitro [12]. In order to further validate its effectiveness in
vivo, it is necessary to produce this peptide in a large scale.
However, the traditional chemical synthesis method is ineffi-
cient and expensive, bringing great difficulties in commercial-
izing this peptide. Therefore, finding an effective way to
produce it in a large amount is of great significance.

Chinese mitten crab (E. sinensis) is the most important
freshwater economic crab in China with an average annual
production of about 850,000 tons in the last 3 years [13].
Under intensive culture conditions, E. sinensis often suffers
from various diseases such as molting disorder, hepatopan-
creatic necrosis syndrome, and enteritis [14–16]. This inevi-
tably results in a high mortally, thus causing a great
economic loss. Therefore, it is of great significance to develop
effective nutritional interventions to promote its health sta-
tus. To date, cottonseed meal protein hydrolysates have been
demonstrated to be a health stimulator for E. sinensis, but the
functional mechanisms still remain elusive. Taking this into
consideration, this study creatively constructed a recombi-
nant Bacillus subtilis to carry the LGSPDVIVIR peptide iso-
lated from the cottonseed meal protein hydrolysates. Then,
its health-promoting effects were evaluated in E. sinensis in
vivo. The results obtained can promote the healthy cultiva-
tion of E. sinensis, thereby increasing the profit margins.

2. Materials and Methods

2.1. Preparation of the Recombinant B. subtilis

2.1.1. Purpose and Rationale for Constructing the Recombinant
B. subtilis Carrying cmP4’ Peptide.Our laboratory has previously
isolated a decapeptide (leucine-glycine-serine-proline-aspartate-
valine-isoleucine-valine-isoleucine-arginine, LGSPDVIVIR)
with excellent antioxidant and immune-enhancing bioactivities
in vitro from cottonseed meal protein hydrolysate using the
electrospray ionization–liquid chromatography–tandem mass
spectrometry method, and named it as the cmP4 peptide [12].

A large-scale production of this decapeptide is necessary to
further validate its effectiveness in vivo, and to facilitate its
application in the aquafeed industry. However, it consists of
only 10 amino acids with a relatively small molecular weight,
and is easily degraded by host proteases. Therefore, finding an
effective approach to express it stably is of great significance. The
B. subtilis expression system with an effective extracellular pro-
tein secretion and a high-heat resistance (able to survive the
pelleting process at 80–100°C) fits well with our requirement
to express the cmP4 peptide in large quantities. Considering
these merits, we tandemly linked five cmP4 peptides from the
N-terminus to the C-terminus, and introduced it into the B. sub-
tilis expression system. Through this, the amino acid sequence
of the tandem cmP4 peptide (cmP4’ peptide) was obtained. The
tandem expression could improve the stability of the cmP4
peptide, and also increase its copy number. Since the cmP4’
peptide contains no lysine, only the terminal arginine serves
as a cleavage site for trypsin (a highly conserved protein hydro-
lase). Therefore, it can be cleaved into the target peptide-cmP4
by endogenous trypsin in the intestine, and is thereby
absorbed [17–19].

2.1.2. Construction of the Integrated Plasmid PBE-cmP4’.
Using the genomicDNAofEscherichia coli dh5α (Jinsirui, Nanj-
ing, China) as template, and F1 (CAAAAAAATGGGTCTA
CTAA) and R1 (TACAGCATCCAGGGTGACGG) as
primers, PCR was conducted to amplify the tandem-cmP4
(cmP4’) gene fragment and the cmP4’ gene fragment
(sequence: CTCGAGATGCATCATCACCACCATCATCGAT
TGGGTTCTCCGGATGTAATTGTTATCAGACTTGGAAGT
CCGGACGTGATTGTTATTAGATTAGGGTCCCCTGACGT
TATAGTCATTCGGCTGGGCTCACCTGATGTTATTGTAA
TCCGTCTCGGCAGCCCAGATGTGATTGTCATCCGC, the
underlined part is the homology arm). The B. subtilis protease
aprE promoter was attached at the upstream of the cmP4’ gene
fragment with ATG used as the downstream stop codon to
constitute the complete cmP4’ expression element. The target
gene fragment and plasmid PBE (Takara, Dalian, China) were
double cleaved by Xhol and SalI restriction endonucleases,
respectively. The resulting linear plasmid fragment was ligated
by T4 DNA ligase to obtain the integrated plasmid PBE-cmP4’
(Figure 1(a)).

