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In previous study, we found that the cholesterol requirement of Eriocheir sinensis was 0.27%, to further investigate the effects of
cholesterol on health status, ovarian maturation, and lipid metabolism of female Eriocheir sinensis broodstock. Two diets contain-
ing 0% and 0.25% (actually 0.05% and 0.27%) cholesterol were fed to the female crabs (average weight: 49.21Æ 0.11 g) for 4 months
and sampled once a month. The results showed that the body weight (BW), survival rate (SR), meat yield (MY), condition factor
(CF), hepatosomatic index (HSI), and gonadosomatic index (GSI) of Eriocheir sinensis were significantly affected by treatment time
and compared with the cholesterol deficient group, supplementing cholesterol significantly increased BW, HSI, and GSI (P<0:05).
In addition, long-term lack of cholesterol will lead to a significant decrease in the activity of ACP, AKP, and SOD and a significant
increase in the content of MDA. The histological results showed that cholesterol significantly increased the volume of oocytes
(P<0:05). Further studies found that 0.27% cholesterol significantly increased the transcription levels of vtg and vgr in hepato-
pancreas and ovaries, which may be the main reason for the increase of oocyte size (P<0:05). When fed with 0.27% cholesterol
diet, the contents of nutrients in hepatopancreas and ovaries increased significantly, especially lipids and cholesterol (P<0:05).
Through the analysis of mRNA expression level of genes related to lipid metabolism, it was found that cholesterol enhanced the
transcription level of genes related to lipid synthesis and transport in hepatopancreas, thereby promoting the accumulation of lipid
in the organism. Furthermore, compared with control group, the levels of juvenile hormone (JH), 17β-estradiol (E2), methyl
farnesoate (MF), and ecdysone in the organism were significantly increased after feeding a diet with 0.27% cholesterol (P<0:05). In
summary, supplementing an appropriate amount of cholesterol in the diet can improve the growth performance of Eriocheir
sinensis broodstock, enhance the body’s antioxidant and immune system, and promote the accumulation of nutrients in the
ovaries, thereby promoting ovarian maturation.

1. Introduction

Eriocheir sinensis is one of the most important economic
aquatic animals in China. In recent years, with the rapid devel-
opment of aquaculture, the output of Eriocheir sinensis has
continued to increase, and by 2022, it has exceeded 800,000 t
[1–3]. However, due to long-term fishing, the destruction of
natural spawning grounds, the rapid expansion of the market,
and the natural germplasm resources of Eriocheir sinensis are
gradually decreasing [4, 5]. High-quality fry crab is the key to

the sustainable development of Eriocheir sinensis cultural
industry [6, 7]. Therefore, it is necessary to artificially cultivate
broodstock and breed fry crab to meet the market demand.
Previous studies have shown that the gonadal maturity is
closely related to the quality of fry crab [8]. Currently, the
cultivation of Eriocheir sinensis mainly relies on feeding trash
fish, but there are many problems in this feeding mode. For
example, the supply of trash is unstable, the price fluctuates
greatly, and the environmental pollution is serious [8, 9].
Therefore, it is of great significance for the sustainable
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development of Eriocheir sinensis breeding industry to formu-
late compound feed with more comprehensive nutrition
based on the nutritional characteristics of broodstock so as
to improve the quality of fry crab.

The broodstock nutrition of shrimp and crab has always
been a weak point in the study of aquatic nutrition. Currently,
research on the nutrition of shrimp and crab is mostly focused
on the juvenile stage [10–14]. However, shrimps and crabs have
different nutrient requirements at different growth stages, espe-
cially during the ovarian development stage, the broodstock
needs to accumulate a large amount of nutrients to meet the
requirements of ovarian development [9, 15, 16]. For Eriocheir
sinensis, under natural conditions, its gonads begin to develop
in the late summer of the following year,mature in late autumn,
and then begin to mate and hatch eggs. During this period, the
body needs to utilize a large amount of substances such as lipid,
protein, and vitamins to synthesize vitellogenin (VTG), which
is the main energy source for embryos and early larvae [1, 17].
Shrimps completely rely on VTG nutrition for survival and
development within 48 hr of hatching [18]. Therefore, promot-
ing the synthesis of VTG through nutrients is an important way
to improve broodstock quality.

