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Cinnamaldehyde is an ideal feed additive with good immune enhancement and anti-inflammatory regulation effects. However, the
anti-inflammatory regulation mechanism in fat greenling (Hexagrammos otakii, H. otakii) remains unclear. The nine targets of
cinnamaldehyde were gathered in identified by the Traditional Chinese Medicine Systems Pharmacology database and Uniprot
database, and 1,320 intestinal inflammation disease (IIF)-related proteins were screened from DrugBank, Online Mendelian
Inheritance in Man (OMIM), Genecards, and Pharmacogenetics and Pharmacogenomics Knowledge Base (PHARMGKB) Data-
bases. According to the Gene Ontology enrichment results and Kyoto Encyclopedia of Genes and Genomes pathway results,
cinnamaldehyde may regulated the responses to bacteria, lipopolysaccharide, an inflammatory cytokine, and external stimuli via
the nuclear factor kappa-B (NFκB) signaling pathway within on inflammatory network. In addition, the protein–protein interac-
tion analysis assisted in obtaining the closely related inflammatory regulatory proteins, including the C5a anaphylatoxin chemo-
tactic receptor 1 (C5aR1), transcription factor p65 (RELA), prostaglandin G/H synthase 2 (PTGS2), and toll-like receptor 4
(TLR4), which were confirmed as the bottleneck nodes of the network to be more deeply verified via the molecular docking.
Moreover, a cinnamaldehyde feeding model was established for evaluating the anti-inflammatory effect of cinnamaldehyde in vivo.
According to the current findings implied that cinnamaldehyde may play a protective role against IIF H. otakii by reducing
inflammation through the C5 complement (C5)/C5aR1/interleukin-6 (IL-6) and TLR4/NFκB/PTGS2 pathway. The study focused
on investigating the action mechanism of cinnamaldehyde on IIF through combining pharmacology and experimental verification
in vivo, which provided a fresh perspective on the promoting effect of cinnamaldehyde on IIF in fish.

1. Introduction

Fat greenling (Hexagrammos otakii, H. otakii) refers to a
species in Scorpaeniformes, predominantly distributed in
China, the Korean Peninsula, and Japan. H. otakii refers to
an economically essential species because it has rich nutritional
content and excellent quality of meat [1]. Consequently, scho-
lars are researching the rapid growth of H. otakii to adapt to
people’s dietary needs. Intensive farming systems have

emerged as a promising way to satisfy the growing demand
for the species recently. However, fish farming in high-
density intensive farming systems poses a considerable risk
of causing stress-inducing conditions, which will inflame the
intestinal tract of H. otakii and make the fish more suscepti-
ble to disease, leading to extreme mortality and substantial
economic losses [2]. In recent years, there has been a gradual
rise in the research on H. otakii and intestinal inflammation
health. Gu et al. [3] showed that dietary supplementation
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with 600mg/kg artemisinin alleviated delayed Edwardsiella-
induced intestinal immune diseases in H. otakii through the
superoxide dismutase (Mn), mitochondrial (SOD2)/hyp-
oxia-inducible factor alpha (HIF-1α)/nuclear factor kappa-
B (NFκB)/vascular endothelial growth factor A (VEGFA)
signaling pathway. Fan et al. [4] have demonstrated via mac-
roeconomics that dominant genera in the intestinal, such as
lactococcus, and boosted with age in Dorado streamers,
which in turn improved intestinal health of H. otakii. At
the same time, many methods have been adopted to control
the disease, particularly the employment of antibiotics (Eno-
mycin, flavomycin, halomycin, and bacitracin zinc) [5–7].
Nevertheless, environmental hazards, antibiotic resistance,
as well as accumulated residues, primarily restrict the devel-
opment of intensive aquaculture [8, 9]. Therefore, researchers
have paid increasing attention to searching for environmental
friendly and safe alternativemethods for improving fish intes-
tinal inflammation disease (IIF).

Phytonutrients are an antifree feed additive, with multiple
functions and health benefits in the diet [10]. Cinnamaldehyde
is a phytonutrient, which is one of the main components of
cinnamon (Cinnamomum zeylanicum). Cinnamaldehyde has
antioxidant [11], anti-inflammatory [12] and anticancer prop-
erties [13]. Cinnamaldehyde’s bactericidal mechanism has
been proven to disrupt bacterial cell membranes, cellular
metabolism, and energy production [14]. Moreover, cinnamal-
dehyde shows anti-inflammatory properties and immune-
enhancing effects by inhibiting the secretion of proinflamma-
tion cytokines from monocytes and macrophages in vitro and
in vivo, which has been used in traditional medical practice as a
supplement to strengthen the immune system and fight various
infectious diseases [12, 15]. Recently, people have paid more
and more attention to the positive effect of cinnamaldehyde
additives on animal health, and researchers have reported such
positive effect in aqua feed in various fish species including Nile
tilapia (Oreochromis niloticus) [16], Channel catfish (Ictalurus
punctatus) [17], Channa striatus [18], Tongue sole (Cynoglos-
sus semilaevis) [19], juveniles Cyprinus carpio [20], and Zebra-
fish (Danio rerio) [21]. Also, according to the study of Zhou et
al. [22], supplementing 144mg/kg of cinnamaldehyde in the
diet of grass carp (Ctenopharyngodon idella) improved IIF by
activating the NFκB signaling pathway, thereby increasing
digestive enzyme activities. Chen et al. [23] pointed out that
cinnamaldehyde can boost intestinal health and digestion levels
by reducing IIF and increasing the abundance of beneficial
bacteria. Cinnamaldehyde has the primary benefit of elevating
fish performance by relieving inflammation and enhancing
intestinal function and nutrient digestibility [24]. Although
there is evidence of a beneficial impact of cinnamaldehyde,
the precise mechanism of action in fish is not well understood.