2.1.3. Construction of the Recombinant B. subtilis JC66-P4’.
B. subtilis is a Gram-positive bacterium that is cheap and
easy to culture, and has a good exocrine capacity in forming
spores to secure the survival of the strain under harsh con-
ditions [20], making it a promising carrier of the cmP4 pep-
tide. Accordingly, B. subtilis PY79 (NCBI accession number:
AHA76664) was activated at 37°C for 12 hr. Then, single
colonies of B. subtilis PY79 were incubated in the modified
Chalmers medium at 37°C for 4 hr. The OD value was mea-
sured by a spectrophotometer (Shimadzu, Kyoto, Japan).
When the OD value reached 2, 300 μL of B. subtilis PY79
was taken out, and was incubated with 30 μL of the inte-
grated plasmid PBE-cmP4’ at 37°C for 2 hr. Subsequently,
the culture was applied to a plate containing kanamycin, and
was incubated upside down at 37°C for 12 hr to obtain B. sub-
tilis PY79-cmP4’. Its whole genome was extracted by a
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commercial kit for Gram-positive bacteria genomic DNA
extraction (Qiagen, Hilden, Germany). Then B. subtilis
JC66 (NCBI accession number: SAMN37990396) was acti-
vated following the method as B. subtilis PY79. Later, 300 μL
of activated B. subtilis JC66 was incubated with 30 μL of
B. subtilis PY79-cmP4’ whole genome at 37°C for 2 hr.
Then, the culture solution was coated on a kanamycin-
containing plate, and was incubated upside down at 37°C
for 12 hr to obtain the recombinant B. subtilis JC66-cmP4’.

2.1.4. Fermentation Culture of the Recombinant B. subtilis
JC66-cmP4’. Single colony of the recombinant B. subtilis JC66-
cmP4’was picked and inoculated in 30mLof seedmedium.After
an overnight incubation at 37°C, 180 rpm, the seed solution was
inoculated in 50mL of fresh fermentation medium at 1% inocu-
lum. Then it was incubated again at 37°C, 180 rpm with the
fermentation solution sampled and tested every 12hr. The OD
value was 600, the fermentation rate was over 90% at 48hr, and
the budding yield was 6×109CFU/mL.

2.1.5. PCR Identification of the Positive Transformants of
Recombinant B. subtilis JC66-cmP4’. The recombinant B. sub-
tilis JC66-cmP4’ obtained was subjected to PCR for rapid valida-
tion. The PCR reaction programwas: 90°C, pre-denaturation for
30 s; 98°C, denaturation for 10 s; 55°C, annealing for 30 s; 72°C,
extension for 1min, cycling for 30 times, and finally 72°C exten-
sion for 2min. Then, the products were stored at 4°C for subse-
quent use. The primer sequences for the PCR validation
process were: P1: CGAGTCTCTACGGAAATAGC and P2:
GCATAACCAAGCCTATGCCTA. The PCR products were
detected by an agarose gel electrophoresis with the positive
transformants validated (the size is which is 563bp; Figure 1(b)).

2.1.6. Western Blotting Identification of the Recombinant
Peptide. The lysogeny broth medium was used to culture
the recombinant B. subtilis JC66-cmP4’ at 28°C, 200 rpm/
min for 240min. When the OD value of the bacterial solu-
tion reached 2, the solution was centrifuged at 4°C, 12,000
rpm for 15min. The secretion expression cmP4’ peptide was
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FIGURE 1: Integrated plasmid PBE-cmP4’ (a), PCR identification of positive transformants of recombinant B. subtilis (b), and the determined
expression of recombinant peptide by western blot (c). In Figure 1(b): M: 600 DNA marker; 1: plasmid without PBE-cmP4’; 2: plasmid with
PBE-cmP4’; 3: B. subtilis JC66-P4’. In Figure 1(c): 1: secretory expression of cmP4’; 2: inclusion body extraction cmP4’. The results showed
that there was a specific band at 6 kda.
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collected from the supernatant using the Centricon Plus-70
(Merck Millipore, Germany) centrifugal filtration device
(3–10 kda cutoff ). The inclusion body extraction cmP4’
was collected according to the “Guidebook for Molecule
Cloning.” The western blotting assay was performed to iden-
tify the secretion expression and the inclusion body extrac-
tion of cmP4’ peptide. The results showed that there was a
specific band at 6 kda (Figure 1(c)).

2.2. Experimental Design, Diets, and the Feeding Trial. A2× 3
factorial design was adopted in this study, including a control
diet (without B. subtilis, CON) and six experimental ones
incorporating different sources (unmodified and recombinant)
and doses (107, 108, and 109CFU/kg) of B. subtilis. The doses of
B. subtilis were designated according to a previous study [21],
which tested the effects of various doses (0, 0.25× 109, 1× 109,
2× 109 and 4× 109CFU/kg) of B. subtilis on the growth per-
formance of E. sinensiswith the 1× 109CFU/kg group showing
the highest weight gain. The diets were abbreviated as BS7, BS8,
BS9, RBS7, RBS8, and RBS9, respectively, considering the
source (BS: B. subtilis, RBS: recombinant B. subtilis) and dose
of B. subtilis. The formulation of the basal diet and the experi-
mental designation were presented in Tables 1 and 2,
respectively.

All raw materials were crushed through a 80-mesh sieve.
Fish meal, blood meal, soybean meal, cotton meal, peanut
meal, rapeseed meal, and α-starch were all mixed thoroughly.
Then B. subtilis was mixed with other feed ingredients in a
step-by-step manner, followed by the addition of fish oil and
soybean oil. After mixing, distilled water was added at 30% of
the raw material mass followed by another thorough mixing.
Themixed rawmaterials were then extruded through a single-
screw extruder with a die diameter of 2.0mm (granulation
temperature is 80Æ 5°C, and pressure is 1.6Æ 0.1 kg/cm2).
The extruded feed was air-dried, cut into 1.8 cm long, and
stored at −20°C.