Cholesterol, as a lipid substance, plays an important physio-
logical function in the body. First of all, cholesterol, as a key
component of cell membrane, is crucial tomaintain the immune
function of the body. Previous research show that supplementing
cholesterol in a casein-based purified diets can enhance the non-
specific immune ability of Portunus trituberculatus [19]. Second,
lipoprotein is a mediator of lipid transport in the hemolymph of
crustaceans, and one of its main components is cholesterol.
Therefore, cholesterol is of great significance for lipid metabo-
lism in crustaceans. According to previous studies, cholesterol
may promote lipid accumulation in the body by promoting the
expression of lipid synthesis-related genes (srebp-1, fas) while
inhibiting the expression of β-oxidation-related gene (cpt1) at
the transcriptional level, the transport of lipid in Eriocheir sinen-
sis organs mainly depends on the assistance of fatty acid trans-
port protein (FATP; fatp4, fatp6) and fatty acid-binding protein
(FABP; fabp3, fabp9, fabp10). FATP is involved in the transport
of fatty acid between cells, while FABP is responsible for intra-
cellular transport [9, 11]. Moreover cholesterol is the precursor
for the synthesis of various sterol hormones, which is essential
for growth and development [20–22]. Therefore, cholesterol is of
great significance to the growth and reproduction of aquatic
animals, especially for crustaceans, they lack the ability to syn-
thesize cholesterol, and obtaining cholesterol from exogenous
foods is the only way for them [23]. At present, it has been
reported that cholesterol can promote the reproduction of
some crustaceans. Liang et al. [8] found that adding cholesterol
can promote the ovarian maturation of Litopenaeus vannamei.
Wu et al. [24] reported that the dietary cholesterol level is closely
related to the number of eggs and the quality of larvae of Portu-
nus trituberculatus. In recent years, there have also been some
studies on the effects of cholesterol on Eriocheir sinensis, while
the sutdy on cholesterol nutrition of Eriocheir sinensis is mainly
focused on the larval stage. There are few studies to investigate
the effects of cholesterol on adult crab. However, for Eriocheir
sinensis, ovarianmaturity can determine its value. Therefore, the

effect of cholesterol on ovarian development is worthy of atten-
tion. For example, our previous study confirmed that cholesterol
has a certain promoting effect on the ovary maturation of
Eriocheir sinensis [15]. However, there is currently no long-
term research on the impact of cholesterol on the ovarian devel-
opment and health status of Eriocheir sinensis. Therefore, this
study through a dynamic sampling experiment to investigate the
role of cholesterol in the whole process of broodstock cultivation,
so as to enrich the basic research on broodstock nutrition of
Eriocheir sinensis, and promote the preparation of comprehen-
sive formula feed and the sustainable development of the crab
breeding industry.

2. Materials and Methods

All operations involved in this experiment were authorized
by the Animal Welfare Committee of Nanjing Agricultural
University (Nanjing, China) (No. SYXK (Su) 2011–0036).

2.1. Experimental Diets. This study is a continuation of our
previous experiment. Previously, we evaluated the effects of
0%, 0.1%, 0.2%, 0.4%, 0.8%, and 1.6% cholesterol on the
growth performance of Eriocheir sinensis and concluded
that the growth requirement of Eriocheir sinensis for choles-
terol was 0.27% [9], so a group with 0.27% cholesterol was set
in this experiment. Two isolipidic and isonitrogenous diets
(8% lipid and 36% protein) were prepared to add 0% and
0.25% cholesterol (actually 0.05% and 0.27%, record sepa-
rately as Control and CHO 0.25) (Table 1). The production
process of experiment diets refers to the previous study of
our laboratory [9]. All the ingredients were smashed and
sifted through a 60-mesh percolator. Then, all the raw mate-
rials were weighed and mixed thoroughly with oil sources.
Thereafter, about 30% deionized water was added for further
homogenization. Subsequently, the homogeneous mixture
was squeezed into a 2.5 mm diameter using a single-screw
meat grinder extruder. Finally, the pellets were air dried
(27°C) for 24 hr and stored at −20°C in a vacuum plas-
tic bags.

2.2. Experimental Animals and Feeding Trial. This experiment
was carried out in Aquatic Teaching Base of Nanjing Agricultural
University (Nanjing, Jiangsu, China). The experimental crabs
were provided by Huahai Seed Co. Ltd., in Nanjing (Jiangsu
China). Prior to the feeding trial, all crabs were put into the
square pool for a week to adapt to the experimental environ-
ment. After the adaptation period, a total of 800 healthy
female crabs (average weight, 49.21Æ 0.11 g) with intact
appendages were randomly allotted into eight square pools,
100 crabs in each square pool, and each treatment containing
four square pools (5× 2× 1m, L×W×H). Eighty plastic
pipes were placed in each square pool as shelters for crabs
to hide. All crabs were hand-fed with corresponding diets
with 4% body weight once daily (17:30) for 4 months. The
experimental period is 4 months (from June to October).
During this period, the feces were scavenged in the morning
every day, and 30% volume of fresh water was added. The
water quality was monitored daily to ensure that the dissolved
oxygen >5mg/L, the ammonia nitrogen <0.05mg/L, the pH
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between 7.4 and 8.4, and the water temperature between 23°C
and 28°C.

2.3. Sample Collection. All crabs were first sampled on June
1st (June) and then sampled once a month (July, August,
September, October). Before sampling, all crabs were starved
for 24 hr. Then the crabs in each replicate were weighed and
counted to calculate growth performance-related parame-
ters. Ten individuals were randomly selected from each
square pool and quickly anesthetized with ice, then the
length and width of crabs were measured with vernier cali-
pers. Thereafter, extracting the hemolymph from the second
appendage with a 1mL syringe, centrifuging the hemolymph
at 4°C, 4,500 rpm for 15min, then remove the supernatant
into a 0.2mL centrifuge tube and store at −20°C for bio-
chemical indicators. After that, all crabs were dissected, the
muscle, hepatopancreas, and ovary were quickly taken out
and weighted. Afterward, the hepatopancreas and part of the
ovaries were stored in freezing tubes at −80°C, and the

remaining ovary was stored in 4% paraformaldehyde for
subsequent histological analysis.