Systems pharmacology is an emerging field of integrated
analysis through pharmacology, pharmacodynamics, and
drug target networks, the systematic of which are consistent
with the trellis coded (TCM) modulation principle. Systemic
pharmacology is major applied in medical and pharmaceuti-
cal research, investigating the mechanisms of action of
drugs in the treating human diseases [25]. However, systemic
pharmacology has been comparatively little studied in

aquaculture [3]. According to our previous experiments, cin-
namaldehyde at 600mg/kg increased intestinal digestive
enzyme activities, apparent digestibility coefficient, and the
weight gain rate in juvenile H. otakii [26]. Here, network
pharmacology is proposed for investigating the molecular
mechanisms regarding cinnamaldehyde by screening active
compounds, as well as predicting therapeutic targets. In addi-
tion, systematic pharmacological studies and experimental
validation provide the necessary data for exploring the phar-
macological effects and potential mechanisms of cinnamalde-
hyde for ameliorating IIF inH. otakii. The results of this study
will offer useful fundamental information and a point of ref-
erence for the creation of cinnamaldehyde as a precise nutri-
tional need for fish farming.

2. Materials and Methods

2.1. Putative Target Protein (PTP) and IIF Related Proteins
Screening. We searched the bioactive ingredients of cinna-
maldehyde through the Tradition Chinese Medicine Systems
Pharmacology Database and Analysis Platform (TCMSP,
https://tcmspw.com/tcmsp.php) by a search keyword of
“Cinnamaldehyde” in English, and obtained the corresponding
targets of cinnamaldehyde by molecular identity document
(ID). The target proteins’ gene names came from the
Uniprot database (https://www.uniprot.org/). We set the
“Organisms” to “Zebrafish (Danio rerio).”

The search entry for the target disease was “intestinal
inflammation.” The DrugBank (https://go.drugbank.com),
Online Mendelian Inheritance in Man (OMIM) (https://
omim.org), Genecards (https://www.genecards.org), as well
as Pharmacogenetics and Pharmacogenomics Knowledge
Base (PHARMGKB) databases (https://www.pharmgkb.org)
served for acquiring relevant targets. A relevance score ≥10
was taken as the screening criterion to retrieve active targets
from the Genecards database.

2.2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) Pathway Enrichment and the Constructions
of Network. The gene ontology (GO) and Kyoto Encyclopedia
of genes and genomes (KEGG) enrichment analysis using the
R package based on the [27]. Sum up, the core target proteins
were imported into R packages. The study conducted GO and
KEGG enrichment analysis under the assistance of cluster-
Profiler packages and org.Hs.eg.db packages provided by Bio-
conductor. The threshold of the P value was 0.05, and the
correction method was a false discovery rate (FRD). The
enrichment results were arranged in ascending order of P
value, and the top terms were selected for plotting.

Our team members entered the targets of cinnamaldehyde
and the disease targets of IIF into the VENNY 2.1.0 platform
(https://bioinfogp.cnb.csic.es/tools/venny) to acquire the inter-
secting targets. AWayne diagramwas then drawn.We imported
the obtained intersecting targets into the STRING 11.0 platform
(https://cn.string-db.org), and set the species as “Zebrafish” and
the “medium confidence” as 0.400. That was followed by the
construction of the protein–protein interaction (PPI) network.
Then, the PPI network diagram file was downloaded (PDB for-
mat). With the purpose of constructing and analyzing the
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“component-target” network diagram of cinnamaldehyde, the
downloaded file was imported into Cytoscape 3.8.2 software,
and the relationship between targets were calculated by clicking
“tools and analyze network.” The nodes represent drugs, genes,
and active ingredients, and the edges represent the correspond-
ing relationships [28].

2.3. Molecular Docking. The core target proteins of juvenile
H. otakii underwent homology modeling with the assistance
of SWISS-MODEL sever (https://swissmodel. expasy.org) in
alignment mode. The server constructed a model consider-
ing the alignment between the target and the known tem-
plates in the protein data bank (PDB; https://www.rcsb.org/)
[29]. However, its method was invalid due to the distinct
association between the sequence and the structural database
available. Accordingly, the sequence presented poor amino
acid homology. Therefore, another software Alphafold 2
(https://colab.research.google.com/github/sokrypton/Cola
bFold/blob/main/Alphafol2.ipynb#) was adopted for calcu-
lating the high-precision construction based on the target
protein sequence [30].