Chinese mitten crabs were provided by the Aquaculture
Station of Nanjing Agriculture University (Pukou, Jiangsu
province, China). The harvested crabs were kept temporarily
in a concrete pond, and fed the basal diet twice daily for
1 week. Two hundred eighty healthy individuals (mean ini-
tial body weight: 41.40Æ 0.14 g) were randomly selected and
assigned to 28 concrete ponds (0.5× 0.5× 0.8m in length,
width, and height) with 10 crabs per pond. Then, each diet
was tested in four ponds of crabs. Then, they were subjected
to a feeding rate of 4%–6% of body weight for 12 weeks.
During this period, the residual feed was cleaned with 1/3
of the water changed daily. The water temperature, dissolved
oxygen, pH, and ammonia nitrogen were maintained at
24–28°C, 5mg/L, 8.0–8.5, and <0.05mg/L, respectively.

2.3. Sample Collection and Calculations. At the end of the
culturing period, crabs within each pond were counted and
weighed. Two crabs were randomly selected and placed on
ice packs for cryoanesthesia. Hemolymph was then obtained
from the penultimate pair of paraeiopod using a syringe
containing precooling anticoagulant solution [22]. The mix-
ture of hemolymph and anticoagulant solution (1 : 1) was
centrifuged at 3,500 rpm for 20min at 4°C with the superna-
tant stored at −80°C for subsequent analysis. The hepato-
pancreas was also dissected on ice packs, and stored at
−80°C for subsequent analysis.

The growth-related parameters were calculated as follows:

Weight gain (WG, %)= (Final body weight (g) − Initial
body weight (g)× 100/Initial body weight (g);
Special growth rate (SGR, %/d)= (ln (Final weight) − ln
(Initial weight))/84× 100;
Survival rate (SR, %)= 100× Final survival crab number/
Initial crab number;

TABLE 1: Formulation and proximate composition of the experimen-
tal basal diets.

Ingredients (%)

Fish meal 30.00
Blood meal 4.00
Soybean meal (defatted) 10.00
Cottonseed meal 4.00
CPH 0
Peanut meal 18.81
Rapeseed meal 2.00
α-Starch 20.93
Soybean oil 3.55
Fish oil 1.00
Ca(H2PO4)2 1.50
Zeolite powder 0.9
Premixa 1.00
Mixtureb 2.30
Proximate composition (% dry-matter basis) —

Dry matter 89.46
Crude protein 39.78
Crude lipid 7.51

Note: CPH, cottonseed meal protein hydrolysate. aPremix supplied the fol-
lowing minerals (g/kg) and vitamins (IU or mg/kg) per kg: CuSO4 · 5H2O,
2.0 g; FeSO4 · 7H2O, 25 g; ZnSO4 · 7H2O, 22 g; MnSO4 · 4H2O, 7 g; Na2SeO3,
0.04 g; KI, 0.026 g; CoCl2 · 6H2O, 0.1 g; Vitamin A, 900,000 IU; Vitamin D,
200,000 IU; Vitamin E, 4,500mg; Vitamin K3, 220mg; Vitamin B1, 320mg;
Vitamin B2, 1,090mg; Vitamin B5, 2,000mg; Vitamin B6, 500mg; Vitamin
B12, 1.6mg; Vitamin C, 10,000mg; Pantothenate, 1,000mg; Folic acid,
165mg; Choline, 60,000mg; Biotin, 100mg; Myo-inositol 15,000mg. bMix-
ture includes the following ingredients (%): choline chloride 4.21%; antiox-
idants 1.26%; mildew-proof agent 2.09%; salt 21.03%; lvkangyuan 63.15%
and biostimep 8.26%.

TABLE 2: The designation of experimental treatments.

Groups Treatments

CON Basal diet
BS7 Basal diet+ 107 CFU/kg B. subtilis
BS8 Basal diet+ 108 CFU/kg B. subtilis
BS9 Basal diet+ 109 CFU/kg B. subtilis
RBS7 Basal diet+ 107 CFU/kg recombinant B. subtilis
RBS8 Basal diet+ 108 CFU/kg recombinant B. subtilis
RBS9 Basal diet+ 109 CFU/kg recombinant B. subtilis

Note: BS, B. subtilis; RBS, recombinant B. subtilis.
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Feed conversion ratio (FCR)= dry feed intake (g)/(final
body weight(g) − initial body weight (g)+ dead crab
weight gain (g)).

