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Aquaculture is a crucial industry that can help meet the increasing demand for aquatic protein products and provide employment
opportunities in coastal areas and beyond. If incorrectly manage, traditional aquaculture methods can have negative impacts on the
environment and natural resources, including water pollution and overuse of wild fish stocks as aquafeed ingredients. Biofloc technol-
ogy (BFT) may offer a promising solution to some of these challenges by promoting a cleaner and sustainable production system. BFT
converts waste into bioflocs, which serve as a natural food source for fish and shrimp within the culture system, reducing the need for
external inputs, such as feed and chemicals. Moreover, BFT has the potential to improve yields and economic performance while
promoting efficient resource utilization, such as water and energy. Despite its numerous advantages, BFT presents several challenges,
such as high energy demand, high initial/running costs, waste (effluent, suspended solids, and sludge) management, opportunistic
pathogens (vibrio) spread, and a lack of understanding of operational/aquatic/microbial dynamics. However, with further training,
research, and innovation, these challenges can be overcome, and BFT can become a more widely understood and adopted technique,
acting as an effective method for sustainable aquaculture. In summary, BFT offers a cleaner production option that promotes circularity
practices while enhancing performance and economic benefits. This technique has the potential to address several challenges faced by
the aquaculture industry while ensuring its continued growth and protecting the environment. A more broad BFT adoption can
contribute to meeting the increasing demand for aquaculture products while reducing the industry’s negative impact on the environ-
ment and natural resources. In this context, this review provides an overview of the advantages and challenges of BFT and highlights key
technical, biological, and economic aspects to optimize its application, promote further adoption, and overcome the current challenges.

1. Introduction

Over the last 30 years, aquaculture has experienced unprece-
dented growth, currently accounting for more than half of
the world’s fish needs and playing a crucial role in food
security, income generation, and economic development
[1, 2]. As a result, aquaculture has emerged as a significant
driver of economic growth and poverty reduction in devel-
oping countries, with the potential to generate vital income

through small-, medium-, and large-scale commercial aqua-
culture [3–5]. However, to meet the growing demand for safe
and high-quality aquatic protein, especially fish and shrimp,
aquaculture requires appropriate production systems capable
of sustaining higher stocking densities, maintaining acceptable
water quality levels, ensuring optimal health and performance,
while addressing biosecurity and environmental concerns [6].
In conventional intensive systems, such as earthen ponds, high
water exchange regimes are necessary to maintain water
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quality, and feed inputs are heavily relied upon [7–10]. Unfor-
tunately, the untreated effluent from these systems often con-
tains high levels of pollutants such as nitrogen and phosphorus
compounds, leading to poor surrounding environmental con-
ditions [11]. Once the local ecosystem carrying capacity is
surpassed, disease outbreaks often occur in densely populated
aquaculture areas [12, 13].

Given the challenges associated with conventional aquacul-
ture production systems, biofloc technology (BFT) presents a
promising alternative to address critical aspects of water effi-
ciency, environmental impact, and feed costs [14–16]. BFT is
known for its high-water efficiency, for instance, (i) reducing
water consumption throughout the production cycles by up to
90%, with significant reduction in effluent discharge into the
environment; (ii) promoting suitable water quality parameters
and microbial profile; (iii) possibility of postharvest mature bio-
floc water reuse [17–22]. Aquaculture success depends on vari-
ous biological, technical, and economic factors [23], and BFT is
considered as a viable alternative addressing issues such as land
use, water consumption, and feeding costs [24]. Depending on
the species, feed and feedmanagement, rate of biofloc consump-
tion, and carbohydrate/water supplement costs, BFT might
reduce production costs by 33% for green tiger shrimp (Penaeus
semisulcatus) and 10% for tilapia [25, 26]. Unfortunately, studies
assessing the economic aspects of BFT and other production
systems are still scarce and create uncertainty when adopting
new technologies. The initial response and acceptance of BFT
within the broad aquaculture community was slow, but it has
increased over the past 2 decades. For instance, lack of successful
commercial examples [27], higher running costs (e.g., electricity
for aerators and pumping) compared to traditional pond-based
systems, lack of knowledge, skilled staff, and relevant informa-
tion regarding the quality and sensorial attributes of postharvest
BFT products, among others, are examples that kept farmers
and investors skeptical toward BFT adoption. In addition, semi-
nars and training courses carried-out in key institutions and
research centers, especially in Brazil, USA, and Mexico, enabled
several professionals to spread BFT knowledge, helping to
implement commercial farms worldwide [28]. It is important
to highlight that successful examples of BFT adoption at a com-
mercial scale can be found [27, 29]. In this context, this review
provides a science-based snapshot of the advantages and chal-
lenges of BFT, bringing key management, biological and eco-
nomic insights that require further attention, aiming to optimize
BFT application and overcome the current challenges.

