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The trial was conducted to investigate the effects of the replacement of dietary fishmeal (FM) by the blend of Tenebrio molitormeal
(TMM), Chlorella meal (CM), Clostridium autoethanogenum protein (CAP), cottonseed protein concentrate (CPC) on growth,
protein utilization and intestinal health of gibel carp (Carassius gibelio, CASⅤ). The FM-based diet was used as the control, and the
blended proteins (TMM: CM: CAP: CPC) at ratios of 1 : 1:8 : 2 (BLEND A), 1 : 1:6 : 4 (BLEND B), and 1 : 1:4 : 6 (BLEND C) were
used to replace FM at three levels (33%, 67%, 100%), respectively. The results showed that, compared to the control group, growth
performance increased significantly when dietary FM was fully replaced by BLEND B (P<0:05), while decreased by BLEND A
(P<0:05). The complete substitution of FM with BLEND B significantly upregulated the mRNA expression of intestinal proin-
flammatory cytokines, anti-inflammatory cytokines, and tight junction-related genes (P<0:05), improving intestinal tissue mor-
phology and health. And it also significantly increased intestinal trypsin activity (P<0:05), upregulated the mRNA expression of
amino acid sensory receptor-related and amino acid or peptide transport-related genes (P<0:05), increased protein apparent
digestibility coefficient (P<0:05). The 100% substitution of FM with BLEND A significantly upregulated the mRNA expression
of intestinal proinflammatory cytokines and downregulated the mRNA expression of anti-inflammatory cytokine il-10 (P <0:05),
reduced intestinal villus height (P<0:05), and decreased protein apparent digestibility coefficient (P<0:05). In conclusion, BLENDB
could completely substitute dietary FM and was beneficial to the growth and health of gibel carp. Dietary digestible essential amino
acids index (DEEAI) was found as an important indicator and should be higher than 79.5% to meet the maximum growth of fish.

1. Introduction

Global aquaculture is developing more rapidly than any other
food-producing sector, and provides almost one-third of ani-
mal protein for human beings [1]. Fishmeal (FM) has been
considered as the best protein source for aquafeeds because
of its excellent properties [2, 3]. However, FM production

cannot meet the requirement of aquaculture due to limited
resources [1]. Thus, numerous researches have been conducted
on FM substitution in aquafeeds. Many researches have been
focusing on a single protein source (e.g., soybean protein) to
replace FM, which came with the drawbacks of antinutrient
factors and unbalanced amino acid composition that limit the
replacement level of FM [4–6]. On the other hand, soy is also
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used for human food and requires more land for large produc-
tion. Therefore, it should be considered to search the new feed
ingredients of nonfood proteins [7].

A novel bacterial protein, Clostridium autoethanogenum
protein (CAP) is extracted and processed from the by-products
of fermentation by C. autoethanogenum to produce ethanol
from industrial waste gas CO [8]. Cottonseed protein concen-
trate (CPC), is a nonfood plant protein, adopted by low-
temperature drying and solvent extraction, effective reduction
of the thermal denaturation of protein, and removement of
free gossypol [9]. Tenebrio molitor meal (TMM) is an insect
protein from the kitchen waste [10, 11]. Chlorellameal (CM)
is a single-cell algae of high productivity, and high contents of
valuable constituents [12]. It has been reported that these four
proteins are all rich in protein and have good amino acid
composition [9, 13–15]. Wu et al. [16] found that a single
protein of CAP could replace dietary FM up to 30% without
adverse effects on growth performance in carnivorous large
yellow croaker (Larimichthys crocea). However, 45% replace-
ment reduced the activity of intestinal protease, damaged intes-
tinal health, and inhibited growth. CAP also found that optimal
FM replacement was 14.55% in omnivorous black sea bream
(Acanthopagrus schlegelii), while the minimum weight gain was
observed in 58.2% FM replacement [13]. In omnivorous white
shrimp (Litopenaeus vannamei), the dietary 30% FM replace-
ment by CAP had no adverse effects on growth performance or
intestine health, while the dietary 45% FM replacement showed
negative effects on fish [17]. CPC was reported to be acceptable
to replace 50% of dietary FM in carnivorous largemouth bass
(Micropterus salmoides), while negative effects were observed on
intestinal tissue structure, protein utilization, and growth per-
formance at 75% replacement [18]. CPC, as a single protein
source, could only replace 48% dietary FM in omnivorous
golden pompano (Trachinotus ovatus) [19] or 40% dietary
FM in omnivorous white shrimp (L. vannamei) [20] without
negative effects on growth performance. CM contains Chlorella
growth factors and TMM contains chitin. Chlorella growth
factor and chitin have positive effects on feeding, growth, and
immunity of fish, while high chitin has antinutritional effects
[12, 15, 21]. The limited replacement level might be due to
unbalanced amino acid composition that could not achieve
the aquaculture animal requirements. Therefore, it is necessary
to consider an optimal blend of TMM, CM, CAP, and CPC so
as to increase the replacement level of FM in aquafeeds.

Gibel carp (Carassius gibelio) is an important freshwater
aquaculture fish, and its production in China was higher
than 2.85million tons in 2022 [22]. As an omnivorous fish,
gibel carp was also found to show better growth when fed
with high-FM feed [4, 5]. The present study was designed to
use blends of TMM, CM, CAP, and CPC of different ratios to
replace different levels of dietary FM so as to find the optimal
blend and replacement level when considering growth, pro-
tein utilization, and intestinal health.