2.4. Analysis of Antioxidant Capability. An appropriate
amount of hepatopancreas was weighed and added to a nor-
mal saline (W/V, 1/9) for homogenization at 4°C. Subse-
quently, the homogenate was centrifuged at 8,500 rpm with
the supernatant extracted for enzyme activity analysis. Then,
the antioxidant capability was investigated in both hemo-
lymph and hepatopancreas. Hemolymph total superoxide
dismutase (SOD) activity was analyzed by the hydroxyl-
amine method [23] at 550 nm. In brief, one unit of SOD is
defined as the amount of enzyme per milligram of protein
required to produce 50% inhibition of the rate of nitrite
production at 37°C. The hepatopancreatic SOD activity
was quantified by using the xanthine oxidase method [24]
at 550 nm. In brief, one unit of SOD activity was defined as
the amount of enzyme required to cause 50% inhibition of
xanthine and xanthine oxidase system reaction in 1mL
enzyme extraction of 1mg protein. The catalase (CAT) activ-
ity was measured by measuring the decomposition rate of
H2O2 [25]. The malondialdehyde (MDA) content was deter-
mined by the thiobarbituric acid reaction method [26]. In
brief, MDA forms a red complex with thiobarbituric acid,
having an absorbance at 532 nm. The MDA content is then
calculated using the standard curve provided. All the mea-
surements were conducted using commercial kits provided
by the Nanjing Jiancheng Bioengineering Institute (Nanjing,
Jiangsu, China). SOD, CAT activities, andMDA contents were
determined according to commercial kits (No. A001-1-2,
A007-1-1, A007-1-1). The OD values were all determined
using a UV/visible-6100 Spectrophotometer (Shanghai Preci-
sion Instrument Co., Ltd., Shanghai, China).

2.5. Measurement of Immune Parameters. The lysozyme
(LZM) activity was determined using the turbidimetric
method [27]. In brief, the reaction substrate was 0.2mg/mL
of Micrococcus (Sigma) suspension, which was prepared in a
0.05mol/L, pH 6.1 phosphate buffer. The absorbance was
measured at 0.5 and 4.5min at 530 nm, respectively, with
the LZM activity calculated based on the decrease in

absorbance per minute of the bacterial solution. Both acid
phosphatase (ACP) and alkaline phosphatase (AKP) can
decompose disodium benzene phosphate to produce free phe-
nol and phosphoric acid. Phenol interacts with 4-aminoanti-
pyrine in an alkaline solution, and could be oxidized by
potassium ferricyanide to produce red quinone derivatives.
Through this, the viability of ACP and AKP was determined
according to the red coloration at 520 nm. LZM, ACP, and
AKP activities were determined according to commercial kits
(Nos. A050-1-1, A060-2-1, A059-2-2) provided by the Nanj-
ing Jiancheng Bioengineering Institute (Nanjing, Jiangsu,
China), following the instructions provided by the manufac-
turer, the OD values were all determined using a UV/visible-
6100 Spectrophotometer (Shanghai Precision Instrument Co.,
Ltd., Shanghai, China).

2.6. Analysis of Gene Expression. Precisely weigh 100mg of
hepatopancreas in a centrifuge tube, then add 1mL of
RNAiso Plus (Takara, Japan). Insert the centrifuge tube
into a beaker filled with dry ice, and homogenize the samples
using a handheld homogenizer. After standing for 15min,
add 200 ul of chloroform, and thoroughly mix it. Let it stand
for 8min, then centrifuge (12,000 rpm, 4°C) the mixture for
10min. The supernatant was mixed with an equal volume of
isopropanol, and was left to stand for 8min. After this, the
mixture was centrifuged again, (12,000 rpm, 4°C) for 15min.
The underlayer precipitate was RNA, which was dissolved by
mixing with enzyme-free sterile water with its concentration
assayed. The diluted RNA was reversely transcribed to cDNA
using a reverse transcription kit (Takara, Japan), and was
stored at −80°C. The transcriptions of target genes were
detected using a SYBR Premix Ex Taq TM II kit with the
primers detailed in Table 3. The relative expressions of
mRNA were calculated by the 2−ΔΔCT method [37] using the
ubiquitin/ribosomal s27 fusion protein (S27) as the house-
keeping gene. Base on a previous study, s27 is the most stable
internal reference gene in E. sinensis [36]. The gene amplifica-
tion efficiency was measured, and only primers with an ampli-
fication efficiency above 90% were used.

2.7. Statistical Analysis. The general linear models in SPSS
(IBM SPSS 16.0, SPSS Inc) were used to analyze the signifi-
cant differences in dietary levels (107, 108, 109 CFU/kg),

TABLE 3: Nucleotide sequences for real-time PCR primers.

Target genes Forward (5′−3′) Reverse (5′−3′) References

cat ATCAAGTGTCATTCCTCTTCTCTG CCTTCCCTTCTTTGTTCACCA [28]
mtmnsod AAGGTTCTGGTTGGGGCT AACATTCTTGTACTGCAG [29]
trx1 TCGAGACTACATCGCTAAGTACAAA AAACTCCACTCCGAGCATCC [30]
prx6 ACCCATCGGACTACACCCCAG GGACCAATGACAAAGACAGCA [31]
propo CCATCCCTTCCTGCTTACCA CTCCATCACAAACCCTAACGACTT [32]
tlrs CTCCTTCACCTGCCCTAACTGCT CTCCAGTTTGTATTGCTGTGCGAAA [33]
relish TCTCCCTACTCTGACCATTCC TTCCCACCATCTCACTCTTGT [34]
litaf CAGGAGTAGTGTCGGGATTTGC AGTTGTTGGAGCAGCACCTTG [35]
s27 GGTCGATGACAATGGCAAGA CCACAGTACTGGCGGTCAAA [36]

Note: cat, Catalase; mtmnsod, mitochondrial manganese superoxide dismutase; trx1, thioredoxin-1; prx6, peroxiredoxin 6; propo, prophenoloxidase; tlrs, toll
like receptors; relish, NF-κB-like transcription factor; litaf, lipopolysaccharide-induced TNF-α factor; s27, ubiquitin/ribosomal S27 fusion protein.
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bacteria species (B. subtilis and recombinant B. subtilis), and
their interactions. Significant differences were determined
when the P value was less than 0.05. When significance
was observed in the interaction, the corresponding data
were ranked by the Turkey’s multiple range test.