2. Understanding Biofloc Technology

Aquatic environmental factors such as temperature, pH, dis-
solved oxygen, salinity, and nutrient levels can have signifi-
cant effects on the growth and survival of aquatic organisms
[13]. Aquaculture’s success is dependent on developing sus-
tainable production systems and management practices that
prioritize environmental and biological well-being, as well as
ethical and biosecurity considerations. Achieving sustain-
ability in aquaculture means identifying appropriate social,
environmental, and financial ratios. In this context, BFT is
a microbial-based production system, in which in situ

microorganisms present three main roles: (i) water quality
maintenance, recycling undesirable toxic N-compounds via
key heterotrophic and chemoautotrophic microbial pro-
cesses; (ii) natural food source provision, decreasing feed
conversion ratios (FCR); and (iii) pathogen competition, act-
ing as a natural probiotic [30]. Microorganisms such as bacte-
ria, fungi, algae, and/or protists accumulate due to restricted
water exchanges and proper water movement [31]. These pro-
prieties have been shown to minimize environmental impacts
[32] with no or minimal effluent to the natural surroundings
[33]. To produce microbial aggregates, balancing carbon and
nitrogen is necessary, with traditional aquafeeds being the
main source of nitrogen and carbon, and affordable products
such as sugar cane molasses and grains, as well as inorganic
fertilizers, providing the remainder of carbon fraction and
other key nutrients [34, 35]. Proteinaceous microbial-based
food source containing vitamins, lipids, and carbohydrates is
produced in situ [36] and can reduce aquafeed consumption
by up to 20% [33, 37, 38]. This positive impact on FCR ratios
associated with improved growth and survival [39] is crucial
aspects for the system’s feasibility, contributing to reduce one
of the most significant expenses in aquaculture production
[18], while boosting circularity and enhancing green creden-
tials [30]. BFT has been implemented in several countries and
regions worldwide, including Vietnam, Brazil, the United
States, Iran, Belize, Indonesia, Thailand, Malaysia, Australia,
Tahiti, South Korea, Italy, China, as well as Latin and Central
American countries [40–43], although levels of adoption and
success can vary drastically [44]. In terms of species selection,
BFT is most suitable for those that (i) can tolerate a relatively
higher levels of N-compounds suspended solids concentra-
tions in the water; (ii) possess morphological adaptations to
capture and/or filter the microbial particles; and (iii) support
crowding conditions [45]. However, with R&D advances and
emerging of hybrid techniques (e.g., BioRAS), the culture envi-
ronment has been greatly improved with consistent water
quality [46], allowing more broad species and culture phases
to be explored in BFT (e.g., hatchery Litopenaeus vannamei
[47], Oreochromis niloticus [48]).

Pacificwhite shrimp andNile tilapia have beenwidely used as
benchmarks in BFT [18, 49]. However, the successful application
of biofloc systems has also been observed in other species such as
African catfish (Clarias gariepinus) [9], mullet [50], freshwater
prawns (Macrobrachium rosenbergii) [38], black tiger shrimp
(Penaeus monodon) [51], banana shrimp (Penaeus merguiensis)
[52], giant gourami (Osphronemus goramy) [53], common carp
(Cyprinus carpio) [16], rohu (Labeo rohita) [54], and bluegill
(Lepomis macrochirus) [55]. In addition to these individual spe-
cies, an integrated approach such as polyculture, combining spe-
cies like catfish and tilapia [56], aquaponics or FLOCponics [57],
and integrated multitrophic aquaculture (IMTA) [11] has also
shown promising results in recent developments.

3. What Goes Right?

3.1. Biosecurity, Natural Probiotic Effect, and Immune
Enhancer. Closed aquaculture systems are becoming increas-
ingly popular for biosecurity reasons. These systems often
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provide environmental and social licensing benefits over
conventional pond-based extensive and semi-intensive sys-
tems [58]. Zero or limited water exchange and reuse of water
in closed techniques significantly reduce the chances of intro-
ducing external pathogens into the system. In a microbial-
based BFT condition, bacterial flocs are typically controlled by
cell-to-cell communication via signal molecules in a process
called quorum sensing [45, 59]. Quorum sensing regulates the
expression of genes encoding for the production of lytic
enzymes and toxins in biofilms when a certain cell density
is reached [60, 61]. Disrupting cell-to-cell communication in
flocs through inactivation of the signaling molecules can
reduce the formation of toxic biofilms [61]. Some bacterial
communities control virulence factor expression by quorum
sensing through natural disruption of cell–cell communica-
tions, thereby protecting cultured animals from pathogenic
bacterial infections [61, 62]. BFT appears to offer a natural
alternative to conventional antibiotics, which may have ecologi-
cal consequences [61, 63]. Within the biofloc system, accumu-
lation of bacterial storage compound poly β-hydroxybutyrate
(PHB) normally occurs [64] which possesses antibacterial
activity and acts as a preventive curator against vibriosis
[65]. In addition, the competition for space and substrate
are alsomechanisms behind the probiotic effect of BFT, which
suppress the multiplication of pathogenic bacteria [44]. Stud-
ies show that biofloc has probiotic properties [30, 66, 67] and
improves fish/shrimp immunity [68, 69]. Probiotics have
gained significant attention in aquaculture as a tool to improve
water quality and the performance of farmed animals [70]. The
direct use of probiotics in aquaculture systems has been shown
to reduce the concentration of toxic nitrogenous compounds,
such as ammonia, nitrite, and nitrate, as well as reducing the
level of organic matter and pH [71]. Furthermore, probiotics
have been shown to reduce the level of pathogenic micro-
organisms and modulate the microbial community of water
and sediment, leading to a more stable and balanced eco-
system [71, 72].

Studies have shown that the use of probiotics in biofloc
systems can enhance the production and health of aquatic
animals [73, 74]. For example, the use of Bacillus sp. in BFT
systems has been shown to improve the growth performance
and disease resistance of Nile tilapia [74, 75]. Similarly, the
use of Lactobacillus plantarum in biofloc systems has been
shown to improve the growth performance and survival rate
of Pacific white shrimp [76]. Thus, probiotics can be used
directly in aquaculture and BFT systems to improve water
quality by reducing the concentration of toxic nitrogenous
compounds, reducing the level of organic matter and pH,
reducing the level of pathogenic microorganisms, and mod-
ulating the microbial community [70, 73]. Furthermore, the
use of probiotics can improve the survival rate and growth
performance of farmed animals by enhancing gut health,
immune response, disease resistance, and feed utilization
efficiency [30, 42]. Several studies have suggested that dietary
biofloc has the potential to improve the cellular immune
response and antioxidant status of cultured shrimp due to
its rich content in natural microorganisms and bioactive
compounds [77, 78]. Overall, these findings suggest that

BFT can offer nutritional and health benefits for cultured
aquatics.