2.4. Proximate Composition Analysis. The proximate compo-
sitions of diets were analyzed according to standard methods
[25]. The content of moisture was measured by drying in an
oven at 105°C to constant weight. The crude protein was
determined using the Kjeldahl method (FOSS KT260, Swiss).
The content of ether extract was determined with anhydrous
ether (40–60°C) using the Soxtec system. The ash content
was determined by burning in muffle furnace at 550°C to con-
stant weight. The content of cholesterol in the diet was detected
by high-performance liquid chromatography (HPLC; Agilent
ZORBAX Eclipse Plus, column C18 5μm 4 : 6×150mm). The
specific process refers to the previous research of our laboratory
[9]. The detection method of total lipid in hepatopancreas
and ovary is as follows: 1 g tissue sample was taken, add
4mL extraction solution (ν chloroform/ν methanol= 2/1),
homogenate for 4°C for 5min, add 0.88% KCl solution, fully
mix for 30min, and then dry with nitrogen blower to get total
lipid. Determination of crude protein in the hepatopancreas and
ovary was performed as in the diet.

2.5. Biochemical Analysis. About 0.2 g of hepatopancreas and
ovary were taken, respectively, and then added precooled physi-
ological saline in the ratio of 1 : 9 for homogenization. Subse-
quently, centrifuged at 3,000 rpm for 5min, and the supernatant
was taken for the determination of biochemical indicators, the
methods are as follows: cholesterol oxidase–peroxidase (COD-
PAP) single reagent colorimetry was used to determine total
cholesterol (TC) content; α-ketoglutaric acid was used to deter-
mine aspartate aminotransferase (AST) and alanine transami-
nase (ALT) activity, respectively, AST can cause α-ketoglutaric
acid and aspartic acid to generate oxalacetic acid, ALT acts on
alanine and α-ketoglutaric acid to generate pyruvate; the activity
of alkaline phosphatase (AKP) and acid phosphatase (ACP) was
determined by disodium benzene phosphate; and the determi-
nation of the glutathione peroxidase (GPx) refers to the descrip-
tion of Lygren et al. [26], usingH2O2 to determine; the activity of
superoxide dismutase (SOD) was determined by the WST-1
method; the content of malondialdehyde (MDA) was deter-
mined using the red product generated by the condensation of
MDA and thiobarbituric acid (TBA), the standards and com-
mercial kits used in the above experiment were provided by
Jiancheng Bioengineering Co. (Nanjing, China). The contents
of vitellogenin (VTG), estradiol (E2), juvenile hormone (JH), and
methyl farnesoate (MF) were detected by ELISA kits, where the
antibodies to VTG were from crabs, while the antibodies to E2,
JH, and MF were from insects, and were provided by Enzyme
Bioengineering Co. (Shanghai, China). The specific operations
were strictly in accordance with the instructions.

2.6. Ovarian Histology Analysis. The fixed ovary was dehy-
drated in a gradient alcohol and subsequently placed in
xylene to replace the alcohol. The dehydrated tissues were
embedded in paraffin, then the paraffin was cut into 6 µm
slices with a microtome (LeicaRM2016, Berlin, Germany),
and applied to the slide. Subsequently, the sections were
dewaxed and rehydrated so that the dye could enter the

TABLE 1: The ingredients of experimental diets.

Ingredients (%)
Cholesterol levels (%)

0 0.25

Defatted fish meala 18.50 18.50
Soybean meal 15.00 15.00
Rapeseed meal 2.50 2.50
Cottonseed meal 3.00 3.00
Peanut meal 28.50 28.50
a-Starch 19.00 19.00
EPA oil: DHA oil (1 : 1)b 1.20 1.20
Soybean oil 5.20 4.95
Carboxymethyl cellulose 1.00 1.00
Ca(H2PO4)2·H2O 2.20 2.20
Cholesterol (purity 99%)c 0.00 0.25
Lecithin 0.20 0.20
Zeolite 0.40 0.40
Premixd 1.00 1.00
Mixturee 2.30 2.30
Total 100.00 100.00
Proximate composition