3. Result

3.1. Growth. As shown in Table 4, there was no significant
difference in specific growth rate (SGR), survival rate (SR),
and feed conversion ratio (FCR) among the groups
(P>0:05). In terms of B. subtilis dosage, final body weight
(FW) and weight gain (WG) both increased significantly
with increasing B. subtilis levels (P<0:001). In terms of
B. subtilis species, significant high values of FW and WG
were both noted in the RBS group (P<0:001).

3.2. Hemolymph and Hepatopancreas Antioxidant-Related
Indicators. As illustrated in Table 5, in terms of B. subtilis
dosage, the SOD and CAT activities in both hemolymph and
hepatopancreas increased significantly with increasing
B. subtilis levels (P<0:001), whereas the MDA content
showed an opposite trend (P<0:001). In terms of B. subtilis
species, the RBS group showed significant high activities of
SOD and CAT compared with the BS group (P<0:001),
while an opposite result was noted in the MDA content
(P<0:001). In addition, significant interactions between
the species and dosages of B. subtilis were observed in these
indicators except for hemolymph CAT activity and hepato-
pancreas SOD activity (P<0:01). Furthermore, the highest
activities of hemolymph SOD and hepatopancreas CAT, as

well as the lowest MDA contents in both tissues were all
observed in the RBS9 group.

3.3. Hemolymph and Hepatopancreas Immune-Related
Indicators. As exhibited in Figure 2, in terms of B. subtilis
dosage, the activities of LZM, ACP, and AKP in both hemo-
lymph and hepatopancreas all increased significantly
(P<0:01) with increasing B. subtilis levels. In terms of B. sub-
tilis species, the RBS group exerted significant high activities
of LZM, ACP, and AKP in both hemolymph and hepatopan-
creas compared with the BS group (P<0:01). In addition, a
significant interaction between the species and dosages of
B. subtilis was observed in hepatopancreas ACP activity
(P<0:05) which maximized in the RBS9 group.

3.4. Antioxidant and Immune-Related Gene Transcription in
the Hepatopancreas. As presented in Figure 3, in terms of
B. subtilis dosage, the transcription of peroxiredoxin 6 (Prx6)
exerted no statistical difference (P>0:05). However, the tran-
scriptions of cat, mitochondrial manganese superoxide dismu-
tase (mtmnsod), thioredoxin-1 (trx1), and prophenoloxidase
(propo) all increased significantly with increasingB. subtilis levels
(P<0:05), whereas those of toll like receptors (tlrs), NF-κB-like
transcription factor (relish), and lipopolysaccharide-induced
TNF-α factor (litaf ) all showed an opposite result (P<0:001).
In terms of B. subtilis species, the transcriptions of cat and trx1
both showed no statistical difference (P>0:05). However, the
significantly high transcriptions of mtmnsod, prx6, and propo
were all noted in the RBS group compared with the BS group
(P<0:01), whereas those of tlrs, relish, and litaf all showed an
opposite result (P<0:05). In addition, significant interactions
between the species and dosages of B. subtilis were observed in

TABLE 4: Effects of different dietary levels of B. subtilis and recombinant B. subtilis on the growth performance of E. sinensis.

Groups IW (g) FW (g) WG (%) SGR (%) SR (%) FCR

CON 41.40Æ 0.14 72.90Æ 0.15 76.08Æ 0.27 0.81Æ 0.01 72.50Æ 2.50 2.19Æ 0.05
BS7 41.30Æ 0.10 74.38Æ 0.10 80.08Æ 0.17 0.84Æ 0.01 80.00Æ 4.08 2.03Æ 0.05
BS8 41.60Æ 0.08 75.61Æ 0.08 81.75Æ 0.10 0.86Æ 0.01 77.50Æ 4.79 2.01Æ 0.06
BS9 41.40Æ 0.14 76.31Æ 0.19 84.33Æ 0.43 0.87Æ 0.01 75.00Æ 2.89 2.01Æ 0.03
RBS7 41.35Æ 0.17 75.51Æ 0.25 82.62Æ 0.50 0.86Æ 0.01 82.50Æ 2.50 2.09Æ 0.07
RBS8 41.30Æ 0.19 76.78Æ 0.18 85.89Æ 0.25 0.89Æ 0.01 82.50Æ 2.50 2.05Æ 0.02
RBS9 41.45Æ 0.17 78.13Æ 0.85 88.50Æ 2.09 0.91Æ 0.05 77.50Æ 4.79 1.95Æ 0.13
B. subtilis dosage (CFU/kg)