ChemDraw 3D software served for converting the ligands
ethyl cinnamaldehyde (Pubchem) into PDB coordinate flies
[31]. The ligand followed Lipinski’s “rule of five” which targets
drug-like properties [32]. DeepSite (https://www.playmolecule.
com/deepsite/) predicted each protein’s binding sites. The
search grid of the Auto Dock Vina 1.5.7 software assisted in
simulating the ligand entering proteins’ active site, thereby
calculating the ligand–receptor complex’s binding energy
(The information of molecular docking coordinates and
BOX: C5aR1: center x= 5.628, center y=−9.825, center z=
−8.697; size x= 69.65, size y= 69.65, size z= 69.65; p65: center
x= 11.181, center y=−0.757, center z=−7.066, size x= 126.0,
size y= 126.0, size z= 126.0; TLR4: center x= 11.181, center
y=−0.757, center z=−7.066, size x= 59.85, size y= 59.85, size
z= 59.85;and PTGS2: center x= 11.181, center y=−0.757,
center z=−7.066, size x= 97.65, size y= 97.65, size z=
97.65). The computer docking was taken into account for pre-
dicting nine docking positions specific to each ligand–protein
complex. For the preferred compound binding direction, the
binding affinity score was more negative, which shall be further
studied. We chose the value with the largest absolute value of
the binding energy as the optimal docking position for the
ligand and receptor [33]. PyMOL and LigPlot 2.2.5 served for
the visualization of the three-dimensional (3D) and two-
dimensional (2D) docking structures, respectively [34].

2.4. Experimental Diets and Design. Table 1 lists experimen-
tal diet formulation and proximate composition. Fish meal
and chicken gut meal were the primary sources of protein,
and fish oil was the primary source of fat. Experimenters
formulated six experimental diets with cinnamaldehyde at
0, 200, 400, 600, 800, and 1,000mg/kg diet, namely (CNE0,
CNE200, CNE400, CNE600, CNE800, and CNE1000), the
dose of cinnamaldehyde were based on [26]. The experimen-
tal feed preparation was based on the method described in
detail in [22]. In other words, the milled feed was placed in a
Hobart type mixer (F-26, South China University of Tech-
nology Machine Works) to produce cold extruded pellets

and the pellet strands were cut into uniform sized pellets
with diameters of 2 and 4mm. After about 24 hr of oven
drying at 43°C, polythene bags-sealed pellet feeds were
stored at −20°C.

2.5. Experiment Feeding Management and Sample Collection.
H. otakii was provided by the key laboratory of applied biol-
ogy and aquaculture of fish (Dalian, China). The experimen-
ters assigned 270 healthy juvenile fishes (6.21Æ 0.19 g) to 18
(30 cm× 75 cm) cages in the circulating groove (per disinfec-
tion) randomly, and assigned each diet to three replicate
groups of fish in a random manner. The experiment fish
underwent one week of feeding acclimation before the exper-
iment. In the feeding trial that lasted 8 weeks, fish were fed at
9:00 and 16:00 in a natural photoperiod. Experimental con-
ditions were water temperature: 10Æ 2°C, salinity: 26–30,
potential of hydrogen (pH): 7.8Æ 0.4, dissolved oxygen:

TABLE 1: The formulation the diets in H. otakii (% dry matter).

Ingredients Contents (%)

Fish meala 15.48
Chicken gut mealb 24.52
Soybean mealc 30
Caseind 14.8
Fish oile 5
Floursf 3
Corn starchg 4
Cr2O3

h 0.2
Vitamin premixi 1
Mineral premixj 1
Sodium alginatek 1
Total 100
Proximate composition (%) —

Moisture 9.92
Protein 50.55
Lipid 10.41
Ash 8.06

Note. aFish meal has a crude protein of 58% and a crude lipid of 7.2%, which
selected with Meiweiyuan Biotechnology Co., Qingdao, Shandong, China.
bChicken gut meal has a crude protein of 65.47% and a crude lipid of 14.8%,
which selected with Yufeng Feed Co., Anshan, Liaoning, China.cSoybean
meal has a crude protein of 42.5% and a crude lipid of 2.1%, which selected
with Meiweiyuan Biotechnology Co., Qingdao, Shandong, China. dCasein
has a crude protein of 86.2% and a crude lipid of 1.5%, which selected with
Meiweiyuan Biotechnology Co., Qingdao, Shandong, China. eFish oil
selected with Meiweiyuan Biotechnology Co., Qingdao, Shandong, China.
fFlours has a crude protein of 6.2% and a crude lipid of 0.9%, which selected
with Meiweiyuan Biotechnology Co., Qingdao, Shandong, China. gCorn
starch has a crude protein of 0.3% and a crude lipid of 0.1%, which selected
with Meiweiyuan Biotechnology Co., Qingdao, Shandong, China. hCr2O3