3.2. Feed Optimization and Growth Performance. Aquacul-
ture feed is a crucial factor in ensuring the production and
profitability of aquatic systems. Typically, feed costs make up
a significant portion, ranging from 40% to 60%, of the total
production costs in intensive aquaculture operations [79].
Therefore, finding strategies to reduce feed costs becomes
essential for improving profitability [45]. Effective feed man-
agement, including enhancing the FCR, is key to increasing
production efficiency.

One promising approach to reducing feed costs is the
implementation of BFT. In BFT systems, microorganisms
present in the water are continuously grazed or filtered by
shrimp and fish, leading to positive impacts on FCRs [80].
BFT has proven to be successful in reducing feed expenses
and alleviating pressure on wild fish stocks by reusing pro-
tein found in the feed [33]. Additionally, BFT systems gen-
erate microalgae and bacteria with high nutritional value,
which can replace up to 100% of the protein derived from
fishmeal [81]. By incorporating BFT, up to 29% of the daily
food requirement of Pacific white shrimp can be replaced,
resulting in improved FCR [82]. The utilization of BFT also
benefits producers and consumers by enabling them to con-
sume more animal protein, thus contributing to improved
human welfare. Furthermore, studies have shown that in BFT
systems, protein utilization is twice as efficient compared to
conventional systems, leading to reduced FCR and increased
growth rates [39].

In a study conducted by Jatobá et al. [83], it was found
that biofloc culture with a density of 250 shrimp/m3 resulted
in higher yield, reduced protein usage, and lower feed costs
compared to traditional pond-based culture with a density of
15 shrimp/m2. Similarly, Gaona et al. [84] reported that the
FCR for L. vannamei decreased from 1.49 in conventional
water-based culture to 1.23 in BFT. Deb et al. [85] also found
that the FCR for L. rohita decreased from 2.78 in conven-
tional water-based culture to 1.69 in BFT. Haraz et al. [86]
compared the FCR of Nile tilapia in different systems and
reported values of 1.89, 1.80, 1.54, and 1.41 in conventional
water-based culture, conventional water-based culture with
Bacillus sp. probiotic, BFT with a carbon-to-nitrogen ratio of
10, and BFT with added Bacillus sp., respectively. Further-
more, BFT has been shown to enable the reduction of dietary
protein in some cases. For example, studies by Shao et al. [87]
and Olier et al. [88] found that BFT allowed for a decrease in
dietary protein for shrimp (L. vannamei). Similar results were
observed for Nile tilapia (O. niloticus) in studies conducted by
Azim and Little [89], Tubin et al. [90], and Durigon et al. [91],
as well as for pacu fish (Piaractus mesopotamicus) in a study
by Sgnaulin et al. [92].

There are several strategies for optimizing feed and feed-
ing in aquaculture. One approach is the use of alternative
feed ingredients, such as pizzeria by-products and insect
meals, under biofloc conditions [93, 94]. Another strategy
involves feed deprivation [95]. Additionally, premium pro-
tein ingredients can be replaced with “biofloc meal” [96, 97].
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This meal can be produced in bioreactors or collected directly
from shrimp/fish ponds and tanks [28]. Table 1 presents some
of the studies conducted on the substitution of feed with bio-
floc. Numerous studies have been conducted on the substitu-
tion of feed with biofloc, with findings suggesting that feed
input can be reduced by up to 50% by promoting bioflocs
within culture units [30, 97, 107]. For example, a study by
Rani et al. [106] found that microfloc meal (MFM) can effec-
tively replace fishmeal as a partial protein source for Cirrihinus
mrigala, without compromising performance. This suggests
that MFM could be a sustainable protein source, reducing
reliance on fishmeal, and alleviating pressure on natural fish
stocks. Moreover, the use of MFM could help address the issue
of effluent disposal in aquaculture operations. Overall, find-
ing renewable and sustainable alternatives to fishmeal is an
environmentally friendly and socially responsible strategy
for achieving sustainability in the aquaculture sector. The
results of this study highlight the potential of MFM as a viable
alternative protein source for fish feeds, contributing to the
development of a more sustainable aquaculture industry.

Enhancing the growth performance and survival rates are
crucial to reduce production costs and optimizing profits
[108]. The outcomes of BFT regarding different performance
measures such as survival rate, production, stocking density,
initial and final weight, and rearing period are demonstrated
in Table 2. For instance, in study by Khanjani et al. [125]
found that the survival rate of juvenile tilapia in biofloc treat-
ments was significantly higher (98.2%) than in clear water-
based (95.35%). Similarly, higher survival rate was found in
biofloc-based L. vannamei culture versus clear water (CW)
exchange systems [39, 126]. In terms of growth, aquatic spe-
cies reared in BFT generally displayed superior performance
compared to conventional CW or pond-based systems. Azim
and Little [89] found the net tilapia production was 45%
higher in the BFT tanks than in the control tanks confirming
the utilization of bioflocs by fish as food source. In study by
Ray et al. [127] observed shrimp (L. vannamei) production
in biofloc systems increase by a remarkable 41% compared to
conventional CW systems. The microorganism community
also enhances the digestive system, leading to growth increases
of up to 15% in L. vannamei and reductions in FCRs of up to
40% [39]. The profitability and return on investment in aqua-
culture are greatly influenced by biological parameters such
as survival rate, growth performance, and stocking density
[45, 128, 129]. Improving growth performance and survival
rates is crucial for reducing production costs and maximiz-
ing profits. Posadas and Hanson [108] developed a set of
financial and economic performance measures that incorpo-
rate biological parameters, capital costs, variable costs, and
shrimp prices. These measures include yearly cash flows,
net present values, and internal rates of return. Survival rate
plays a critical role in cost returns and profitability, as it
directly impacts total production [129]. The profitability of
shrimp and fish farming depends on three key factors: pro-
duction level, production cost, and themarket price of shrimp
and fish [130]. Market demand also needs to be considered by
farmers to ensure the feasibility of their operations. According
to Poersch et al. [79], the long cycle (LC) treatment was found