107 41.33Æ 0.09 74.94Æ 0.27c 81.35Æ 0.64c 0.85Æ 0.01 81.25Æ 2.64 2.06Æ 0.05
108 41.45Æ 0.11 76.19Æ 0.27b 83.82Æ 0.64b 0.87Æ 0.01 80.00Æ 2.64 2.03Æ 0.05
109 41.43Æ 0.10 77.22Æ 0.27a 86.42Æ 0.64a 0.89Æ 0.01 76.25Æ 2.64 1.98Æ 0.05

B. subtilis species
B. subtilis 41.43Æ 0.07 75.43Æ 0.22b 82.05Æ 0.52b 0.86Æ 0.01 77.50Æ 2.15 2.01Æ 0.04
Recombinant B. subtilis 41.37Æ 0.09 76.81Æ 0.22a 85.67Æ 0.52a 0.88Æ 0.01 80.83Æ 2.15 2.03Æ 0.04

Two-way ANOVA
B. subtilis dosage ns ∗∗∗ ∗∗∗ ns ns ns
B. subtilis species ns ∗∗∗ ∗∗∗ ns ns ns
Interaction ns ns ns ns ns ns

Note: Values are meansÆ SE of four replications. Means in the same column with different superscripts are significantly different (P<0:05). IW, initial body
weight; FW, final body weight; WG, weight gain; SGR, special growth rate; SR, survival rate; FCR, feed conversion ratio. Ns, not significantly different; ∗∗∗,
P<0:001.
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the transcriptions of propo and tlrs (P <0:05) with the RBS9
group obtaining the highest transcription of propo and the lowest
transcription of tlrs.

4. Discussion

Being a cheap and eco-friendly feed source, plant proteins are
a highly potential replacer of fish meal, thereby ensuring sus-
tainable aquaculture. However, their incorporation in aqua-
feed is highly restricted, due to the existence of antinutritional
factors, imbalanced amino acids profiles, poor palatability,
low digestibility, and other unknown factors [38]. In addition,
under intensive culture, the health of aquatic animals is
greatly compromised. Traditionally, antibiotics have been
adopted to cope with this issue, resulting in several serious
concerns like the development of antibiotic-resistant bacteria,
and the antibiotic residues in the aquatic products [39]. Tak-
ing them into consideration, this study has constructed a
recombinant B. subtilis to carry the LGSPDVIVIR peptide
(cmP4) isolated from the hydrolyzed products of cottonseed
meal with its effectiveness further evaluated on the growth
performance and health status of E. sinensis. The improved
growth performance, redox defense, and innate immunity all
reinforced the high potential of this peptide as a growth and
health-promoter in aquafeed. This suggests that the present
technology can largely enhance the nutritional value of the
plant proteins, thereby increasing their potentials in substitut-
ing fishmeal and antibiotics. This could further promote their
application in the aquafeed industry, as might ultimately pro-
mote sustainable aquaculture.

In the present study, the FW and WG of E. sinensis both
increased remarkably with increasing dietary B. subtilis

dosages, suggesting that B. subtilis can stimulate the growth
of aquatic species. Previous studies have demonstrated that
B. subtilis can improve the digestive and absorptive capability
of aquatic animals by enhancing vitamin synthesis and
secreting a wide range of digestive enzymes, thereby improv-
ing the feed utilization and growth performance [40–42]. In
terms of B. subtilis species, relatively high FW and WG were
observed in the RBS group compared with the unmodified
one, indicating that the recombinant B. subtilis has a stronger
growth-stimulating effect than the unmodified one. Gener-
ally, the cmP4’ peptide carried by the RBS can be cleaved by
the endogenous trypsin at the arginine site, thereby turning
into a single cmP4 peptide [43]. Previously, peptides have
been demonstrated to improve the structure of the gastroin-
testinal tract in aquatic animals, promoting the growth of
beneficial bacteria, and increasing the activities of the diges-
tive enzymes, thus exerting the growth-promoting effects
[44, 45]. In addition, the cmP4 peptide has been reported
to show impressive antioxidant and immune-enhancing
effects [46]. It is well known that the growth of animals is
closely related to the antioxidant and nonspecific immune
capacity [47, 48]. When subjected into oxidative stress, ani-
mals often show a compromised growth rate. In addition, if
the immunity was inhibited, more nutrients will be allocated
to the immune system, as might also negatively affect the
growth performance of the aquatic animals [49].

In this study, the activities of hemolymph SOD and CAT
of E. sinensis both increased significantly with increasing
dietary B. subtilis dosages. A similar result was also noted
in the activities of hepatopancreatic SOD and CAT as well as
the transcriptions of cat, mtmnsod, and trx1, while the oppo-
site was observed in the MDA content. These results

TABLE 5: Effects of different dietary levels of B. subtilis and recombinant B. subtilis on the antioxidant-related indicators of E. sinensis.