2. Materials and Methods

2.1. Experimental Diets. The formulation and chemical com-
position of experimental diets are presented in Table 1. The

amino acid composition is shown in Table 2. During the diet
preparation, TMM, CM, CAP, and CPC first were grounded
respectively, and then mixed at different proportions to pre-
pare three blended proteins (TMM: CM: CAP: CPC) at ratios
of 1 : 1:8 : 2 (BLEND A), 1 : 1:6 : 4 (BLEND B), and 1 : 1:4 : 6
(BLEND C). The control diet was formulated with 15% FM,
while the blended proteins were used to replace 33%, 67%, and
100% FM, respectively, to prepare ten isonitrogenous (34.20%
crude protein) and isolipidic (7.60% crude lipid) practical diets
(Control, A33, A67, A100, B33, B67, B100, C33, C67, and
C100). All ingredients were finely ground to less than 150μm
with the laboratory machine (JYNU30-18.5M, Jeinna Co.,
Ltd.) and then thoroughly mixed and pelleted (SLP-45; Fish-
ery Machinery and Instrument Research Institute, Chinese
Academy of Fishery Sciences, Shanghai, China). The pellets
were oven-dried at 60°C and stored at 4°C for later use.

2.2. Feeding Trial. Gibel carp used in this study were collected
from the Guanqiao hatchery farm of the Institute of Hydro-
biology, Chines Academy of Sciences (Wuhan, China). The
experiment was carried out in net cages (2.0 m× 2.0m, water
depth 1.8m) located at the center of the pond (29°50′21.372″
N, 112°28′39.504″E, Shishou Original Seed Stock Farm of
Four Major Carps, Jingzhou, Hubei, China). All fish were
fed with commercial diets (103, Tongwei Co., Ltd.) 3 meals/
day for 2 weeks for acclimation. At the beginning of the trail,
fish of similar size (weight: 15.18Æ 0.20 g) were selected, bulk-
weighed, and randomly distributed into 30 cages at a density
of 70 fish per cage. Subsequently, the fish were randomly
allocated to ten diets with three cages per treatment. During
the trial, gibel carp were fed up to apparent satiation at 7 : 00,
12 : 00, and 17 : 00 for 8 weeks (from 1.7.2021 to 28.8.2021).
The water around cages was aerated at night for 10 hr from 8 :
00 p.m. to 6 : 00 a.m. The natural light and temperature were
used. The water temperature (0.5m under the water surface)
was monitored every day and was 29.2–34.0°C. The water
ammonia nitrogen was below 0.4mgL−1, pH was 7.4–7.6,
and dissolved oxygen was higher than 5mg L−1.

2.3. Sample Collection. At the end of 8-week feeding trial, fish
were fasted for 12 hr. All fish in each cage were anesthetized
with MS-222 (50mg kg−1; Sigma, USA) and bulk-weighed.
Two fish per cage were collected for proximate composition,
another three fish for the calculation of body index, and
another two fish for plasma, liver tissues, and intestinal tis-
sues. The liver tissues were used for transcriptome sequenc-
ing, and the intestinal tissues were used for enzyme activity,
real-time polymerase chain reaction (RT-PCR), paraffin sec-
tion, and electron microscope section.

2.4. Digestibility Determination. After the feeding trial, the
remained fish after sampling were transferred into a recircu-
lating aquaculture system (Wuhan, China), and fed with the
corresponding experimental diets for digestibility determina-
tion. Fish were reared in fiberglass tanks (diameter 1.5m,
water depth 0.60m). The water temperature (0.5m under
the water surface) was 27.9–30.1°C. Light period was from
8 : 00 to 20 : 00. The water ammonia nitrogen was below
0.2mg L−1, the pH was 7.0–7.2, and the dissolved oxygen
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was higher than 7mg L−1. The fish were fed three meal per
day (7 : 00, 12 : 00, and 17 : 00) and the uneaten feed were
collected after each feeding. The fresh and intact feces were
collected by siphoning 4 hr after feeding from the 2nd week.
Then, feces were freeze-dried and stored at −20°C for sub-
sequent analysis. The yttrium trioxide was as an indirect
indicator for the calculation of apparent digestibility.

2.5. Biochemical Analysis.The proximate composition of diets,
fish and feces were analyzed in accordance with the Association
of Official Analytical Chemists (AOAC) [28] method.Moisture,
ash, crude protein, crude lipid, amino acid contents, and yttrium
trioxide contents were determined using the methods described
by Liu et al. [5]. Gross energy was assessed using a Philips
Microbomb Calorimeter (Gentry Instruments Inc., USA).

According to the manufacturer’s instructions, the mea-
surement of triglycerides (TG), cholesterol (CHO), and glucose
(GLU) in plasma was conducted using commercial assay kits
(290–63,701, 294−65,801, 298–65,701; Wako Pure Chemicals,
Japan), and the plasma free amino acid (FAA) measurement
was conducted using commercial assay kits (A026-1-1; Nanjing
Jiancheng Bioengineering Institute, Nanjing, China).

2.6. Quantitative Real-Time PCR Analysis. The Trizol (Invitro-
gen, USA) was utilized to extract total RNA from the intestine
tissues following the manufacturer’s instructions, then agarose
gel electrophoresis was utilized to detect RNA integrity.
The NanoDrop® Spectrophotometer (NanoDrop Technologies,
USA) was utilized to determine RNA concentration. TheMolo-
ney murine leukemia virus (M-MLV) FirstStrand Synthesis Kit
(Invitrogen, Shanghai, China) was used for reverse transcription
of the total RNA. The NCBI primer BLAST service was utilized
to design the quantitative polymerase chain reaction (qPCR)
primers which were listed in Table 3. β-actin was used as the
internal reference for normalization. qRT-PCR was conducted
on a LightCycle 480 II system (Roche, Switzerland). More details
were described by Liu et al. [18]. The relative expression was
calculated according to Vandesompele et al. [29].

2.7. Intestinal Tissue Section. The intestine tissues stored at
paraformaldehyde solution were analyzed by hematoxylin
and eosin (H&E) stained sections, and these stored with glu-
taraldehyde solution were observed under a transmission
electron microscope. More detailed steps were described
by Liu et al. [30].

TABLE 1: Ingredient (% of dry matter) and chemical composition (% of dry matter) of the experimental diets.