to bemore profitable than other treatments, primarily due to a
higher final average weight, productivity, selling price, and
similar fixed costs. Even under subtropical conditions, the
use of one or two crops per year does not significantly affect
shrimp productivity in lined ponds, and the LC treatment
proves to be more profitable due to the larger size of the
shrimp produced. In Poersch et al.’s [79] study, despite a
lower survival rate of 68%, the LC treatment resulted in higher
gross income. This was attributed to the increase in produc-
tivity resulting from a larger average weight (26 g), which
commands higher market prices.

Aquatic animal survival rates greatly impact total produc-
tion. In the laboratory, tilapia juveniles have been successfully
produced in BFT at an initial density of 1,250 fish/m3.
The survival rate is 96%, and the biomass ranges from
15.12 [19] to 37 kg/m3 [131]. By using biofloc as a supple-
mentary food, it is possible to decrease the amount of die-
tary protein needed for tilapia juveniles in BFT from 36% to
28% of their body weight. This reduction does not affect the
animals’ performance [132]. Since feed cost is a significant
expense, reducing protein levels is crucial for maximizing
profitability.

3.3. Environmental Attributes and Economics.Aquaculture efflu-
ent is a major source of organic carbon, suspended solids,
phosphates, nitrogenous species (nitrates, nitrites, and ammo-
nia), chemical oxygen demand, and biological oxygen demand.
This poses a serious threat to aquatic ecosystems worldwide, as
it can negatively impact surrounding waters and groundwater
[133]. However, according to a recent study by Jones et al.
[134], global wastewater production is estimated to be 359.4
× 109m3/year. Of this, 63% (225.6× 109m3/year) is collected,
and 52% (188.1× 109m3/year) is treated. It is estimated that
48% of global wastewater production is released untreated into
the environment, a much lower figure than previous estimates
of about 80%. The study also found that approximately 40.7×
109m3/year of treated wastewater is intentionally reused. The
per capita production, collection, and treatment of wastewater
vary significantly across different geographic regions and levels
of economic development. For instance, just over 16% of the
global population in high-income countries produces 41% of
global wastewater. The Middle East, North Africa, and West-
ern Europe have the highest rates of treated-wastewater reuse,
at 15% and 16%, respectively, despite comprising only 5.8%
and 5.7% of the global population [134]. Environmental pol-
lution costs have been evaluated using the material balance
method and shadow price method. The shadow price refers
to the price at which various economic resources should be
obtained under optimal allocation of production. Natural
resources are priced based on the marginal productivity of
resource shadow prices. Scarce resources command a higher
price than those that are abundant. In the case of BFT, water
exchange is limited, thereby eliminating waste and associated
environmental costs [113]. The use of BFT can significantly
reduce water consumption in aquaculture, as it uses minimal
or zero water exchange during production [17]. For example,
M. rosenbergii and O. niloticus in BFT were reported to con-
sume 6.8 and 0.071m3 of water per kg of production,
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respectively [135, 136]. The water consumption of L. vannamei
grown in saltwater using BFT is also reported to decrease
(0.098–0.169m3 of water per kg of production) [20]. Com-
pared to traditional freshwater aquaculture, which uses 16.9
m3 of water per kg, BFT farming techniques are both environ-
mentally friendly and increase productivity [137]. BFT has
been shown to reduce water consumption even further when
the same water is reused in multiple culture cycles [20]. In
addition to reducing water consumption, BFT is more produc-
tive than traditional fishponds and requires a smaller area of
production [116, 138]. This makes it a more convenient and
closer-to-urban-centers option.