Crude protein 35.74 36.05
Crude lipid 7.98 7.82
Crude ash 6.89 7.02

aFishmeal had been skimmed from 0.38% to 0.11% cholesterol. bDHA oil
and EPA oil (DHA content, 70% of oil; EPA content, 70% of oil) was
purchased from Shanxi Pioneer Biotech Co., Ltd., Xian, Shanxi, China.
cCholesterol (purity 99%) was purchased from Shanxi Pioneer Biotech
Co., Ltd., Xian, Shanxi, China. dPremix supplied the following minerals
(g/kg) and vitamins (IU or mg/kg): CuSO4 · 5H2O, 2 g; FeSO4 · 7H2O,
25 g; ZnSO4 · 7H2O, 22 g; MnSO4 · 4H2O, 7 g; Na2SeO3, 0.04 g; KI,
0.026 g; CoCl2 · 6H2O, 0.1 g; vitamin A, 900,000 IU; vitamin D, 200,000
IU; vitamin E, 4500mg; vitamin K3, 220mg; vitamin B1, 320mg; vitamin
B2, 1090mg; vitamin B5, 2000mg; vitamin B6, 500mg; vitamin B12,
1.6mg; vitamin C, 10,000 mg; pantothenate, 1000mg; folic acid, 165mg;
choline, 60,000 mg; biotin, 100mg; and myoinositol 15,000 mg. eMixture
includes the following ingredients (%): choline chloride 4.75%; antioxi-
dants 1.72%; mildew-proof agent 2.35%; salt 22.06%; Lvkangyuan
59.30%, and biostimep 9.51%.
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tissue. After rehydration, hematoxylin–eosin (H&E) staining
was performed. Then the film was transparent with xylene,
sealed with resin, observed under a microscope (Nikon
Eclipse 80i, Tokyo, Japan), and photographed by a digital
camera (Nikon DS-U2, Tokyo, Japan). Thereafter, the long
diameter of an oocyte (LO) and short diameter of an oocyte
(SO) were measured using Image-Pro Plus 6.0 (America
media cybernetics). Forty oocytes from four replicate crabs
and eight slides were analyzed. Calculate the volume of
oocyte (VO) based on the above parameters, and the specific
calculation formula are as follows [15]:

VO¼ 0:523 ×W2
o × Lo; ð1Þ

where Lo= the maximum length of oocyte and Wo= the
maximum width of oocyte.

2.7. Genes Expression. The total RNA in hepatopancreas and
ovary were extracted by Trizol (Accurate, Hunan, China). The
concentration of RNAwasmeasured by amicrospectrophotom-
eter (NanoDrop 2000, USA), and the purity of RNA was
assessed by OD260/OD280. Then 1µg of RNA was rapidly
reverse-transcribed to cDNA by the ExScript RT-qPCR Kit
(Takara, Dalian, China) for subsequent real-time quantitative
PCR (RT-qPCR) analysis. The RT-qPCR was conducted in a

real-time detector (Bio-rad, Richmond) and the reaction system
as follows: 10µL SYBR regent (Takara, Dalian, China),
2µL cDNA template, forward primers and reverse primers
each 0.4µL and 7.2µL DEPC-treated water. The specific ampli-
fication program and themelting curve refer to theGuo et al. [9].
The β-actin as internal reference gene (genes of crab sampled in
June as the calibrator), and the expression of vtg, vgr, srebp-1, fas,
cpt1, mttp, fatp4, fatp6, fabp3, fabp9, and fabp10 were calculated
using the 2−ΔΔCTmethod [27]. The primer sequences involved in
this experiment as shown in Table 2.

2.8. The Calculations of Growth Parameters. The relevant
parameters are calculated according to the following formulas:

BW gð Þ ¼ Total weight of crabs
The number of crabs

; ð2Þ

SR %ð Þ ¼ The number of survival crabs
Total number of crabs

; ð3Þ

MY %ð Þ ¼ Total weight of muscle
The body weight of crab

; ð4Þ

CF %ð Þ ¼ 100% ×
The body weight of crab

The body length of crab cmð Þ3 ; ð5Þ

TABLE 2: Nucleotide sequences of the primers for real-time quantitative PCR.