Blended ratios (TMM: CM: CAP: CPC) 1 : 1:8 : 2 (A) 1 : 1:6 : 4 (B) 1 : 1:4 : 6 (C)

Level of FM replacement (%) 0 33 67 100 33 67 100 33 67 100
Diets Control A33 A67 A100 B33 B67 B100 C33 C67 C100

Ingredient
1Fish meal 15.00 10.00 5.00 0.00 10.00 5.00 0.00 10.00 5.00 0.00
2T. molitor meal 0.00 0.38 0.76 1.14 0.40 0.80 1.20 0.42 0.84 1.26
3Chlorella meal 0.00 0.38 0.76 1.14 0.40 0.80 1.20 0.42 0.84 1.26
4Clostridium autoethanogenum protein 0.00 3.04 6.08 9.12 2.40 4.80 7.20 1.68 3.36 5.04
5Cottonseed protein concentrated 0.00 0.76 1.52 2.28 1.60 3.20 4.80 2.52 5.04 7.56
6Rapeseed meal 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00
7Soybean meal 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00
Corn starch 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00
Microcrystalline cellulose 4.38 4.42 4.56 4.70 4.18 4.08 3.98 3.94 3.60 3.26
Fish oil 3.00 3.20 3.35 3.50 3.20 3.35 3.50 3.20 3.35 3.50
Soybean oil 3.00 3.20 3.35 3.50 3.20 3.35 3.50 3.20 3.35 3.50
8Mineral premixes 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
9Vitamin premixes 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39
Sodium benzoate 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Sodium carboxymethyl cellulose 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
Choline chloride 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
Yttrium trioxide 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Chemical composition
Crude protein 34.27 33.81 34.29 34.18 34.36 34.23 34.01 34.09 33.94 33.48
Crude fat 7.99 7.17 7.69 7.81 6.88 7.62 6.82 7.34 6.75 7.25
Ash 10.58 9.69 8.83 9.52 8.5 8.78 8.43 9.66 9.11 8.76
Gross energy (MJ/kg) 18.02 18.23 18.41 18.46 18.39 18.21 18.28 18.38 18.53 17.94

1Fish meal: TASA Fish Product Co. Ltd., Peru. 2Tenebrio. molitor meal: Guangdong Zehecheng Biotechnology Co., Ltd., Guangzhou, China. 3Chlorella meal:
Demeter Bio-Tech Co., Ltd., Wuhan, Hubei, China. 4Clostridium autoethanogenum protein: Hebei Shoulang Novel Energy Technology Co., Ltd. 5Cottonseed
protein concentrated: Xinjiang Jinlan Plant Protein Co., Ltd., Xinjiang, China. 6Rapeseed meal: Wuhan Coland Feed Co. Ltd., Wuhan, Hubei, China. 7Soybean
meal: Wuhan Coland Feed Co. Ltd., Wuhan, Hubei, China. 8Mineral premixes (mg/kg diet): NaCl, 500.0; MgSO4 · 7H2O, 8,155.6; NaH2PO4 · 2H2O, 12,500.0;
KH2PO4, 1,6000.0; CaHPO4 · 2H2O, 7,650.6; FeSO4 · 7H2O, 2,286.2; C6H10CaO6 · 5H2O, 1,750.0; ZnSO4 · 7H2O, 178.0; MnSO4·H2O, 61.4; CuSO4 · 5H2O, 15.5;
CoSO4 · 7H2O, 0.9; KI, 1.5; Na2SeO3, 0.6; Corn starch, 899.7. 9Vitamin premixes (mg/kg diet): Vitamin B1, 20; Vitamin B2, 20; Vitamin B6, 20; Vitamin B12,
0.02; folic acid, 5; calcium pantothenate, 50; inositol, 100; niacin, 100; biotin, 0.1; cellulose, 3522; Vitamin A, 11; Vitamin D, 2; Vitamin E, 100; Vitamin K, 10.
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TABLE 2: Amino acid (AA, % of dry matter) composition of the experimental diets.

Diets Control A33 A67 A100 B33 B67 B100 C33 C67 C100 Requirements

Essential amino acids
Lysine 2.16 2.15 2.20 2.26 2.20 2.18 2.23 2.13 2.10 2.11 ∗3.30
Methionine 0.56 0.62 0.59 0.57 0.57 0.56 0.58 0.54 0.52 0.49 #0.89
Threonine 1.31 1.32 1.35 1.35 1.35 1.34 1.34 1.32 1.31 1.33 &1.70
Arginine 1.96 1.96 1.97 2.07 1.92 1.98 2.05 1.99 2.00 2.08 ‼1.50
Leucine 2.49 2.45 2.46 2.45 2.53 2.55 2.55 2.48 2.43 2.51 &1.80
Isoleucine 1.46 1.48 1.47 1.45 1.43 1.49 1.46 1.41 1.41 1.49 &1.30
Valine 1.55 1.54 1.52 1.53 1.59 1.58 1.55 1.51 1.55 1.60 &1.70
Phenylalanine 1.48 1.51 1.45 1.49 1.57 1.50 1.52 1.45 1.47 1.57 §1.10
Histidine 0.69 0.69 0.76 0.73 0.73 0.74 0.63 0.81 0.73 0.76 §0.80
EAAI 95.83 97.07 97.52 97.71 97.78 97.86 97.50 96.34 94.86 97.26 —

DEAAI 79.07 82.39 79.22 78.71 81.42 83.19 83.75 80.39 80.15 81.66 —

Nonessential amino acids
Asparagine 2.77 2.73 2.76 2.73 2.83 2.76 2.82 2.83 2.77 2.84 —