Compared to conventional water treatment technologies
in aquaculture production, BFT provides an economic
advantage and is also viewed as a sustainable water treatment
technique [33, 135]. BFT requires less maintenance, pro-
duces fewer secondary pollutants, and can reduce water
use costs by 30% [33, 34]. Furthermore, BFT can be used
in regions with water restrictions, as it reduces the water
demand of juvenile tilapia by up to 12 times [139]. Therefore,
the use of BFT could be an ideal technology for aquaculture
far from water bodies [115]. Table 3 provides a comparison
of the water consumption rate between the biofloc system
and the conventional system. Understanding the water usage
in aquaculture systems is crucial in terms of minimizing the
environmental impact and optimizing resource utilization.
Therefore, the results presented in Table 3 can be valuable
for developing sustainable aquaculture practices that con-
serve water resources and reduce the ecological footprint of
aquaculture operations. Moreover, BFT can maintain water
quality at adequate levels that support high productivity (>5
k and >20 kg/m3 for shrimp and fish, respectively) and sur-
vival rates (e.g., >90%, 92%, 101%). BFT offers a solution to
water quality issues in aquaculture by utilizing minimal
water exchange and bacterial activity to break down residual
organic matter [17, 141]. Additionally, the water used after
shrimp and fish harvest can be reused multiple times as a
microbial inoculum for subsequent cycles. This not only
enhances water quality and performance but also reduces
water consumption and waste generation [20, 21]. Studies
have demonstrated that applying BFT to catfish production
can reduce water consumption by up to 14 times [142].
Overall, by maintaining water quality, minimizing water
usage and waste generation, and improving feed efficiency
to reduce costs, BFT proves to be economically feasible,
environmentally friendly, and socially accepted [143–146].
BFT allows for intensive and superintensive shrimp produc-
tion in smaller areas with high stocking densities ranging
from 100 to 450 shrimp/m3 [147]. The high stocking density
of BFT requires constant monitoring and maintenance of
water quality parameters [148–150]. Despite the significant
investment required to implement and operate BFT systems
[151], it offers environmental, sanitary, and economic
advantages [111, 117, 152–154]. Stocking density has a direct
impact on production and profitability [120, 155, 156]. BFT
systems allow for greater production with smaller cultivation
areas and improve the efficiency of production factors, thus
increasing profitability [115, 148]. In a study conducted by

Nazarpour and Mohammadiazarm [155], they examined the
impact of various stocking densities of common carp in the
biofloc system. The results showed that the fish exhibited
optimal performance when stocked at densities of up to
250 fish/m3 in the biofloc system. Mauladani et al. [157]
found that a net profit of US$ 13.81/m2 was achieved using
nanobubbles in a superintensive BFT production system
with a density of 400 shrimp/m2 and an average final weight
of 10.10 g. According to Browdy et al. [158], profitability can
be increased by 57% and 45% through a 20% increase in
stocking density and growth rate, respectively. Consequently,
the aquaculture industry has experienced growth due to
intensified practices, species diversification, and the imple-
mentation of innovative technologies [159]. Table 2 displays
the stocking densities used in various aquaculture systems,
revealing that higher stocking densities can result in
increased production rates in biofloc systems. This finding
underscores the importance of stocking density management
in optimizing production efficiency in biofloc systems. By
carefully managing stocking density, aquaculture practi-
tioners can enhance production rates, while minimizing
the ecological footprint of their operations. Biofloc systems
have become more profitable due to their reduced culture
period and higher growth and survival rates [38, 89]. Table 4
presents a summary of various economic studies that have
been conducted to assess the costs of implementing biofloc
systems in aquaculture. The studies have explored different
cost components, such as design, labor, energy consumption,
feed, larvae, and fingerlings. The findings of these studies can
provide valuable insights into the economic feasibility of
adopting BFT in aquaculture operations. This information
can help aquaculture practitioners make informed decisions
about whether to implement biofloc systems and how to
optimize their operations to maximize economic benefits
while minimizing costs.

To support sustainable aquaculture developments in the
future, environmental costs need to be considered. Currently,
the government is primarily responsible for these costs, not
farmers. However, sustainable aquaculture and environmen-
tal protection may be undertaken by farmers themselves in
the future. Environmental costs include water resource costs,
feed costs, and pollution costs [162, 163]. The environment
and feed supply are two of the main factors that can affect the
growth and development of the aquaculture industry [17, 164].
Therefore, farmers aim to reduce production costs, increase
profitability, and minimize environmental impact.

3.4. Reproduction Performance and Carcass Quality. Studies
have shown that BFT can enhance the nutritional quality,
reproductive performance, and early larval development of
shrimp and fish [165–168]. Biofloc is a significant source of
dietary lipids, including phospholipids and essential fatty
acids, that are important for reproduction and embryonic
and larval development in various species of aquatic organ-
isms, such as Litopenaeus stylirostris [169], F. duorarum
[170], L. vannamei [170], F. brasiliensis [171], O. niloticus
[168, 172], C. carpio [173], and red tilapia [174]. The nutri-
tional status of the female shrimp is an important factor that
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can influence reproductive performance and embryonic devel-
opment [175, 176]. Biofloc can contribute to the nutrition of
shrimp and fish by providing a variety of nutrients, including
protein, lipids, fatty acids, and vitamin C [33, 165, 177]. Lipids,
such as phospholipids and essential fatty acids, are believed to
be crucial nutritional factors for the reproductive process, egg-
hatching rate, and larval survival of shrimp and fish [178, 179].

Broodstock reared in BFT systems has been found to
have improved health and survival rates, which may contrib-
ute to better reproductive performance [169, 180]. In partic-
ular, broodstock from biofloc systems has lower oxidized
glutathione (GSSG)/total glutathione (GSH) ratios and better
antioxidant status, marked by higher concentrations of GSH
and total antioxidant status. This improved health and sur-
vival may be linked to better resistance to handling stress
caused by fishing, transfer to hatchery, and eyestalk ablation
[181]. Overall, BFT has the potential to improve aquaculture
sustainability and productivity by enhancing the nutritional
quality and health of shrimp and other aquatic organisms.
Various factors, such as nutrition, environmental conditions,
and farming systems, can influence the quality of fish meat
[182]. The biofloc system, which encompasses these factors,
can have an impact on the quality of fish produced. One key
concern in this farming system is the quality of the fish. The
limited water exchange and high bacterial load in the biofloc
system, along with the consumption of bioflocs by fish, can
have a significant effect on the sensory quality and charac-
teristics of the fish. However, there is limited information
available on the quality characteristics of fish fillets raised
in this system. In a study by Bakhshi et al. [183] that focused
on the quality of common carp meat in the biofloc system,
four treatments were examined. These treatments included a
control group without bioflocs, and three biofloc treatments
using different carbon sources (molasses, sugar, and starch).
The molasses biofloc treatment showed a more desirable skin
reddening index compared to the control group. Najdeger-
ami et al. [184] suggested that this effect on skin color may be
due to the pigments present in the bioflocs.