selected with McLin Biotech Co., Shanghai, China. iVitamin premix per
kilogram contains vitamin of 7,000 IU, vitamin E of 50mg, vitamin D3 of
2,000 IU, vitamin K3 of 10mg, vitamin B1 of 20mg, vitamin B2 of 20mg,
vitamin B6 of 30mg, vitamin B12 of 0.1mg, nicotinic acid of 80mg, vitamin
C of 100mg, Ca pantothenate of 50mg, folic acid of 6mg, and inositol of
80mg. jMineral premix per kilogram contains MgSO4·7H2O of 5,782mg,
FeSO4·7H2O of 1,000mg, NaCl of 3,000mg, ZnSO4·7H2O of 150mg,
MnSO4·4H2O of 50.3mg, CuSO4·5H2O of 15mg, CoCl2·6H2O of 1.2mg,
and KI of 1.5mg. kSodium alginate selected with Meiweiyuan Biotechnology
Co., Qingdao, Shandong, China.
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6.6Æ 0.7mg/L, and ammonia nitrogen content<0.1mg/L.
After the feeding trial that lasted 8-week, eight healthy fish
from each group (15 fish per tank) received the anesthetiza-
tion of 100mg/L Methane-Sulfo-nate-222 (MS-222, Sigma)
to measured the growth performance. The obtained intestine
was placed in liquid nitrogen after quick freezing (−80°C) for
gene expression assays (six fish per bucket, n= 3). On the
other hand, the fresh liver samples were obtained from two
fish from each bucket and preserved in 4% cell fixative for
preparation of paraffin sections. Percent weight gain (PWG,
%)= 100× (final weight−initial weight)/initial weight; Feed-
ing rate (FR, %/d)= feed intake in dry matter/100× ((initial
body weight+ final body weight)/2)/feeding trial days.

2.6. Dietary Proximate Composition Analysis. The nutrient
content measurements of the H. otakii diets were based on
the [35]. In general, moisture was estimated by drying to
constant weight in a constant temperature oven at 105°C,
and ash was calculated in a muffle furnace at 550°C for 5 hr.
At first, crude protein (N× 6.25) was first digested with con-
centrated sulfuric acid and subsequently determined using
the Kjeldahl method. Through petroleum ether extraction,
the crude lipid was analyzed (Soxhlet extraction).

2.7. Histopathology. The intestine histology is based on [36].
In brief, the intestines immersed in Bouin’s solution cryopres-
ervation tubes were rinsed with 75% alcohol, placed in
embedding cassettes, and dehydrated in a fully automated
tissue dehydrator (Joy’s Instruments and Equipment Co.
Shanghai, China). The dehydrator tissues were embedded in
already melted paraffin and sliced (5 μm) using a slicer (Joy’s
Instruments and Equipment Co. Shanghai, China), attached
to slides, and cauterized for 12 hr at 50°C. Staining was per-
formed in a tissue stainer, followed by sealing the sections
with neutral resin and drying at room temperature. The
microscope (Nikon YS100, Japan) was utilized for observing
the intestinal morphology and structure of the six groups.

2.8. Quantitative Real-Time PCR (qRT-PCR) Analysis. The
TRIzol method assisted in extracting RNA from the intestine
of juvenile H. otakii [37]. Ultramicro photometer (Biochrom
Technologies, Switzerland) served for assessing the total
RNA quality and quantity. All samples presented a
260/280 nm absorbance ratio in the 1.85–2.00 range. The
reverse transcription kit served for synthesizing cDNA using
total RNA as a template and the synthesized cDNA was
preserved at −20°C (Baisai Biotechnology, Shanghai, China).
Table 2 lists the primer sequences. Experimenters took
β-actin as a housekeeping gene, and primers of β-actin and
toll-like receptor 4 (TLR4) as basis [38]. The fluorescence
quantitative PCR reaction system involved 20 μL: 0.6 μL
upstream primer, 0.6 μL downstream primer, 10 μL 2×Tal-
ent qPCR PreMix, 1 μL cDNA, and 7.8 μL RNase-Free
ddH2O. A quantitative thermal cycler assisted in the qRT-
PCR analysis (Roche, Light cycler 96, Basel, Switzerland).
The cycling conditions for qRT-PCR: 3min at 95°C, 40
cycles for 15 s annealing at 60°C, as well as 5 s denaturation
at 95°C. Melting curve analysis was conducted in a

temperature increment range of 55−95°C. The final product
underwent agarose gel electrophoresis, confirming that there
were single amplicons. The six dilutions (in triplicate) were
used for generating the standard curves. The 2−ΔΔCT method
analyzed the expression data [39].

2.9. Statistical Analysis. Under the assistance of the software
SPSS 19.0, the one-way ANOVA served for experiment data
analysis. Data were in the form of meanÆ standard error of
the mean (SEM). Kolmogorov–Smirnov test and Levene’s
test, respectively helped to test the distribution normality
and the variance homogeneity of raw data. Mathematical
transformations would be employed in the case that at least
one assumption failed to be verified. The comparisons were
conducted between each treatment group and the control
group, ∗P<0:05; ∗∗P<0:01; ∗∗∗P<0:001.

3. Results

3.1. Integrated Network Model Construction and Analysis.
Figure 1 displayed the potential action mechanisms in defin-
ing the effect of cinnamaldehyde on IIF by system pharma-
cology and experimental verification together with the details
behind each step. We retrieved 12 gene targets from TCMSP
database species, and obtained nine bioactive targets by
screening the gene targets of “Zebrafish” in Uniprot software
(Figure 2(a)).