Serine 1.29 1.33 1.36 1.31 1.31 1.31 1.35 1.34 1.33 1.32 —

Glutamic acid 5.57 5.58 5.55 5.61 5.54 5.54 5.68 5.60 5.60 5.65 —

Glycine 1.45 1.43 1.46 1.47 1.47 1.43 1.42 1.51 1.51 1.45 —

Alanine 1.57 1.60 1.63 1.63 1.56 1.59 1.61 1.61 1.62 1.58 —

Tyrosine 0.99 1.05 1.06 1.00 1.00 1.02 1.03 1.01 0.97 1.04 —

Proline 1.55 1.65 1.62 1.56 1.69 1.67 1.98 1.67 1.59 1.74 —

Cysteine 2.21 1.71 1.71 2.09 1.61 1.79 1.71 1.71 1.90 2.12 —

Essential amino acid index (EAAI,%)= 100×
ffiffiffiffiffiffiffiffiffi
a
ar ×

n
p

b
br ×

c
cr × ⋅⋅⋅⋅⋅⋅⋅⋅⋅ i

ir . Digestible essential amino acid index (DEAAI,%)= 100×
ffiffiffiffiffiffiffiffiffi
A
ar ×

n

q
B
br ×

C
cr × ⋅⋅⋅⋅⋅⋅⋅⋅⋅ I

ir . (a,

b, c,…, i are the contents of lysine, methionine, threonine, arginine, leucine, isoleucine, valine, phenylalanine, and histidine in each experimental diet; A, B, C,
…, I are the digestible contents of lysine, methionine, threonine, arginine, leucine, isoleucine, valine, phenylalanine, and histidine in each experimental diet; ar,
br, cr,…., ir are the requirements of lysine, methionine, threonine, arginine, leucine, isoleucine, valine, phenylalanine, and histidine in gibel carp. n is the
number of amino acids used). ∗Ref from Zhou et al. [23]. #Ref from Jia et al. [24]. &Ref from Li [25]. ‼︎Ref from Tu et al. [26]. §Ref from Ma [27].

TABLE 3: Primer sequences were used for the analysis of mRNA expression by qRT-PCR.

Gene name GenBank accession number Forward primer (5′ to 3′) Reverse primer (5′ to 3′)

β-actin JN006052.1 TGGGACAGAAGGACAGCTATG AGCTCGTTGTAGAAGGTGTGA
tnf-α XM_026282152.1 TGTTCTCAGGGCATTCGCTT GGAGTTGTAGTGCCCTTGGT
il-1β XM_026220359.1 GAATGGAAACGACAGCCTCC GGATTCGTTCAGTTGGCCTC
il-6α XM_026252884.1 GAGATACCGACCACAGCTCA TGCCCAACTGACTGCATAGA
il-8 KC184490.1 CACAAGTGTCGAGCAACCAG TCAGTTTCAATGCAGCGACA
il-10 HQ259106 TGAAAAGGAACGATGGGCAG TGGAATGATGACGTGCAAGC
tgf-β EU086521.1 GGTTCTTGCGCTGTATAGGC CCGGCCCACATAGTAAAGGA
zo-2 XM_026269460.1 ATGCGTCTGGGAATTACGGG CATTCCTGAGCCCTTTCCCT
occludin-a HQ110086.1 GGACCAGATCAACAAGCGTC TTGATGTGGCTGAGTTTGGC
claudin-b HQ656008.1 ACCGGACAGATGCAGTGTAA ATGATGCCCAGGATCCCAAT
claudin-c HQ656009.1 AGAGTACTGGACAGACGCAG GATCATCACACGGGCTTTGG
claudin-d HQ656010.1 ACTGCCACAAGATCTCCAGG GTCCCGTTCTTCAATGCAGT
claudin-e HQ656011.1 AGAAAGCAAGGCAAAGGTGG TCCCTGACGATGGTGTTAGT
claudin-h HQ656012.1 ACGGCACAAGTAATCTGGGA CCAAGATGACGGCAATGACC
y+lat2 XM_026266738.1 ATCATCACTGGCCTGGTCAA CTGTGACAATGGGCATGGAG
snat2 XM_026209285.1 TCACGATCAACACCGAGTCA ACAGCCCAAATGTGCGAAAT
pept1 XM_026265622.1 CCGTACTCATCCTCCCCATC TCTCGGTCTCTCCTTCCTCA
casr AB713518.1 AACTCCTGGTCTAACGGCAA AACACCCAACACGAAAGCTG
gprc6a XM_026283875.1 ACGCTGTGTGTTTCATGCAT GCAAACGATCACATACGGCT
t1r3 XM_026275959.1 TTCTGAGCAGCTGGAGAACA CTCCACTGGACAACGCAAAA
t1r1 XM_026268818.1 TGAATGGTCTGATGAGGGCA GTAAACACATGCTGCCACCA
mglur4 EU147495.1 CCAGTATCAGCACGACCTCT AATCGGCGTGTCATTGTAGC

β-actin, reference gene; tnf-α, tumor necrosis factor α; il-1β, interleukin 1β; il-6α, interleukin 6α; il-8, interleukin 8; il-10, interleukin 10; tgf-β, transforming
growth factor β; zo-2, tight junction protein ZO 2; y+lat2, Y+L amino acid transporter 2-like; snat2, sodium-coupled neutral amino acid transporter 2; pept1,
antigen peptide transporter 1-like; casr, extracellular calcium-sensing receptor-like; gprc6a, G protein-coupled receptor, class C, group 6, member A; t1r3, taste
receptor type 1 member 3-like; t1r1, taste receptor type 1 member 1-like; mglur4, glutamate receptor, metabotropic 4.
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2.8. Liver Transcriptome Analysis. According to the manu-
facturer’s instructions, Trizol (Invitrogen, USA) was utilized
to extract total RNA from the liver tissues. Subsequently,
Oligo(dT)-attached magnetic beads were utilized to purify
mRNA. Sequencing data were filtered with SOAPnuke, and
clean reads were mapped to the reference genome using
HISAT2. The gene expression was calculated by RNA-Seq by
Expectation–Maximization (RSEM) and differential expression
analysis was performed by DESeq2 with a Q value≤ 0.05. GO
and KEGG enrichment analyses were performed by Phyper.