Gene Position Primer sequence (5′−3′) Length Product size (bp) Reference

vtg
Forward AAGGTCCGCAGCAAGCAGAT 20

181 Lin et al. [28]
Reverse GGCGAGGCACGAGGTAGAAT 20

vgr
Forward GCAACGCCTTCCTTCTGGTA 20

193 Lei et al. [12]
Reverse GGCACGGTGTTCGCTATCAT 20

cpt1
Forward ATCTCCTCACCCGGCACTCT 21

183 Huang et al. [11, 16]
Reverse AGCAGGCAGTGGCTCAGTTTA 22

fas
Forward GTCCCTTCTTCTACGCCATCC 21

127 Lin et al. [13]
Reverse CGCTCTCCAGGTCAATCTTCAC 22

mttp
Forward TAGGACAAGCAGGACTTTCCTCA 23

138 Huang et al. [11, 16]
Reverse CCACATCCACAAACACATCAACA 23

Srebp1
Forward TCTTCACACCCTCTGGACGC 20

162 Huang et al. [11, 16]
Reverse CCAAGGTTGTAATGGCACGC 20

fabp3
Forward CCACCGAGGTCAAGTTCAAGC 21

195 KJ804230
Reverse TCACACCATCACACTCCGACAC 22

fatp6
Forward TGATGGGAAGGCAGGAATGG 20

119 Lin et al. [13]
Reverse TGCGGATGAAGCGAGGTACA 20

fabp9
Forward GGGCAACAAAATGACCCATAAG 22

108 GU568242
Reverse TGGCGAACACGCACAATCCT 20

fabp10
Forward TGATTGGCTCAGTGCTGTGGGT 22

115 HM459893
Reverse GGTGTTGGTGAAGTTCTTGTCGC 23

fatp4
Forward GACGGCAGACACGGAAAGAGA 22

101 Lin et al. [13]
Reverse CAGGTGGAGGCAAGCAAACTC 21

β-actin
Forward TCGTGCGAGACATCAAGGAAA 21

178 KM244725.1
Reverse AGGAAGGAAGGCTGGAAGAGTG 22

vtg: vitellogenin; vgr: vitellogenin receptor; cpt1: carnitine palmitoyl transterase 1; fas: fatty acid synthase;mttp: microsomal triglyceride transfer protein; srebp1:
sterol regulatory element-binding protein 1; fabp3: fatty acid-binding protein 3; fatp6: fatty acid transport protein 6; fabp9: fatty acid-binding protein 9; fabp10:
fatty acid-binding protein 10; fatp4: fatty acid transport protein 4.
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HSI %ð Þ ¼ 100% ×
Theweight of hepatopancreas

The body weight of crab
; ð6Þ

GSI %ð Þ ¼ 100% ×
Theweight of ovary

The body weight of crab
; ð7Þ

where BW is body weight, SR is survival rate, MY is meat
yield, CF is condition factor, HSI is hepatosomatic index, and
GSI is gonadosomatic index.

2.9. Statistical Analysis. All data in this experiment contain
four replicates and are presented as means with standard
error of means (SEM). Before analysis, normality and homo-
scedasticity were checked by Kolmogorov–Smirnov test and
Levene’s tests (SPSS 23.0, USA). Then one-way analysis of
variance was conducted to evaluate the effect of different
treatment time in the same cholesterol, and Duncan’s multi-
ple comparison test was performed to analyze the significant
difference (a, b, c, A, B, C). In the same treating time, the
independent samples test was used to analyze the effects of
different cholesterol levels on the results. The asterisk “∗”
represents significance difference. The significant level
is P<0:05.

3. Results

3.1. Growth Performance. As shown in Figure 1, at the same
cholesterol level, the BW of crabs significantly increased with
the increasing of treatment time, whereas SR results are
reversed. At the same treatment time, the BW and SR of
crabs supplemented with 0.27% cholesterol were significantly
higher than that in control group (P<0:05). Cholesterol level
has no significant effect on MY and CF (P>0:05). The HSI of
crabs increased from June to August and then decreased at
the same cholesterol level. The HSI of crabs fed with 0.27%
cholesterol was significantly higher than that of the control
group in August and September (P<0:05). For GSI, there
was no significant difference between the two groups in
September, but the GSI of crabs increased significantly
from September to October (P<0:05). In October, the GSI
of crabs in the 0.27% cholesterol group was significantly
higher than that of the control group (P<0:05).

3.2. Analysis of Antioxygenic and Immune Performance in
Hepatopancreas. The activities of ACP, AKP, GPx, and the
content of MDA in hepatopancreas were significantly
affected by the dietary cholesterol levels (P<0:05) (Figure 2).
Generally, 0.27% cholesterol can significantly increase the
activity of ACP, AKP, and GPx and decrease the content
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FIGURE 1: (a–f ) Effects of supplement cholesterol and treatment time on growth performance of Eriocheir sinensis. Different letters indicate
significant difference among different treatment time within the same cholesterol level (P<0:05). The asterisk “∗” indicates significant
difference between different cholesterol levels in the same treatment time (P<0:05). Values are expressed as meansÆ SEM (n= 4).
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of MDA (P<0:05). However, the activities of AST and ALT
were not influenced by the dietary cholesterol levels
(P>0:05). In addition, at the same cholesterol level, the treat-
ment time had significant effects on ACP, AKP, AST, GPx,
SOD, and MDA (P<0:05). Generally speaking, the activities
of ACP, AKP, AST, and SOD in cholesterol deficiency group
showed a downward trend, while the content of MDA
showed an upward trend.

3.3. The Analysis of Ovarian Histology. As shown in Figure 3,
there was no significant difference in the number and volume
of oocytes was observed between cholesterol supplemented
group and the group without cholesterol in September. How-
ever, the volume of oocytes in the cholesterol-added group
increased significantly, and yolk granules were more filling
from September to October. The related parameters of
oocytes were as shown in Figure 4(a)–4(c). Consistent with
the results observed by sections, cholesterol levels had no
significant effect on LO, SO, and VO in September, but in
October, the above parameters in CHO 0.27% group were
significantly higher than control group (P<0:05).