Additionally, the research conducted by Abdollahi Kha-
zaghi et al. [185] revealed that the reddening of fish meat is
closely linked to the existence of Fe+3 ions and the regulation
of their oxidation process. When probiotics are included in
the fish’s diet, they can effectively mitigate the degradation of
the red color by controlling the oxidation reactions. More-
over, probiotics have the ability to enhance the intensity of
tissue redness by oxidizing heme compounds and binding
with essential amino acids such as lysine, cysteine, methio-
nine, and tryptophan. In general, the implementation of the
biofloc system holds promise for improving the quality of
fish meat due to various contributing factors. These include
the presence of pigments in bioflocs and the utilization of
probiotics that not only regulate oxidation reactions but also
intensify tissue redness [183].

4. Biofloc: What Goes Wrong?

Implementing BFT systems can be challenging and expen-
sive due to inappropriate water quality management, lack of

skilled staff, inappropriate system design, the higher installa-
tion and operating costs associated with intensive aeration,
and the removal of suspended solids in the water column
[18, 117, 186].

4.1. Inappropriate Water Quality Management. Water qual-
ity parameters such as pH, alkalinity, TSS, and and N-NO3

are directly related to the conditions of the BFT system, in
which the formation, aggregation, and metabolism of micro-
bial communities, especially nitrifying autotrophic and hetero-
trophic bacteria, consume alkalinity, reducing pH, increasing
TSS, and transforming ammonium into nitrate, due to the nitri-
fication process [45, 187]. Lack of proper toxic N-compounds
management (high TAN and NO2 due to improper C :N man-
agement or nitrifying bacteria management), overuse of organic
carbon and lack of “sludge removal”, can lead to solids accumu-
lation and pathogenic bacterial spread. In experimental scale
[188] and in commercial scale [29] in Vietnam demonstrated
if external carbon and C :N (e.g., sugar cane molasses) is proper
managed, biofloc can outcompete pathogenic bacteria. The
proper C :N stoichiometric calculations, solids/sludge manage-
ment, and microbial ecology knowledge are crucial steps to
avoid pathogens issues.

4.1.1. Solids Disposal. Similar to RAS routine management,
the solids in BFT from routine sludge removal using “toilets”
or from mechanical filters (e.g., clarifiers removing the excess
of suspended particles water column) need for a proper
solids disposal. Additionally, the ability of cultured fish to
tolerate high suspended solid concentration must be consid-
ered, as this can adversely affect the growth of certain fish
species. A compilation of various studies that have investi-
gated the levels of total suspended solids in the biofloc system
is demonstrated in Table 5. High TSS concentrations can
cause skin irritations, fin erosion, blockage of the opercula
cavity, gas diffusion inhibition, nitrogen compound excre-
tion, and changes in ion exchange [188, 193]. However, BFT
systems are typically operated at TSS concentrations below
1,000mg/L and most often less than 500mg/L [18]. The
negative impacts on water quality parameters can be reduced
by using low TSS concentrations, starting the culture at
approximately 100mg/L, and reducing variations over time.
Respiratory rates can increase in situations where O2 uptake is
not efficient, leading to a CO2/HCO3 imbalance in the blood
[194–196], which may explain the respiratory alkalosis
observed in fish in the BFT system [190]. Biofloc farming
presents several challenges that require careful consideration
before starting. Proper training is essential, and maintaining
the size and temperature of water tanks, as well as ensuring a
constant oxygen supply to pond water, are critical [141]. The
size and breed of fish/shrimp alsomatter, and density in water
must not exceed recommended levels [45]. It is advisable to
keep biofloc farms outside of sheds, although they can be built
under a roof shelter with an open side wall. Checking the
percentage of minerals in water is crucial, and natural light
is important for the growth of fish/shrimp cultured in biofloc
[89]. Additionally, boundaries of biofloc ponds must be air
and temperature resistant, and fish breeds must have mutual
understanding without fighting, similar to mixed cropping of
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plants [45]. Despite these challenges, biofloc farming can be a
profitable and sustainable practice when properly managed.
One of the major challenges in biofloc farming is maintaining
adequate alkalinity levels. Alkalinity is constantly depleted by
reactions with acid added to water, particularly in intensive
biofloc systems where nitrifying bacteria activity is responsi-
ble for most alkalinity losses [18, 33]. Once alkalinity is
depleted, pH can drop steeply, inhibiting bacterial function
and limiting fish appetite and feeding response. Alkalinity
should be kept between 100 and 150mg/L as CaCO3 by regu-
lar additions of sodium bicarbonate [18].

Another challenge of the biofloc system, when water is
reused for multiple consecutive crops (e.g., inland L. vanna-
mei farming), (i) nitrate and phosphate accumulation and
(ii) the mineral profile can be affected and need ionic profile
adjustments. More information is available regarding key
macrominerals (e.g., K, Mg, and Ca), but it is scarce the
literature regarding micro and trace elements in long-term
reuse conditions [197].