2.9. Enzyme Activities. The activities of trypsin (TRY) and
chymotrypsin (CT) in the intestines were determined using
the methods described by Liu et al. [30]. Na-benzoyl-L-argi-
nine 4-nitroanilide hydrochloride (B4875; Sigma, USA) and
N-succinyl-ala-ala-pro-phe p-nitroanilide (S7388; Sigma, USA)
were used as special substrates for TRY and CT, respectively.
The protein concentration of the intestines was determined
with a protein assay kit (A045-2; Nanjing Jiancheng Bioengi-
neering Institute, Nanjing, China). Enzyme-specific activity
was expressed as units per gram of soluble protein.

2.10. Statistical Analysis. All data statistical analyses were
performed using SPSS 26.0 for one-way analysis of variance
after the homogenesis test. Duncan’s multiple tests were
applied with a significance level of P<0:05. Data were pre-
sented as meanÆ standard error (SE). Regression analysis
was performed with Graph Pad Prism version 9.1.1.

3. Results

3.1. Growth Performance. Table 4 showed that there were no
significant differences in survival and feeding rate between
different treatments (P>0:05). Lower final body weight (FBW),
specific growth rate (SGR), feed efficiency (FE), protein effi-
ciency ratio (PER), and protein retention efficiency (PRE)
were observed in the fish fed A100 diet (P<0:05), while
higher SGR was observed in the fish fed B100 diet than those
in the fish fed control diet (P<0:05). Higher FE, PER, and
PRE were observed in the fish fed A33 and B100 diets than
those in the fish fed control diet (P<0:05).

Table 5 showed no significant differences between groups
in condition factor, visceral somatic index, and whole-body

TABLE 4: Growth performance and feed utilization indices of gibel carp fed the experimental diets.

Diets 1IBW (g) 2SR (%) 3FR (%BW/d) 4FBW (g) 5SGR (%/d) 6FE (%) 7PER 8PRE (%)

Control 15.21Æ 0.05 96.20Æ 1.71 3.03Æ 0.03 59.05Æ 0.42bc 2.42Æ 0.01bc 65.42Æ 1.43b 1.91Æ 0.04b 33.67Æ 0.68c

A33 15.15Æ 0.07 96.67Æ 1.71 2.94Æ 0.03 61.38Æ 0.68ab 2.50Æ 0.02ab 69.74Æ 0.82a 2.06Æ 0.02a 35.54Æ 0.46ab

A67 15.20Æ 0.10 97.60Æ 0.50 3.00Æ 0.05 56.91Æ 0.67c 2.36Æ 0.02c 65.90Æ 1.05ab 1.92Æ 0.03b 33.90Æ 0.87bc

A100 15.18Æ 0.10 96.20Æ 2.06 3.06Æ 0.03 53.68Æ 1.02d 2.25Æ 0.04d 61.79Æ 0.99c 1.81Æ 0.03c 31.52Æ 0.41d

B33 15.20Æ 0.06 95.23Æ 3.42 2.98Æ 0.04 60.53Æ 0.60ab 2.47Æ 0.01ab 67.15Æ 0.86ab 1.95Æ 0.03ab 34.76Æ 0.71abc

B67 15.23Æ 0.12 96.67Æ 1.26 2.95Æ 0.02 60.21Æ 0.81ab 2.45Æ 0.02ab 68.30Æ 1.30ab 1.99Æ 0.04ab 35.52Æ 0.49ab

B100 15.15Æ 0.08 96.67Æ 1.71 2.94Æ 0.03 61.81Æ 1.07a 2.51Æ 0.03a 69.75Æ 0.85a 2.06Æ 0.03a 36.33Æ 0.24a

C33 15.07Æ 0.05 95.70Æ 2.48 2.95Æ 0.04 60.25Æ 0.70ab 2.48Æ 0.02ab 68.23Æ 1.96ab 2.00Æ 0.06ab 34.14Æ 0.50bc

C67 15.20Æ 0.03 95.70Æ 0.81 2.94Æ 0.05 58.98Æ 0.66bc 2.42Æ 0.02bc 67.61Æ 1.11ab 1.99Æ 0.03ab 34.44Æ 0.20bc

C100 15.26Æ 0.04 96.67Æ 0.97 2.97Æ 0.02 59.05Æ 0.41bc 2.42Æ 0.01bc 66.82Æ 0.64ab 1.98Æ 0.02ab 35.25Æ 0.36abc

Values are meansÆ SE (n= 3). Values in the same column with different letters a, b, and c are significantly different (P<0:05). 1IBW, Initial body weight (g).
2SR, Survival rate (%)= 100× (final fish number/initial fish number). 3FR, Feeding rate (%BW/d)= 100× intake of feed dry matter/(days× (final body weight+
initial body weight)/2). 4FBW, Final body weight (g). 5SGR, Specific growth rate (%/day)= 100× (ln final body weight−ln initial body weight)/days. 6FE, Feed
efficiency (%)= 100× (weight gain+ dead fish weight)/dry weight of feed. 7PER, Protein efficiency ratio= (final body weight−initial body weight)/intake of
protein. 8PRE, Protein retention efficiency (%)= 100× amount of body protein deposition/intake of protein.

TABLE 5: Body indexes and proximate composition of whole body of gibel carp fed the experimental diets.