Groups
Hemolymph Hepatopancreas

SOD (U/mL) CAT (U/mL) MDA (nmol/mL) SOD (U/mgprot) CAT (U/gprot) MDA (nmol/mgprot)

CON 303.62Æ 2.97d 10.28Æ 0.05 4.41Æ 0.08a 59.92Æ 0.60 4.37Æ 0.02e 15.40Æ 0.11a

BS7 307.97Æ 4.70cd 10.57Æ 0.20 4.07Æ 0.06b 58.92Æ 0.35 4.31Æ 0.03e 12.79Æ 0.03b

BS8 321.38Æ 2.52bc 10.83Æ 0.06 3.69Æ 0.06c 63.93Æ 0.88 4.26Æ 0.04e 11.04Æ 0.16c

BS9 329.45Æ 4.84b 11.24Æ 0.19 3.25Æ 0.07d 65.13Æ 0.99 4.61Æ 0.05d 8.32Æ 0.11d

RBS7 328.62Æ 3.63b 11.13Æ 0.16 2.99Æ 0.11d 65.75Æ 0.49 4.96Æ 0.07c 7.48Æ 0.13e

RBS8 367.99Æ 2.87a 12.15Æ 0.10 2.28Æ 0.07e 68.22Æ 1.09 5.27Æ 0.04b 6.54Æ 0.06f

RBS9 375.44Æ 3.53a 12.25Æ 0.17 2.18Æ 0.04e 70.66Æ 0.69 5.70Æ 0.08a 6.10Æ 0.06f

B. subtilis dosage (CFU/kg)
107 318.30Æ 2.67c 10.85Æ 0.11b 3.53Æ 0.05a 62.34Æ 0.56c 4.63Æ 0.04c 10.14Æ 0.07a

108 344.68Æ 2.67b 11.49Æ 0.11a 2.94Æ 0.05b 66.07Æ 0.56b 4.76Æ 0.04b 8.79Æ 0.07b

109 352.45Æ 2.67a 11.74Æ 0.11a 2.76Æ 0.05c 67.89Æ 0.56a 5.15Æ 0.04a 7.21Æ 0.07c

B. subtilis species
B. subtilis 319.60Æ 2.18b 10.88Æ 0.09b 3.67Æ 0.04a 62.66Æ 0.46b 4.39Æ 0.03b 10.71Æ 0.07b

Recombinant B. subtilis 357.35Æ 2.18a 11.84Æ 0.09a 2.48Æ 0.04b 68.21Æ 0.46a 5.31Æ 0.03a 6.70Æ 0.07a

Two-way ANOVA
B. subtilis dosage ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

B. subtilis species ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

Interaction ∗∗ ns ∗∗ ns ∗∗ ∗∗∗

Note: Values are meansÆ SE of four replications. Means in the same column with different superscripts are significantly different (P<0:05). SOD, superoxide
dismutase; CAT, catalase; MDA, malondialdehyde. Ns, not significantly different; ∗∗, P<0:01; ∗∗∗, P<0:001.
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indicated that B. subtilis can promote the antioxidant capac-
ity of E. sinensis. Supportively, both SOD and CAT are
important antioxidant enzymes in the body, and the main
force to scavenge reactive oxygen species (ROS), thereby
resisting oxidative stress [50]. MDA is a lipid peroxidation
product, which leads to an increase in cell membrane fragil-
ity [51]. In addition, as a cofactor of SOD, mtmnsod plays
important roles in the ROS scavenging process [52], while
trx1 can attenuate mitochondrial oxidative damage [53].
Furthermore, prx6 is also a lipid-peroxide–scavenging
enzyme, which acts as a cellular protector during oxidative
stress [54]. According to a previous study, B. subtilis can
produce a certain amount of exopolysaccharide, which has
excellent anti-inflammatory and antioxidant activities [55].
Similarly, dietary supplementation of the moderate levels of
B. subtilis also improves the antioxidant capacity of red
swamp crayfish (Procambarus clarkii) [56] and Chinese mit-
ten crab [57]. In terms of B. subtilis species, the RBS group
obtained remarkably high activities of SOD and CAT as well

as high transcriptions of mtmnsod and prx6, but a low-MDA
content compared with the unmodified one. This suggests
that the recombinant B. subtilis has a stronger oxidative
stress-alleviating effect compared with the unmodified one.
This result is in expectation, since peptides are more readily
absorbed than whole proteins, and can enhance the nutri-
tional metabolism and also positively regulate the antioxi-
dant defense system of the animals [58, 59]. In addition,
excellent antioxidant properties have been observed in the
cmP4 peptide in an in vitro study [12]. Notably, an interac-
tion between the dosages and species of B. subtilis was noted
in hemolymph SOD activity and MDA content as well as
hepatopancreatic CAT activity and MDA content with the
RBS9 group exerting the best results. This suggests that,
when supplied at sufficient dosages, recombinant B. subtilis
can effectively strengthen the redox defense of E. sinensis.
Due to the fact that relevant information is barely available,
this interaction is hard to explain, thus warranting further
studies.
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FIGURE 2: Effects of different dietary levels of B. subtilis and recombinant B. subtilis on the immunity-related indicators of E. sinensis. CON,
diet without B. subtilis; BS7, dietary supplementation with 107 CFU/kg B. subtilis; BS8, dietary supplementation with 108 CFU/kg B. subtilis;
BS9, dietary supplementation with 109 CFU/kg B. subtilis; RBS7, dietary supplementation with 107 CFU/kg recombinant B. subtilis; RBS8,
dietary supplementation with 108 CFU/kg recombinant B. subtilis; RBS9, dietary supplementation with 109 CFU/kg recombinant B. subtilis.
Hemolymph: lysosome, LZM (a); acid phosphatase, ACP (b); alkaline phosphatase, AKP (c). Hepatopancreas: lysosome, LZM (d); acid
phosphatase, ACP (e); alkaline phosphatase, AKP (f ). Each data represented the mean of four replicates. Boxes assigned with different
superscripts are significantly different (P<0:05). Ns, not significantly different; ∗P<0:05; ∗∗P<0:01; ∗∗∗P<0:001.