We respectively obtained 108, 29, 668, and 682 targets
from Drugbank, OMIM, Genecards, and PHARMGKB data-
bases, and obtained 167 action targets after duplicate removal.
The obtained targets corresponded to nine targets of

TABLE 2: Sequences of primers used in qRT-PCR.

Gene Primer sequence (5′–3′)

C5 - F GCGACTCCTCTGGTTGTATAG
C5 - R GAACAGGAAGTGAGCGTATGT
C5aR1 - F GAACACGAGGCCGTAGAAG
C5aR1 - R GGAGACTTCAATTCCACCAATTAC
TLR4 - F GGAATGTTGCTCAGTTGTCTCT
TLR4 - R CAGGCGAGTCAGATACTTCAGA
P65 - F GACTGCAAACACGGCTACTA
P65 - R GGCCTCATTCACATCCTTCTT
PTGS2 - F CATTGAAGGTCGGAGGACTATC
PTGS2 - R CGTCAGCAACATCTCCTTCT
MyD88 - F TAGTCGCATATGGTGAGGAAAC
MyD88 - R GTCCCGGAGCTGAAAGTAAA
TNF-α - F CTTCTACCAGTACGCACATCC
TNF-α - R AACACTCAGACAGCCATACAC
IL-6 - F GTCTGTATCTGGCCGTGATATG
IL-6 - R ATGACCGTTACCTGGAGTTTG
β - Actin CTGGTCTGGATTGGCTGTGA
β - Actin GGAAGGAAGGCTGGAAGAGG

Abbreviations. C5, C5 complement; C5aR1, C5a complement receptor 1;
TLR4, toll-like receptor 4; p65, transcription factor p65; PTGS2, prostaglan-
din G/H synthase 2; MyD88, myeloid differentiation primary response gene
88; TNF-α, tumor necrosis factor alpha; IL-6, interleukin 6.
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cinnamaldehyde (Supplementary 1). The VENNY 2.1.0 plat-
form mapped the obtained four intersecting targets at last
(Figure 2(b)).

Then, we imported the four intersecting targets into the
STRING 11.0 database, and obtained the relationship score
over 0.98. Figures 2(c) and 2(d) displayed the PPI network.
The network has four proteins with two relationships. The
four key targets are C5a complement receptor 1 (C5aR1), tran-
scription factor p65 (RELA), prostaglandin G/H synthase 2
(PTGS2), and TLR4.

3.2. Cinnamaldehyde Molecular Action Mechanism. The four
intersecting targets received GO enrichment analysis after
being imported into the R packages. The P value was taken
into account to select the GO enrichment rank entries, thereby
drawing a 2D bubble chart (Figure 3(a)). There were 833
enrichment results, and 780 (93.64%) key targets primarily
concentrated upon biological processes (BP). In the GO analy-
sis, the top 15BP terms were the response to bacterial origin
molecule, to lipopolysaccharide, to lipid, to the bacterium, to
mechanical stimulus and external stimulus, the cytokine pro-
duction regulation, positive cytokine production regulation,
inflammatory response, and cytokine production.

Four core targets between cinnamaldehyde and IIF were
imported into the R package to receive the KEGG pathway
enrichment analysis, with 62 projects generated. We drew
the 2D bubble chart by the top 15 projects with P values
(Figure 3(b)). Hence, the NFκB signaling pathway and neu-
trophil extracellular trap formation were the top two. Each
pathway has various targets (Table 3).

3.3. Molecular Docking. The four targets of C5aR1, TLR4,
RELA, and PTGS2 underwent molecular docking with cin-
namaldehyde (Figure 4 and Table 4). The binding energy of

the C5aR1 and cinnamaldehyde is −4.8 Kcalmol−1 with one
hydrogen bond and five amino acid residues in the hydro-
phobic interactions. The TLR4 interacted with cinnamalde-
hyde through the hydrophobic interactions involving one
hydrogen bond and seven amino acid residues, at a binding
energy of −4.6 Kcalmol−1. The RELA exhibited an intense
affinity with cinnamaldehyde through the hydrophobic inter-
actions involving two hydrogen bonds and nine amino acid
residues, and the binding energy was −4.7 Kcalmol−1. The
PTGS2 interacted with cinnamaldehyde through three hydro-
gen bonds and six hydrophobic interactions, and the binding
energy was −5.2Kcalmol−1.

3.4. Cinnamaldehyde Boosts Intestinal Structure of H. otakii.
Figure 5 presents the morphological structure of the intestinal
tract. Compared with the CNE0 group, the CNE200, CNE400,
and CNE600 groups showed a decreased in intestinal inflam-
matory cell infiltration, intestinal mucosal morphology tended
to be intact, and the intestinal villi were increased and densely
and compactly arranged. In the CNE800 and CNE1000 groups,
the intestinal inflammatory cell infiltration was increased, and
the intestinal villi became fewer, with an increased in the inter-
villous space, and in the CNE1000 group, some of the intestinal
villi had been detached and incomplete, and the arrangement
of the villi was disorganized.