Diets
Body indexes Proximate composition of whole body (%)

1CF (g/cm3) 2VSI (%) 3HSI (%) Moisture Ash Crude protein Crude fat

Control 3.14Æ 0.06 11.57Æ 0.37 2.87Æ 0.20b 71.18Æ 0.45 4.27Æ 0.08 16.93Æ 0.22 6.20Æ 0.39
A33 3.30Æ 0.10 13.06Æ 0.54 4.30Æ 0.47a 70.74Æ 0.09 4.40Æ 0.04 16.73Æ 0.17 6.39Æ 0.31
A67 3.17Æ 0.05 12.06Æ 0.53 3.02Æ 0.38b 71.81Æ 0.23 4.48Æ 0.02 16.92Æ 0.16 5.34Æ 0.39
A100 3.14Æ 0.07 12.20Æ 0.36 2.98Æ 0.17b 71.64Æ 0.57 4.45Æ 0.08 16.79Æ 0.28 5.67Æ 0.11
B33 3.24Æ 0.08 12.90Æ 0.66 3.15Æ 0.17ab 71.05Æ 1.25 4.35Æ 0.09 16.79Æ 0.35 5.96Æ 0.86
B67 3.24Æ 0.07 13.09Æ 0.64 3.52Æ 0.35ab 71.39Æ 1.16 4.38Æ 0.02 16.79Æ 0.37 5.72Æ 1.02
B100 3.29Æ 0.07 12.31Æ 0.61 3.46Æ 0.51ab 71.39Æ 0.67 4.27Æ 0.07 16.69Æ 0.31 5.95Æ 0.79
C33 3.34Æ 0.07 12.43Æ 0.52 3.47Æ 0.35ab 71.24Æ 0.39 4.24Æ 0.03 16.20Æ 0.24 6.40Æ 0.41
C67 3.34Æ 0.07 11.83Æ 0.45 3.06Æ 0.36b 70.96Æ 1.22 4.36Æ 0.11 16.50Æ 0.29 6.03Æ 0.64
C100 3.33Æ 0.06 13.20Æ 0.56 3.19Æ 0.55ab 71.44Æ 0.49 4.39Æ 0.06 17.15Æ 0.12 5.52Æ 0.22

Values are meansÆ SE (n= 3 for proximate composition of whole body, n> 6 for body indexes). Values in the same column with different letters a and b are
significantly different (P<0:05). 1CF, Condition factor (g/cm3)= 100× body weight/(total length)3. 2VSI, Visceral somatic index (%)= 100× (visceral weight/body
weight). 3HSI, Hepatosomatic index (%)= 100× (liver weight/body weight).
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composition (P>0:05). Higher hepatosomatic index (HSI)
was observed in the fish fed A33 diet than those in the fish
fed control, A67, A100, and C67 diets (P<0:05).

3.2. Biochemical Index.Table 6 showed that dietary treatments
did not significantly affect plasma TG content (P>0:05). The
plasma GLU content in the B33 and C groups was lower than
that in the control group (P<0:05). The plasma FAA content
in the A100 group was significantly lower, while those in the
A33 and B67 groups were higher than that in the control
group (P<0:05). The plasma CHO content in the C33 group
was higher than those in the A100, B67, and C67 groups
(P<0:05).

3.3. Apparent Digestibility Coefficient (ADC). Table 7 showed
that ADCs of dry matter (ADCDM), gross energy (ADCGE),
crude protein (ADCCP), total essential amino acids (ADCTEAA),
and total nonessential amino acids (ADCTNEAA) in the A67 and
A100 groups were significantly lower than those in the control
group (P<0:05). The ADCCP, ADCTEAA, and ADCTNEAA in
the A33 and B100 groups were significantly higher than those
in the control group (P<0:05). Compared to the control
group, the ADC of EAAs (leucine, valine, threonine, arginine)
and NEAAs (asparagine, glutamic acid, glycine, alanine, tyro-
sine, proline, cysteine) in the A100 group were significantly
decreased (P<0:05). However, the ADC of EAAs (lysine,
methionine, threonine, leucine, isoleucine, valine, phenylala-
nine, histidine) and all NEAAs in the B100 group were sig-
nificantly increased (P<0:05).

Figure 1 showed that there was no significant relationship
between SGR, FE, and PRE and the dietary essential amino
acid index (EAAI). With the increase of dietary digestible
essential amino acid index (DEAAI), SGR and FE increased
significantly (reaching the maximum value when DEAAI was
79.5%; P<0:05) and then tended to be stable, while PRE
increased significantly (increasing slowly after DEAAI reached
79%; P<0:05). With the increase of ADCCP, SGR, FE, and
PRE increased significantly (P<0:05). With the increase of
ADCDM, ADCCP increased significantly (increasing slowly
after ADCDM reached 52%; P<0:05). With the increase of
ADCTEAA, ADCCP increased significantly (P<0:05). There
was no significant relationship between ADCGE and ADCCP.

Digestible essential amino acids are bioavailable for fish.
Figure 2 showed that the ratios of dietary DEAAs to muscle
EAAs composition and EAA requirements in the B100 group
were higher in most essential amino acids and closer to the
muscle and/or requirements.

3.4. Liver Transcriptome Analysis. Figure 3 showed that a total
of 328 upregulated differentially expression genes (DEGs) and
181 downregulated DEGs were identified in the B100 group
compared with the control group. The main enriched pathways
in the B100 group compared to the control group were the
organic acid metabolic process, pancreatic secretion, and pro-
tein digestion and absorption process. Furthermore, the gene
expression of various digestive enzymes in the B100 group
was enhanced, including serine protease, chymotrypsin-like
protease, cellulase A, carboxypeptidase A, and carboxypepti-
dase B.

3.5. Protein Digestion and Absorption. Figure 4(a) showed that
the activities of intestinal TRY in gibel carp of the A67, B67,
and B100 groups increased significantly, as well as the activi-
ties of intestinal CT of the A67 and B67 groups compared to
the control group (P<0:05).

Figure 4(b) showed that the intestinal amino acid or
peptide transporter-related gene expression was affected in
the fish-fed blended proteins. Compared to the control group,
the mRNA expression of intestinal y+lat2 of the B100 group,
snat2 of other groups (excluding the A67 and A100 groups),
and pept1 of the A33, A67, B, and C33 groups was signifi-
cantly upregulated (P<0:05).

Figure 5(d) showed that the different dietary did not signifi-
cantly affect the muscle thickness of fish intestine (P>0:05).
The villus height (Vh) and the ratio of villus height to crypt
depth (V/C) of the A100 group were significantly lower than
those of the control group (P<0:05). The crypt depth (Cd) of
the B100 group was significantly lower, and the V/C of the
B100 group was significantly higher than those of the control
group (P<0:05). Figure 6(c) showed that the microvillus
length (ML) of the B100 group was significantly higher than
that of the control group (P<0:05).