3.4. The Analysis of VTG. The content of VTG in hepatopan-
creas and ovary was significantly affected by the treatment
time (Figure 4(d)–4(h))(P<0:05). The content of VTG in
hepatopancreas first increased and then decreased from
June to August and showed the same trend again from
August to October; moreover, the cholesterol content in
hepatopancreas in cholesterol treatment group was signifi-
cantly higher than that in the control group from August
(P<0:05). For ovaries, the content of VTG increased signifi-
cantly from September to October (P<0:05), and compared
with the control group, adding cholesterol significantly
increased the content of VTG in ovaries (P<0:05). According
to the results of mRNA expression, the expression of vtg in

hepatopancreas and ovary increased significantly with the
increase of treatment time (P<0:05), and cholesterol sup-
plementation could significantly improve the expression of
vtg (P <0:05). From September to October, the expression
of vgr in the control group increased significantly (P<0:05),
but no significant difference was observed in the cholesterol
treatment group. However, compared with the control
group, the expression of vgr in cholesterol treatment group
was significantly higher than that in the control group
(P<0:05).

3.5. The Change of Nutrient in Hepatopancreas. The content
of lipid in hepatopancreas in cholesterol treatment group
and control group increased first and then decreased with
the increase of treatment time and reached the maximum at
August and September, respectively (Figure 5). In addition,
compared with the control group, the lipid content in hepa-
topancreas in cholesterol treatment group was significantly
higher than that in July and Aug (P<0:05). Similarly, the
lipid content in ovaries also increased significantly with the
increase of treatment time (P<0:05). Moreover, cholesterol
significantly increased the content of lipid in ovaries compared
with the control group (P<0:05). The content of protein in
hepatopancreas and ovary was significantly affected by treat-
ment time (P<0:05). In the ovary, compared with the control
group, cholesterol supplementation significantly increased the
content of protein (P<0:05). From June to October, the con-
tent of TC in hepatopancreas first increased and then
decreased, and the content of TC in cholesterol added group
was significantly higher than that in control groups in August
and September (P<0:05). In the ovary, the content of TC
increased significantly from September to October (P<0:05),
and cholesterol supplementation could also significantly
increase the content of TC (P<0:05).
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3.6. The Analysis of Gene Expression. According to the results
of mRNA expression, dietary cholesterol level and treatment
time significantly affected the gene expression ofmttp, fabp3,
fabp9, fabp10, fatp6, srebp1, fas, cpt1, and fatp4 (P <0:05)
(Figure 6). Generally, the crab fed diet with 0.27% cholesterol
showed higher gene expression of lipid transport-related
genes (mttp, fabp3, fabp9, fabp10, fatp6) compared with
the control group. The expression level of fas and srebp1 in
cholesterol-added group was significantly higher than con-
trol group in July and August. Cpt1, which is mainly affected
by the treatment time, and its expression level has decreased
as the treatment time increases. The expression level of fatp4
was significantly influenced by dietary cholesterol level and
treatment time. At the same cholesterol level, the expression
level of fatp4 showed an increasing trend with the increasing
of treatment time. Under the same treatment time, the
expression level of fatp4 in the cholesterol- added group
was significantly higher than that in the control group in
August and September.

3.7. The Change of Steroid Hormones. As shown in Figure 7,
dietary cholesterol level and treatment time had significant
effects on the level of JH, E2, MF, and ecdysone. Generally, in
the same treatment time, the level of JH, E2, MF, and ecdy-
sone in cholesterol-added group was significantly higher
than that in the control group.

4. Discussion

Cholesterol is considered as an essential nutrient for the matu-
ration and reproduction of shrimp and crabs [20, 29]. Previous
study has reported that feeding cuttlefish (Uroteuthis duvauceli)
can effectively promote gonadal maturation during the breeding
process of Litopenaeus vannamei broodstock, further detection
found that the cholesterol content of cuttlefish (Uroteuthis
duvauceli) was as high as 16.1mg/g [30]. However, with the
increasing proportion of plant protein replacing fish meal in
diet, the cholesterol content is often deficient. Our previous
research has found that supplementing an appropriate amount
of cholesterol in the diet can improve the growth performance of
Eriocheir sinensis [9]. Similarly, in this study, we also found that
long-term feeding of a diet with 0.27% cholesterol can signifi-
cantly improve the BW, HSI, and GSI of Eriocheir sinensis. BW,
HSI, and GSI are three important indexes in the process of
broodstock breeding, which can directly determine the repro-
ductive performance [10, 31]. In addition, cholesterol has no
significant effect on the CF and MY of crabs, but the SR of
cholesterol deficiency group is significantly reduced. This may
be due to the long-term lack of cholesterol, which destroys the
body’s immune system and makes it more susceptible to infec-
tion by pathogenic bacterium [19]. To sum up, supplementing
0.27% cholesterol in the diet can improve the growth perfor-
mance of Eriocheir sinensis.
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The specific immunity of crustaceans is weak, and they
mainly rely on nonspecific immunity to resist external infec-
tion [32]. Cholesterol is an indispensable part of maintaining
cell membrane function, which is of great significance to the
nonspecific immune function of the body [33, 34]. ACP and