4.2. Inappropriate System Design. High-density rearing in
aquaculture requires waste treatment infrastructure, and bio-
floc systems are a type of waste treatment system. These
systems were developed to prevent disease introduction
and are used in closed and intensive shrimp/fish farming.
Superintensive shrimp culture systems have specific engineer-
ing and management criteria that are still being explored.
There are two types of biofloc systems: those exposed to nat-
ural light (green water) and those without exposure to natural
light (brown water) [198]. Most biofloc systems in commer-
cial use are green water, while brown-water systems are oper-
ated solely by bacterial processes. Two primary BFT systems
for shrimp culture are in situ systems (where biofloc form in
the culture pond/tank) and ex situ systems (where effluent
waters are diverted into a biological reactor). In situ systems
have benefits such as assimilating ammonia into microbial
proteins and providing nutrition directly to the shrimp, but
they lack control over nutritional profiles and have a high
oxygen demand. Ex situ systems offer better control of floc
nutritional profiles and separation of oxygen demand
between floc and shrimp [28]. To construct and prepare
BFT ponds, it is necessary to conduct a detailed study. Atten-
tion should be given to the shape, size, depth, pond lining, and
central drainage system in the construction of the pond. The
classical design of BFT ponds is typically round, with aerators
creating radial water flow. Alternatively, square or rectangular
ponds can be used, with water flow also being radial or parallel
to the pond dykes. In both cases, corners are usually rounded
or cut to minimize stagnant areas [45]. Round ponds are
commonly used for small ponds in hatcheries and some pro-
duction units, while larger ponds are often rectangular or
similar in shape due to the challenges of construction and
land utilization. Intensive ponds should not be too large due
to difficulties in controlling large volumes of water and har-
vesting high biomass. Holding dense fish or shrimp popula-
tions in very large reservoirs also presents higher risks. The
typical size range for intensive ponds is between 100 and
1,000m2, while for intensive BFT shrimp ponds, it is

1,000–20,000m2 (0.1–2 ha). The depth of ponds is usually
1–2m. Deep ponds have the advantage of high heat buffering
capacity, which helps regulate temperature fluctuations. They
also minimize contact between surface water and anaerobic
conditions at the pond bottom, while providing a deeper
water column for feeding and biological processes. However,
constructing deeper ponds requires higher investment and
can pose challenges for drainage and harvesting, especially
in areas with limited gradient to the drainage base. A recent
concept in aquaculture is the use of shrimp toilets or central
drains. Aquaculturists are establishing these pits or drains at
the center of the culture pond, utilizing around 5%–7% of the
total surface area. The ideal pond size for a shrimp toilet is
between 1,000 and 5,000m2. The establishment typically
includes a concrete cement structure with a smooth slope
leading to a small well of about 2–3 feet depth at the center.
The smooth and sloped surface allows for the fast movement
of waste toward the central pit, reducing the water require-
ment for waste removal. Intensive aeration helps to continu-
ously move waste materials into the well. The waste can then
be removed using a siphoning motor or submersible or float-
ing pump (with a power of about 2 hp) on a weekly basis to
prevent the accumulation of sludge. In general, standardizing
methods, techniques, and equipment for pond construction,
stoking management, and harvesting in BFT aquaculture sys-
tems are essential for proper design.

4.3. Lack of Skilled Staff. In 2020, the total production of
fisheries and aquaculture reached a record high of 214mil-
lion tonnes, with 178million tonnes coming from aquatic
animals and 36million tonnes from algae. This growth was
primarily driven by the expansion of aquaculture, particu-
larly in Asia. The amount of seafood available for human
consumption (excluding algae) was 20.2 kg per capita, which
is more than double the average of 9.9 kg per capita in the
1960s [199]. The primary sector alone employed around
58.5million people, and when including workers in subsis-
tence and secondary sectors, as well as their dependents, it is
estimated that approximately 600million livelihoods depend
at least partially on fisheries and aquaculture [199]. Given the
large number of people involved in the industry, there is a
constant need for qualified personnel, especially in new
aquaculture systems. It is crucial to train qualified indivi-
duals to improve and address sudden failures in BFT sys-
tems, as the controlled management of bacteria and cultured
organisms is essential. Various countries have implemented
training programs to develop qualified staff in different disci-
plines. For example, a marine aquaculture project in Morocco
supported the training of qualified personnel at a dedicated
center [200]. Education plays a vital role in enhancing the skills
and qualifications of personnel in aquaculture. In this regard,
e-learning education can be a valuable alternative, especially
when it does not disrupt the regular work of personnel [201].

4.4. High Energy Demand, Initial/Implementation Costs. Floc
formation in BFT systems occurs due to continuous aeration
and water column agitation. Continuous and strong aeration
has several effects on BFT systems, including providing oxy-
gen to cultured organisms, preventing negative impacts of
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high stock densities, ensuring homogeneous oxygen distri-
bution, agitating the water column, oxygenating the sedi-
ment, and supporting nitrification by providing oxygen to
the microbial community [17, 18]. However, continuous and
strong aeration can lead to high operating costs. Different
aeration equipment, such as propellers, aero tubes, diffusers,
air stones, paddlewheels, nozzles, and vertical pump aerators,
can be used to minimize energy costs [202]. The turbulence
generated by aeration units affects floc collection and break-
ing. Studies have investigated the effects of continuous and
intermittent aeration on BFT systems. One study found no
significant differences in nitrogenous compounds and biofloc
content between continuous and intermittent aeration groups,
suggesting that intermittent aeration has potential for reducing
energy costs [203]. Another study examined the presence of
nitrogenous compounds in uncultured media with different
aeration rates, finding that nitrate concentrations were higher
in the nonaerated group [204]. In a comparison of different
aeration units, aero tubes resulted in higher water quality,
biofloc volume, and shrimp biomass due to more homoge-
neous mixing and circular water current [205]. The use of
diffused air blowers showed the best performance in the nitri-
fication process and resulted in the highest productivity. Addi-
tionally, microbubble aeration was found to improve water
quality and increase shrimp growth efficiency [206].