3.6. Intestinal Health. Figure 5 showed that multiple proin-
flammatory genes mRNA expression in the other groups was

TABLE 6: The plasma biochemical indices of gibel carp fed the experimental diets.

Diets TG (mg/dL) CHO (mg/dL) GLU (mg/dL) FAA (μmol/mL)

Control 115.66Æ 11.68 284.38Æ 7.05ab 47.59Æ 5.21ab 86.19Æ 3.61c

A33 111.19Æ 11.40 295.83Æ 15.18ab 46.72Æ 5.66ab 108.33Æ 6.95ab

A67 141.43Æ 9.61 268.54Æ 13.97ab 51.98Æ 5.17a 87.62Æ 4.92c

A100 136.00Æ 16.86 254.17Æ 12.06b 47.62Æ 4.50ab 66.90Æ 2.51d

B33 141.75Æ 12.68 272.50Æ 14.63ab 30.48Æ 2.57c 94.52Æ 8.80bc

B67 127.80Æ 12.23 254.17Æ 12.58b 38.46Æ 5.08abc 115.48Æ 6.76a

B100 133.42Æ 23.81 263.33Æ 9.29ab 33.60Æ 3.50bc 95.24Æ 5.78bc

C33 126.42Æ 17.88 296.88Æ 16.56a 30.45Æ 6.59c 90.00Æ 5.79bc

C67 103.84Æ 16.24 254.58Æ 12.70b 30.60Æ 4.23a 86.90Æ 5.53c

C100 130.61Æ 26.32 271.25Æ 9.59ab 27.92Æ 3.40a 90.64Æ 6.02bc

Values are meansÆ SE (n= 6). Values in the same column with different letters a, b, and c are significantly different (P<0:05). TG, triglycerides; CHO,
cholesterol; GLU, glucose; FAA, free amino acid.
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significantly upregulated compared to the control group
(P<0:05), including tnf-α and il-6α in the A100, B100, and
C groups, il-1β in the C groups, and il-8 in the A, B100, and C
groups. The mRNA expression of anti-inflammatory il-10 in
the B100 group and tgf-β in the B67 and C100 groups was
significantly upregulated compared to the control group
(P<0:05), while the mRNA expression of il-10 in the A100
group was significantly downregulated (P<0:05). The fish
intestinal H&E staining images showed that there were
many lymphocytes infiltrating epithelial cells in the intestinal
tissue structure of the A100 group.

Figure 6 showed that the substitution of dietary FM by
blended proteins upregulated the mRNA expression of mul-
tiple intestinal tight junction-related genes (P<0:05), includ-
ing zo-2 in the A33, A67, B67, B100, and C groups; occludin-
a in the B100 group, claudin-b in the B and C100 groups;
claudin-c in the A33, B100, C33, and C100 groups claudin-d
in the B33, B67, and C groups; claudin-e in the B, C33, and
C100 groups; claudin-h in the B67, B100, and C groups. In
addition, the hollowing and severe curvature of the intestinal
tight junction was observed in the control group through
the intestinal electron microscope images, while no similar
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retention efficiency (PRE) in gibel carp (a). Nonlinear regression relationship between digestible essential amino acid index (DEAAI) and
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phenomenon appeared in the A100, B100, and C100 groups
(Figure 6(b)).

3.7. Intestinal Amino Acid Sensory Receptor-Related Genes
mRNA Expression. Figure 7 showed that the mRNA expres-
sion of intestinal casr and gprc6 in the B and C groups were
significantly upregulated compared to the control group
(P<0:05). The mRNA expression of intestinal t1r1 in the
A33, B67, B100, and C100 groups was significantly upregu-
lated compared to the control group (P<0:05). The mRNA
expression of intestinal t1r3 and mglur4 in the A33, A100, B,
and C groups were significantly upregulated compared to the
control group (P<0:05).

4. Discussion

Due to the numerous deficiencies of a single protein source,
there has been a growing emphasis on multiple protein

source blends as substitutes for FM in the diets for aquaculture
[31, 32]. In the present study, dietary BLEND B could fully
replace FM and showed even better growth. Better growth
performance was reported in many aquaculture species to be
achieved by dietary balanced amino acids of mixed proteins
compared to single alternative protein [33–35]. On the other
hand, the present study also showed that BLENDA was found
to obtain poor growth performance at the substitution of
100% dietary FM. Similar results were also reported in rain-
bow trout (Oncorhynchus mykiss) [36] and totoaba (Totoaba
macdonaldi) with dietary improper blended proteins [32].
These suggested that the unsuitable mixed proteins could
not meet the growth requirements of fish.

Normally, it is considered that dietary EAAI is important
of the protein quality [37]. In the present study, the growth
performance of different diets was different though similar
dietary EAAI were composed. Dietary protein quality, which
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is depended on the AA composition and digestibility, is the
dominating factor affecting growth performance of fish [38].
The present study showed that the EAA composition of the
blended proteins diets was similar to that of the FM diet, and
there was no significant relationship between fish growth and
dietary EAA composition. Therefore, dietary EAA composi-
tion was not the most important factor affecting the growth
of gibel carp. However, a significant positive correlation
was found between fish growth and ADCCP. Similar results
were found in largemouth bass (M. salmoides) [39]. It was
also found that ADCCP was closely related to ADCTEAA. And
a positive correlation between fish growth and dietary
DEAAI was observed in the present study. The ideal protein
model of the feed is closely related to the muscle or whole-
body EAA profile of the fish [40, 41]. The present study
found that the best growth was achieved at BLEND B which
could replace 100% dietary FM. The DEAA of this blended
protein was closer to muscle and requirement of EAA

composition. The present study found that dietary DEAAI
should be higher than 79.5% for maximum growth. It sug-
gested, not only the chemical composition of EAAI, but also
DEAAI is important for fish growth.