AKP are two important indexes to evaluate the nonspecific
immunity of crustaceans [19, 35]. In this study, feeding diets
lacking cholesterol for a long time will significantly reduce
the levels of ACP and AKP in the organism, thus reducing
the immunity of the body, which indicates that proper
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cholesterol can improve the immune performance of the
body, and this result has also been reported in Portunus
trituberculatus [19]. In addition, the antioxidant capacity
of the body is also closely related to the health status of the
body. Cholesterol may first act as an antioxidant to resist the
infection of ROS, second, it may affect the synthesis and
secretion of antioxidant enzymes by affecting the fusion of
cell membranes, and last, cholesterol may also produce MF
through mevalonate pathway to regulate the stress response
of the body, so cholesterol can affect the antioxidant capacity
of the body [36, 37]. In this experiment, the long-term lack of
cholesterol will lead to a significant decrease in the activities
of GPx and SOD, while the content of MDA will increase
significantly. This shows that long-term lack of cholesterol
will aggravate the degree of oxidative stress in the body, thus
affecting the health status of the body.

VTG is a female-specific protein, which is the precursor
of vitellin stored in oocytes. For crabs and shrimps, they rely
entirely on the nutrition of vitellin to maintain their life
within 48 hr after hatching, so vitellogenin plays a key role

in reproductive success [24, 38]. Current research shows that
the maturation of ovary is accompanied by the increase of
oocyte volume, and the main reason for the increase of
oocyte volume is the accumulation of vitellin, so vitellogene-
sis is considered as the central link of ovarian maturation
[1, 17]. As a precursor of vitellin synthesis, VTG is mainly
synthesized in adipocytes in hepatopancreas and ovary and
then selectively absorbed by endocytosis mediated by VGR
on the surface of oocytes [39]. The synthesis of VTG is
regulated by endocrine hormones. It is found that JH, E2,
MF, and ecdysone are several important hormones that reg-
ulate the synthesis of vitellogenin [15, 40, 41]. For example,
JH can bind to Met in the nucleus and then regulate the
transcription of vtg through transcription factor kr-h1 [41].
At the same time, when oocytes recognize the signal of VTG
in hemolymph, steroid hormones such as JH can promote
the opening of follicular cells, so that VTG can reach the
surface of oocytes and combine with VGR for absorption
[17, 42]. In this study, we observed that in the early stage
of ovarian development, there was no significant difference
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in the content of VTG between the cholesterol-treated group
and the control group, but after entering the rapid gonadal
development stage, the accumulation of VTG in the ovary of
the cholesterol-added group increased significantly, which
may be caused by the change of steroid hormones in the
body [43, 44]. Therefore, this study speculates that the

appropriate amount of cholesterol in the diet can increase
the content of steroid hormones in the body, thus promoting
the vitellogenesis and the transport of VTG and ultimately
improving the ovarian maturity.

Vitellogenin is mainly synthesized from nutrients such as
lipids, proteins, carbohydrates, and vitamins [17]. Therefore,
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the maturation of the ovaries cannot be separated from the
accumulation of nutrients [4]. Previous studies have shown
that lipids play an important role in the maturation of ova-
ries [28]. Before completing reproductive molting, the lipid
content in the hepatopancreas increased rapidly, and HSI
also increased, after entering the reproductive period, the
ovaries will form another lipid metabolic center, during
this period, HSI will begin to decline, while GSI gradually
increases [45, 46]. This indicates that there is a large amount
of nutrients was transferred during the process of ovary
development, lipid and protein are the two most important
substances, because they can provide sufficient nutrients for
embryonic development and can participate in the synthesis
of various hormones [47]. In this study, the contents of total
lipid and total protein in hepatopancreas showed a trend of
increasing at first and then decreasing, which indicated that
in the early stage of ovarian development, the feed intake
increased, and a large amount of nutrients were stored in
hepatopancreas, but the ovary was not matured during this