3.5. Inflammation. Figure 6 shows the relative gene expres-
sion of the intestinal tract. The mRNA levels of TLR4, inter-
leukin-6 (IL-6), and PTGS2 in the CNE200 group presented
an obvious decreased of about 1.66, 2.30, and 2.35 folds
greater in to the control group (P<0:05). The mRNA levels
of C5aR1, TLR4, tumor necrosis factor alpha (TNF-α), IL-6,
and PTGS2 were markedly decreased by approximately, 1.87,
1.63, 1.84, 1.77, and 1.66 folds greater in CNE400 group

Targets screening

Stage 1 Stage 2 Stage 3

Experimental verification8-Week trialStay temporarily for 7 days

Control group

Fish meal

Soybean meal Chicken gut meal 200 mg/kg, 400 mg/kg, 600 mg/kg,
800 mg/kg, and 1,000 mg/kg

Experimental group

Cinnamaldehyde

Supplementation

Water temperature: 10 ± 2°C

pH: 7.8 ± 0.4
Dissolved oxygen: 6.6 ± 0.7 mg/L

Ammonia nitrogen content <0.1 mg/L
15 Fishes 15 Fishes

Salinity: 26 – 30

Vitamin
Casein

Fish oil

FIGURE 1: The flowchart of the experimental culture trial and exercise workflow diagram of in the ameliorate of intestinal inflammation
disease (IIF). Stage 1—screening and selection of targets for cinnamaldehyde; Stage 2— adding different concentrations of cinnamaldehyde
to feed theH. otakii; Stage 3—experimental validation against selected targets. All tests were performed in laboratory conditions. The relevant
targets of cinnamaldehyde and intestinal inflammation were first searched through drug and disease-related databases, followed by Wayne
plots, enrichment analysis, and PPI network analysis to establish the targets at the intersection of cinnamaldehyde and intestinal inflamma-
tion as well as their interrelationships. Subsequently, we conducted in vivo experiments by supplementation of cinnamaldehyde to the diets of
H. otakii, and finally validated the predicted targets by observing the histological morphology and structure and quantifying the inflamma-
tory genes.
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(P<0:05). The mRNA expressions of C5aR1, TLR4, myeloid
differentiation primary response gene 88 (MyD88), transcrip-
tion factor p65 (p65), TNF-α, and PTGS2 were significantly
decreased by approximately 2.59, 2.30, 2.00, 1.51, 2.46, and
3.16 folds greater in CNE600 group relative to CNE0 group
(P<0:05). The mRNA levels of TLR4, MyD88, p65, TNF-α,
IL-6, and PTGS2 were notably increased by approximately
3.57, 4.62, 5.06, 5.44, 3.49, and 2.91 folds greater in CNE800
compared with the control, and their levels were markedly
increased by approximately 1.43, 1.71, 2.98, 3.37, 4.24, 2.65,
2.52, and 2.80 folds greater in CNE1000 group in relative to

CNE0 group (P<0:05). The mRNA expressions of C5 com-
plement (C5) and IL-6 were increased by approximately 1.36
and 1.26 folds greater in CNE600 compared with the control
(Supplementary 2 and 3). In addition, the PWG and FR were
significantly increased with dietary cinnamaldehyde supple-
mentation (P<0:05; Supplementary 4).

4. Discussion

For the purpose of investigating the action mechanism of
cinnamaldehyde action on IIF inH. otakii, the study adopted
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FIGURE 2: Comparison and intestinal inflammation disease (IIF) and cinnamaldehyde targets: (a) cinnamaldehyde-target network construc-
tion, and cinnamaldehyde putative target protein (PTP) classification; (b) Venny 2.1.0 diagram of IIF and cinnamaldehyde targets; (c) the
“Cinnamaldehyde—Target—IIF” network diagram. STRING 11.0 analyzed the protein–protein interaction (PPI) network of IIF and
cinnamaldehyde targets. Network nodes and edges respectively denote proteins and protein relationship. Known interactions: light blue
and pink edges represent curated database and experimentally determined, respectively; yellow and black edges represent text-mining and co-
expression, separately; and (d) Cytoscape 3.8.2 verified PPI network.
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FIGURE 3: Enrichment analysis of pathways and processes of the core targets of cinnamaldehyde to alleviate intestinal inflammation disease
(IIF) using the R package: (a) Gene ontology (GO)—biological process (BP) functional enrichment analysis and (b) Kyoto Encyclopedia of
genes and genomes (KEGG) signaling pathway enrichment analysis. The items were sorted from high to low according to the P value of 0.05,
and the top 15 bp items were filtered out and plotted as bubble plots.
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network pharmacology, and molecular docking together
with experimental validation. Moreover, network pharma-
cology can thoroughly investigate the constituents and tar-
gets of drugs is crucial for analyzing their effects [40]. In this
study, nine drug targets were obtained by searching the
TCMSP and Uniprot databases. Cinnamaldehyde, the pri-
mary active component in cinnamon, was identified to
have four common targets with IIF. These targets, namely
C5aR1, RELA, TLR4, and PTGS2, were screened and used in
constructing the PPI network. In addition, the terms of BP
identified by hub gene GO enrichment analysis indicated the
obvious relation between the core targets and the response to
the bacterium, lipopolysaccharide (LPS), an inflammatory
cytokine, as well as external stimulus, which are consistent
with the pathological process of IIF [41–43]. Expect for that,
the KEGG pathway further demonstrated that four core tar-
gets were mainly enriched in the formation of neutrophil
extracellular trap and NFκB signaling pathway. Crucially,
the favorable outcomes of molecular docking served as addi-
tional confirmation that cinnamaldehyde exerts a robust
effect in mitigating IIF. This established a solid foundation
for subsequent fish experiments. Molecular docking verified
the ability of cinnamaldehyde to bind to these four target
proteins well. The results showed that the core target protein
PTGS2 has the strongest binding affinity for cinnamalde-
hyde. The hydrogen bonds formed by these four core target
proteins with cinnamaldehyde were more stable, allowing
the stable binding of the cinnamaldehyde ligand to relevant
proteins’ active sites. On the other hand, small molecular
ligands underwent hydrophobic interactions with protein
residues, which can enhance compound stability in the active
pocket [44]. However, molecular docking can only be used to
predict the binding state between drug molecules and certain
receptors, and cannot predict the metabolism and efficacy of
drug molecules in organisms. Therefore, molecular docking
can only play an auxiliary and guiding role, and experiments
are required to demonstrate the results of molecular docking.