The liver transcriptome analysis showed that the main
enriched pathways were the pancreatic secretion and protein
digestion and absorption processes when dietary FM was
100% replaced by BLEND B protein. As gibel carp has no
stomach, its digestion and absorption processes are mainly
carried out in the intestine. The proteases in fish are mainly
synthesized in the liver and exist in the pancreas in the form
of the zymogen and then are secreted into the intestine and
to be activated into active trypsin which continues to activate
other proteases such as chymotrypsin [42, 43]. The present
trial showed that the 100% replacement of dietary FM by
BLEND B protein increased intestinal TRY activity. More-
over, it was found by liver transcriptome analysis that the
protease-related genes were upregulated at dietary 100%
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FIGURE 5: The relative mRNA expression of proinflammatory cytokine (a) and anti-inflammatory cytokine (b) in the intestine of gibel carp fed
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replacement of FM by BLEND B. The higher protease activ-
ity indicated that absorbable FAAs and polypeptides could
be more easily obtained in the intestinal lumen.

The FAAs and peptides in the lumen are absorbed by intes-
tinal epithelial cells through the action of nutrient transporters

located on the brush border membrane [44]. The present trial
showed that the mRNA expression of snat2, y+lat2, and pept1
was upregulated when dietary replacement FM by BLEND B to
a certain level respectively, which was beneficial to the absorp-
tion of protein by fish. In addition, intestinal morphology
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(such as villus height, crypt depth, the ratio of villus height to
crypt depth, and microvillus length) are important indicators
for evaluating intestinal absorptive function [45, 46]. It was
found that when dietary 100% replacement FM by BLEND B,
the crypt depth became shallower, the villus height to crypt
depth ratio (V/C) became larger, and the ML became longer
in fish intestines. The higher Vh, the shallower Cd, the larger
V/C, and the longer ML in the intestine indicating greater
ability of absorption [45–47]. It was also found that dietary
100% replacement FM by BLENDA reduced the Vh andV/C.
Similarly, dietary excessive single protein CAP was reported
to reduce the Vh of fish intestines [16, 48]. The decreased
Vh and V/C implied reduced nutrient absorption and growth
retardation [49]. Consistently, dietary 100% replacement FM
by BLENDA reduced plasma FAA content. It suggested proper
dietary blended protein could improve the digestion and
absorption of proteins in gibel carp, which were founded in
increased ADCCP.

The digestion and absorption of nutrients in the intestine
of fish are closely related to health function [50, 51]. On the
one hand, inflammation is an important component of intes-
tinal health, and cytokines are pivotal factors mediating
inflammatory responses [52]. This study showed that dietary
100% replacement of FM by blended proteins upregulated
the mRNA expression of intestinal proinflammatory cyto-
kines (tnf-α, il-6α, il-8, and/or il-1β). CPC, used as a single
protein to replace dietary FM, was reported to increase the
mRNA expression of intestinal proinflammatory cytokines
in hybrid grouper (Epinephelus fuscoguttatus ♀× Epinephe-
lus lanceolatus ♂) [53, 54]. It was found in the present study
that the mRNA expression of il-10 was upregulated with

dietary 100% replacement FM by BLEND B and the mRNA
expression of tgf-βwas upregulated with dietary 100% replace-
ment FM by BLEND C. The upregulation of both proin-
flammatory and anti-inflammatory cytokines strengthens
the immunity of fish [55]. CM and chitin in TMM have
been proven to have immunomodulatory influences in fish
[21, 56]. However, at dietary 100% replacement of FM by
BLEND A, the mRNA expression of il-10 was significantly
downregulated, and intestinal tissue damage occurred, show-
ing a large number of lymphocytes infiltrated into the epithe-
lial cells and the Vh became shorter. This suggested that the
inflammation development of the intestine of gibel carp was
not conducive to protein digestion and absorption. Similarly,
dietary high single protein CAP was reported to cause intesti-
nal inflammation in yellow croaker (L. crocea) [16].

Tight junctions between intestinal epithelial cells are an
important part of the formation of physical barriers, mainly
including the Occludin family, Claudin family, and ZO fam-
ily proteins [57]. This study found that dietary replacement
of FM by blended proteins upregulated the mRNA expres-
sion of tight junction-related genes and improved the tight
junction damage. It was reported that the upregulation of
tight junction-related gene expression favored the integrity
of the intestinal epithelium [58, 59]. It suggested that dietary
blended proteins of inappropriate ratios could lead to intes-
tinal inflammation of gibel carp. However, intestinal immu-
nity and physical barrier could be improved with proper
composition of blend proteins.

Fish intestinal amino acid sensory receptors were reported
to be located on the intestinal brush border membrane, mainly
including CaSR, T1R1/T1R3, GPRC6A, and mGluR4 [60–62].
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FIGURE 7: The relative mRNA expression of intestinal amino acid sensory receptor-related genes of gibel carp fed the experimental diets.
Results are expressed as meansÆ SE (n= 6), and different letters above a bar denote the significant difference between treatments (P<0:05).
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This study found that the substitution of FM by blended pro-
teins upregulated the mRNA expression of intestinal amino
acid sensory receptor-related genes in gibel carp. The amino
acid sensory receptors were mainly reported in mammals that
could sense the presence of amino acids in the intestinal lumen
and convey the expected signal that nutrients are about to be
imminently digested and systemic increase, which is conducive
to mobilizing the amino acid metabolism [63, 64]. And similar
amino acid sensing mechanism was reported in fish intestines
[62, 65]. It suggested that dietary blended proteins enhanced
the intestine’s sense of amino acids.

5. Conclusion

Dietary 100% replacement of FM by the blended TMM, CM,
CAP, and CPC at a ratio of 1 : 1:6 : 4 could improve intestine
health and protein digestibility, and growth of gibel carp.
Dietary DEAA profiles were an important factor affecting
the growth, but not EAA profiles. The dietary digestible
essential amino acids index (DEEAI) was found as an impor-
tant indicator of dietary protein quality and should be higher
than 79.5% to meet the maximum growth of gibel carp.
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