Creating optimal conditions for aeration, which is typi-
cally associated with high energy costs, can reduce operating
expenses and increase product yield in BFT systems. Oper-
ating aeration on standby and utilizing different aeration
units, particularly microaerators and blowers, can be more
efficient in BFT technology. Moreover, BFT systems are sus-
ceptible to adverse weather conditions like windstorms and
hurricanes [117]. To tackle these challenges, alternative
energy sources can be employed to decrease the significant
electricity consumption involved in intensive aeration and
pumping, thereby reducing operating expenses.

The selection of a suitable, cost-effective, readily available,
and degradable carbon source is also crucial. Different carbon
sources stimulate bacterial activity and have an impact on the
microbial composition, community organization, and nutri-
tional properties of bioflocs. Therefore, proper monitoring
and selection of carbon sources (as a cost component in bio-
floc systems) are vital to ensure fish performance and water
quality in biofloc ponds [43, 143]. In general, biofloc farming
requires high energy demand, initial/implementation costs,
effluent and sludge (solids) issues, lack of aquatic/microbial
dynamics understanding, skills/qualified labor scarcity, and
infrastructure implementation and maintenance costs [22].
Other challenges include reduced response time due to ele-
vated water respiration rates, increased instability of nitrifica-
tion, and inconsistent and seasonal performance for sunlight-
exposed systems [18, 33].

5. Future Challenges and Perspectives

BFT has emerged as a promising and sustainable aquaculture
technique with significant economic and environmental

benefits. However, there are still challenges and opportu-
nities for improvement in BFT systems. One area of future
research is the optimization of carbon sources for biofloc
production. Specific carbon sources can stimulate particular
microbial populations, affecting the nutritional properties of
the biofloc and fish performance. Therefore, developing
strategies for selecting and managing carbon sources are
necessary to improve biofloc quality and quantity. Another
critical challenge is managing microbial populations. Imbal-
ances in the microbial community can lead to the accumula-
tion of toxic compounds like nitrate and ammonia, leading
to negative impacts on fish health and water quality. There-
fore, controlling microbial populations and maintaining a
balanced community is essential for the successful imple-
mentation of BFT. Effective monitoring tools for BFT sys-
tems are also necessary to ensure stable and consistent
production. Currently, there are limited techniques available
to monitor the microbial community in real-time and detect
changes in water quality. Developing accurate and reliable
monitoring tools is essential for the successful implementa-
tion of BFT. Finally, scaling up BFT systems to commercial
production levels is another challenge. Optimizing system
design, management practices, and developing economically
viable production models are necessary for the successful com-
mercialization of BFT systems.

BFT system perspective can be managed with very high
stocking densities and little or no water exchange, which is
sustainable in terms of land and water use, with minimal
discharges to receiving ecosystems [36]. BFT requires more
investment than traditional aquaculture, but the economic
analysis shows the technology is feasible. This system pro-
vides a quick return on investment due to its high produc-
tivity. Furthermore, the risk of contracting diseases is lower,
water is used more efficiently, and wastewater is less likely to
enter the environment [207]. BFT requires proper manage-
ment because of its technological and biological complexity.
To minimize risks in their overall farming portfolio, farmers
can diversify their farming operations with shrimp/fish
farming in addition to other existing agricultural enterprises.
Methodologies for assessing the environmental impacts of
products and production systems could complement aqua-
culture and agribusiness decision-making processes from an
environmental perspective. An investor’s decision-making
can be informed by methods that compare the enterprise’s
environmental impact. In order to reduce the environmental
impact of a system, we propose the methodology of life cycle
assessment, which can be used to identify the critical points
and compare different systems to determine which alterna-
tive has the least environmental impact [208, 209].

The BFT system is widely recognized for its positive sus-
tainability indicators, which include measures such as FCR,
protein efficiency, nitrogen, and phosphorus emissions per
ton of protein produced, land use efficiency, and freshwater
consumption per ton of production. These indicators play a
crucial role in evaluating the environmental impact and effi-
ciency of the biofloc system in aquaculture production.
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6. Conclusion

BFT has garnered significant attention as an effective solu-
tion for meeting the growing global demand for protein. This
is due to its year-round production capabilities, location
flexibility, and lower environmental impact in comparison
to conventional aquaculture practices and wild-caught sea-
food. BFT systems facilitate zero water exchange, reduce
water treatment costs by up to 30%, shorten the cultivation
period, and enhance the survival and growth rates of aquatic
species, making it a sustainable production system. More-
over, BFT systems have demonstrated economic efficiency by
exhibiting lower operational costs, a higher return on invest-
ment, and reduced expenses related to water, feed, and the
environment, in comparison to conventional culture systems.
However, the profitability of a BFT farm may be affected by
changes in input factors and biological parameters such as
stocking density, production, growth performance, and sur-
vival rate. Thus, to succeed, standardizing BFT technology
and increasing research in production economics and man-
agement are crucial. To sum up, BFT technology presents a
viable solution for the ever-increasing demand for protein. Its
advantages over conventional aquaculture practices and wild-
caught seafood are numerous, including its sustainability,
cost-effectiveness, and efficiency. Nevertheless, BFT ventures
must continue to focus on standardizing their technology
and increasing research in production economics and man-
agement to ensure long-term success and growth. The
ongoing development and innovation of BFT technology
will contribute to the creation of more efficient and sustain-
able aquaculture practices, benefiting both the industry and
the environment.
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