The intestine can crucially affect the nutrient digestion
and disease defense in fish and takes charge of approximately
70% of fish immune function. In accordance with Dawood et
al. [45], the digestive and absorptive capacity of the fish
intestine is the primary factor directly influencing its growth
performance. In addition, numerous nutritional studies have
pointed out that a quality dietary formulation strategy can
enhance the efficient digestion of nutrients by the intestine,
thus increasing the rate of weight gain and specific growth
rate in fish [46–48]. The intestine of fish primarily takes
charge of nutrient digestion, which is also an essential barrier
to preventing antigens and pathogens from entering the fish
[49]. Especially in intensive aquaculture systems, IIF has
become one of the factors limiting fish digestion and growth.
The IIF directly reflects the degree of damage to the intestinal
mucosal barrier by pathogenic bacteria [50]. Inflammation is
accompanied by an upregulation of proinflammatory cyto-
kines and a decreased of anti-inflammatory cytokines in fish
[51]. The imbalanced activity of cytokines disrupts the rela-
tive homeostasis of the microbial community in the gut,
leading to disruption and impairment of the bacterial flora,
which diminished digestive enzyme activity and hinders
digestive capacity [52]. In the CNE200, CNE400, and CNE600
groups, the intestinal inflammatory cells were reduced, the villi
were increased and intact, and the villi were relatively dense and
compact, which improved the intestinal health. This suggested
that cinnamaldehyde can improve the intestinal structure to
alleviate IIF in H. otakii.

Studies have shown that IIF can activated the comple-
ment system disrupting the gut microbiome [53]. The com-
plement system is an important self-defense immune system,
and its activation contributes to the aggregation of macro-
phages and phagocytosis of foreign bacteria [54]. Three types
of pathways can activate the complement system classical,
alternative, and lectin [55]. The activation of the classical
pathway relies on the antigen–antibody complex. Alternative
pathways are initiated directly by surface molecules of

TABLE 3: KEGG analysis of the 15 pathways.

ID Pathway Gene

Hsa04064 NFκB signal pathway RELA, PTGS2, TLR4
Hsa04613 Neutrophil extracellular trap formation TLR4, C5aR1, RELA
Hsa05140 Leishmaniasis PTGS2, TLR4, RELA
Hsa05171 Coronvavirus disease—COVID-19 C5aR1, TRL4, RELA
Hsa04936 Alcoholic liver disease TLR4, RELA, C5aR1
Hsa04620 Toll-like receptor signaling pathway TLR4, RELA
Hsa05222 Small cell lung cancer PTGS2, RELA
Hsa05133 Pertussis TLR4, RELA
Hsa05235 PD-L1 expression and PD-1 checkpoint pathway in cancer TLR4, RELA
Hsa05134 Legionellosis TLR4, RELA
Hsa05321 Inflammatory bowel disease TLR4, RELA
Hsa04657 IL-17 signaling pathway PTGS2, RELA
Hsa04625 C-type lectin receptor signaling pathway PTGS2/RELA
Hsa05146 Amebiasis TLR4/RELA
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FIGURE 4: The three-dimensional (3D) and two-dimensional (2D) schematic diagrams of molecular docking models, active sites, and binding
distances of the core target proteins of cinnamaldehyde molecules in H. otakii, as well as the name of amino acid residues and hydrogen
bonding positions. The ray tracing of: (a) Cinnamaldehyde with C5a complement receptor 1 (C5aR1), (b) cinnamaldehyde with toll-like
receptor 4 (TLR4), (c) cinnamaldehyde with prostaglandin G/H synthase 2 (PTGS2), and (d) cinnamaldehyde with transcription factor p65
(p65), respectively.
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bacteria and fungi. The lectin pathway involves the binding
of mannose-binding lectin proteins to the carbohydrate
structure of bacteria, thereby activating serine proteases,
and binding to complement proteins [56, 57]. All three path-
ways result in the activation of C5 and the formation of a
membrane attack complex, resulting in the cleavage of the C5
to C5a complement (C5a) [58]. Among complement-activated
products, C5a, among complement-activated products, stands
out as one of the most potent inflammatory peptides with a
diverse array of functions. C5a fragments are powerful proin-
flammatory factors produced during complement activation
and exert their biological functions through interaction with
the specific receptor C5aR1 [59]. Numerous studies have indi-
cated that blocking the C5a/C5aR1 signaling pathway can
prevented the occurrence of IIF and enhanced survival, dem-
onstrating the importance of C5a/C5aR1 in regulating the
pathological process of IIF [60–62]. Then, the activation of
the C5a/C5aR1 signaling pathway promotes neutrophil and
macrophage infiltration in perivascular adipose tissue, and
induced pro-inflammatory M1 macrophage polarization and
inflammatory cytokine expression such as IL-6 [63, 64]. IL-6 is
amajor proinflammatory cytokine [65]. According to Jain et al.
[66], which findings illustrated that C5a directly stimulated IL-
6 generation in colonic epithelial cells, and suppression of C5a
in infected wild-type mice results in defective epithelial IL-6
output and exacerbates inflammation. Additionally, TLR4, a
member of the toll-like receptor family, is expressed on the