8 Aquaculture Nutrition



As a crustacean, E. sinensis lacks an adaptive immune
system. Therefore, the nonspecific immunity is particularly
important to maintain its health status. In the present study,
the activities of LZM, ACP, and AKP in the hemolymph and

hepatopancreas of E. sinensis were all significantly elevated
with increasing dietary B. subtilis dosages. A similar result
was also noted in the transcription of propo in the hepato-
pancreas, while those of tlrs, litaf, and relish all showed an
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FIGURE 3: Effects of different dietary dosages of B. subtilis and recombinant B. subtilis on the transcriptions of catalase (cat, a), mitochondrial
manganese superoxide dismutase (mtmnsod, b), thioredoxin−1 (trx1, c), peroxiredoxin 6 (prx6, d), prophenoloxidase (propo, e), transcrip-
tions of toll like receptors (tlrs, f ), NF-κB-like transcription factor (relish, g), and lipopolysaccharide-induced TNF-α factor (litaf, h) in the
hepatopancreas of E. sinensis. CON, diet without B. subtilis; BS7, dietary supplementation with 107 CFU/kg B. subtilis; BS8, dietary
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opposite result. The above results indicated that dietary sup-
plementation of B. subtilis could improve the nonspecific
immunity of E. sinensis. Supportively: (1) LZM can exert
an antimicrobial effect, and has the ability to stimulate
immune response, thereby enhancing the disease resistance
of aquatic animals [60]; (2) As a component of phagocytic
lysosomes, ACP exerts a bactericidal effect by hydrolyzing
phosphate esters on the surface of pathogenic bacteria [61];
(3) AKP is able to label pathogens, which can be the easily
recognized by the phagocytoses [62]; (4) The proPO system
is considered as an important nonspecific immune system in
crustaceans, initiating multiple downstream responses to kill
pathogens [63]; (5) Both tlrs and litaf are important compo-
nents of the NF-κB pathway, and can initiate the immune
response [64]; and (6) relish participates in the immune
response by inducing the expression of antimicrobial pep-
tides [65]. In addition, tlrs, litaf, and relish are all closely
involved in the inflammatory response. An inappropriate
activation of tlrs leads to the prolonged inflammatory
responses [66], while litaf can promote the activation of
inflammatory cells [67], and relish can even directly activate
the inflammatory responses in arthropods [68]. Previous
studies have shown that B. subtilis can directly enhance the
immunity of animals by increasing serum immunoglobulin
levels [69] and the expression of immune-related genes [70].
Meanwhile, B. subtilis also indirectly enhances the immuno-
competence by maintaining the intestinal epithelial integrity,
downregulating the secretion of inflammatory factors, inhi-
biting pathogenic bacterial adhesion, and stimulating the
growth of immune cells [71, 72]. In terms of B. subtilis spe-
cies, the RBS group obtained remarkably high activities of
LZM, ACP, and AKP as well as a high transcription of propo,
but low transcriptions of of tlrs, litaf, and relish compared
with the unmodified one. This suggests that the recombinant
B. subtilis has a stronger immune-stimulating effect than the
unmodified one. According to a previous study, recombinant
B. subtilis expressing immunologically active heterologous pep-
tides is effective in stimulating systemic immune responses
[73, 74]. In addition, peptides are able to ameliorate intestinal
damage andmaintain intestinal mucosal integrity [75], thereby
maintaining intestinal immune homeostasis. It is greatly
acknowledged that the intestinal mucosa is the first line of
immune defense [76], and pathogenic microorganisms need
to cross the intestinal mucosa to invade the spleen and liver
[77]. Notably, an interaction between the dosages and species
of B. subtilis was observed in hepatopancreas ACP activity and
the propo and tlrs transcripts with the RBS9 group exerting the
best results. This suggests that, when supplied at sufficient
dosages, recombinant B. subtilis can exert immune-enhancing
advantages. The potential mechanisms underlying this interac-
tion are still unknown, as needs further in-depth studies.

5. Conclusion

This study creatively constructed a recombinant B. subtilis to
carry the LGSPDVIVIR peptide isolated from cottonseed
meal protein hydrolysates with its health-promoting effects
evaluated in E. sinensis. The results showed that dietary

supplementation with 109 CFU/kg of recombinant B. subtilis
remarkably improved the growth performance, redox
defense, and innate immunity of E. sinensis. However, the
best result was noted in the highest dose group, suggesting
that the optimal dietary level of recombinant B. subtilis still
needs to be investigated in the future studies. Despite this,
the present findings could to some extent promote the appli-
cation of plant proteins in aquafeed, and provide novel anti-
biotic replacement strategies for the crustaceans.
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