period, so only a small amount of nutrients were transported to
the ovary. After the ovary enters the rapid development stage, a
large amount of nutrients in hepatopancreas are transported to
the ovary, which leads to the rapid increase of nutrients in the
ovary in a short time, and this is consistent with the law of
ovarian development in other decapod crustaceans [48–51].
However, interestingly, we found that supplementing cholesterol
is more conducive to the transportation of nutrients. VTG is a
carrier of nonpolar molecules, which is responsible for transfer-
ring nutrients from hepatopancreas to ovaries, and cholesterol is
an important component of VTG [52]. Therefore, in this study,
we further analyzed the influence of cholesterol in this process,
and the results showed that the trend of cholesterol content in
the body was highly consistent with fat and protein content.
Compared with the control group, cholesterol significantly
increased the content of VTG in hepatopancreas and ovary.
Therefore, this study speculates that cholesterol can affect the
transport of nutrients in hepatopancreas and ovary through
VTG and then affect the process of ovarian maturation [53].
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From the above results, we found that there is an obvious
correlation between the changes of lipid content and choles-
terol. So this experiment further explored the effect of cho-
lesterol on lipid metabolism of Eriocheir sinensis. Unlike
vertebrates, the digestion and absorption of lipid in Eriocheir
sinensis mainly occur in hepatopancreas [54]. In this study,
we found that the mRNA expression level of srebp-1, a tran-
scription factor that activates the expression of key genes in
downstream fatty acid synthesis, such as fas, which is a key
rate-limiting enzyme for fatty acid synthesis, and its tran-
scription level significantly increased after crabs were fed a
cholesterol-containing diet, the results further confirm that
cholesterol contributes to lipid accumulation in tissues, and
similar results have been reported in mammals [11, 55–58].
In addition to self-synthesis, fatty acids in hepatopancreas
can also be absorbed from the outside. However, hepatopan-
creatic cells need the assistance of FATP to absorb external
fatty acids. FATP is a fatty acid transporter, which is mainly
responsible for the transmembrane transport of fatty acids
[59]. Overexpression of FATP can increase the level of fatty
acid uptake by mouse myocardial cells by four times [60].
Fatty acids are highly hydrophobic, they cannot move freely
in cells, so the lipid entering hepatopancreatic cells needs to
be further transferred to the corresponding organelles by
FABP [61]. For example, the lipid in hepatopancreatic cells
can be further transported to lipid droplets for storage or
transported to mitochondria for β-oxidation [62]. Cpt1 is a
protein located in the outer membrane of mitochondria,
which can promote fatty acids to enter the mitochondrial
matrix and is the key rate-limiting enzyme for fatty acid
β-oxidation [63]. In this study, the gene expression of fatp
was significantly increased after adding proper cholesterol,
thus enhancing the fat absorption ability of hepatopancreatic
cells. In addition, compared with the control group, the
expression of fabp also increased, which showed that choles-
terol also enhanced the transport of fat in hepatopancreatic
cells, but the expression of cpt1 did not change significantly.
Therefore, this study speculates that cholesterol did not affect
the utilization of fatty acids by hepatopancreatic cells, and
the fatty acids absorbed by hepatopancreatic cells may be
transported to lipid droplets through FABP for subsequent
ovarian development.

Hormones have been proved to play a key role in the
reproductive and endocrine regulation of crustaceans [64].
Kazeto et al. [65] found that there was a significant correla-
tion between the level of steroid hormones and the expres-
sion of vtg during ovarian maturation of Eriocheir sinensis.
Cholesterol can participate in the synthesis of various hor-
mones in the body [65], so this study examined the effects of
cholesterol on several important reproductive hormones in
the body [65–67]. E2, as the most active reproductive hor-
mone in the body, plays an important role in regulating the
growth and reproduction of animals [68]. There was some
controversy about whether invertebrates can synthesize
estrogen, but the existing evidence generally points to that
invertebrates can also synthesize estrogen [69]. Pan et al. [44]
found that estradiol can increase the mRNA expression of vtg
in ovary through tissue culture in vitro. Ecdysone is a typical

steroid hormone in crustaceans, which can be synthesized in
the body with cholesterol as the substrate. Then it binds to
ecdysone receptor and ultraspiracle protein, thus inducing the
synthesis of VTG in hepatopancreas and finally promoting
the maturation of oocytes [70]. The fertility of Adelphocoris
suturalis decreased significantly after silencing the ecdysone
receptor [71]. Both JH and MF belong to sesquiterpenoids,
and JH can regulate a series of physiological processes such as
growth and development, metamorphosis and reproduction
of arthropods, which is one of the most important gonado-
tropins for insects and many crustaceans [72]. Moreover, JH
can regulate the synthesis of VTG in fat body and can pro-
mote the uptake of VTG by oocytes by increasing the gap
between follicular cells, thus promoting ovarian maturation
[73].MF is the direct precursor for the synthesis of JH, and the
MF of crustaceans is very similar to JH of insects in physio-
logical function and structure. MF is secreted by the mandib-
ular organ of crustaceans [74–76]. Buchholz and Adelung
[74] reported that compare the precocious crab with normal
crab, the mandibular organ of precocious crab developed sig-
nificantly faster. In this experiment, adding proper amount of
cholesterol significantly improved the levels of the above hor-
mones, which indicated that cholesterol could improve the
reproductive performance of Eriocheir sinensis broodstock by
increasing the levels of reproductive hormones in the body.

5. Conclusion

In conclusion, in the process of broodstock culture of Eriocheir
sinensis, supplementation of appropriate amount of cholesterol
can improve the growth performance and enhance the immune
barrier, thus improving the health status. In addition, cholesterol
also promotes the accumulation of nutrients in the hepatopan-
creas of crabs and enhances effectively the transport of nutrients
from the hepatopancreas to the ovaries, thus promoting the
vitellogenesis and the accumulation of vitellin. Meanwhile, as a
substrate for the synthesis of various active substances, choles-
terol also increases the contents of various reproductive hor-
mones in the body, thereby promoting the maturation of the
ovary and improving the reproductive performance.
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