cell surface of macrophages and neutrophils [67]. TLR4 is likely
the key mediator of lipopolysaccharide (LPS) signaling in IIF.
During intestinal inflammation, LPS interacts with TLR4 in
neutrophils and macrophages [68–70]. After recognizing,
pathogen-related molecular patterns (LPS), TLR4 is connected
to initiation signals through its cytoplasmic tail toll/IL-1R
(TIR) structure. This domain is capable of recruiting the con-
vertor protein myeloid MyD88, which activates the NFκB
signaling pathway as well as promotes downstream proin-
flammatory cytokines (TNF-α and PTGS2) to be released
[71–73]. The p65 is a combined form of NFκB protein [64],
which crucially impacts IIF pathogenesis [74, 75]. TNF-α is
the earliest endogenous mediator of inflammatory response.
Studies have shown that endotoxemia induces intestinal
mucosal injury as well as chronic inflammatory bowel disease
by upregulating TNF-α expression [65]. PTGS2 is one of the
key factors in the cellular response to inflammation. Silencing
of PTGS2 expression has been reported to attenuate LPS-
induced inflammatory responses by negatively regulating
the NFκB signaling pathway [76]. Here, the supplementation
of CNE at 600mg/kg lowered the mRNA levels of C5, C5aR1,
TLR4, MyD88, p65, TNF-α, IL-6, and PTGS2 in H. otakii
intestinal tract, which is the similar to the finding of [22].
Hence, cinnamaldehyde could improve IIF in H. otakii. Nev-
ertheless, in vivo experiments in fish to validate the targets
predicted by network pharmacology are not comprehensive
enough. Therefore, in vitro experiments and further

TABLE 4: The results of molecular docking.

Gene Binding energy (KJ/mol) Hydrogen Amino acid residues

C5aR1 −4.8 1 5
RELA −4.7 2 9
PSTG2 −5.2 3 6
TLR4 −4.6 1 7

FIGURE 5: Dietary cinnamaldehyde boosted in intestinal healthy. The intestinal histopathology for hematoxylin–eosin (H&E) staining:
(A) CNE0 group; (B) CNE200 group; (C) CNE400 group; (D) CNE600 group; (E) CNE800 group; and (F) CNE1000 group. The arrows
in the figure indicate damage to the intestinal villi, intestinal wall sites. Red arrows: intestinal villi; black arrows: intervillous space.
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validation of target function will be the focus of future
research by nutritionists.

5. Conclusion

To conclude, this current work indicates the possible action
mechanism of cinnamaldehyde in IIF via a network pharma-
cological approach, that assists in evaluating the protective

mechanism of cinnamaldehyde on H. otakii intestine from a
theoretical perspective (C5/C5aR1/IL-6 and /TLR4/NFκB/
PTGS2; Figure 7). The supplementation of cinnamaldehyde
at 600mg/kg in diets significantly improved the anti-
inflammatory ability and promoted digestion and growth
(Data not present). In summary, dietary cinnamaldehyde is
an effective additive to promote the intestinal health of
H. otakii as well as improve IIF. This study reveals for the
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FIGURE 6: Impacts of dietary cinnamaldehyde on inflammation-related gene expression in H. otakii intestine: (a) C5, C5 complement; (b)
C5aR1, C5a complement receptor 1; (c) TLR4, toll-like receptor 4; (d) MyD88, myeloid differentiation primary response gene 88; (e) p65,
transcription factor p65; (f ) TNF-α, tumor necrosis factor alpha; (g) IL-6, interleukin 6; and (h) PTGS2, prostaglandin G/H synthase 2. The
identical indexes with ∗ and ∗∗ had obviously different mean values (P<0:05, P<0:01), and the “not significantly (ns)” denotes that there
were no remarkable differences between groups.
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first time the underlying mechanism of action of cinnamal-
dehyde in improving the IIF of H. otakii by means of sys-
temic pharmacology, molecular docking, and experimental
validation, which is significant for the healthy culture of
H. otakii streamers and the promotion of new feed additives
in the future.
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