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Uncertain data and undesirable outputs are two challenging issues in traditional data envelopment analysis (DEA) models
while dealing with the environmental e�ciency estimation of decision-making units (DMUs). �is study considers
Stackelberg and the centralized game theory approach in a two-stage DEA model for evaluating DMUs in the presence of
uncertainty and undesirable outputs simultaneously. To tackle the uncertainty, we apply the p-robust technique and
assume that undesirable outputs are weakly disposable. �e proposed fractional models are linearized using the Charnes
and Cooper transformation. We utilize the new models for a real dataset drawn from 11 oil generation ports in the Persian
Gulf region consisting of two stages: an oil production stage and a wastewater treatment stage. �e results revealed that the
managers should take di�erent strategies in environmental e�ciency evaluation including undesirable impacts and also
e�ciency improvement in increasing oil generation. Further, the empirical results showed that the stochastic p-robust
approach for controlling the conservatism level leads to a more conservative solution, and policymakers could recognize
the signi�cant steps that should be followed to improve each oil generation unit’s environmental performance. Also, to
show the reliability and accuracy of the results and the e�ect of the decision-maker’s preference, a detailed sensitivity
analysis is performed.

1. Introduction

Environmental issues, such as resource shortage and envi-
ronmental pollution have attracted signi�cant attention in
recent years[1, 2]. In fact, overuse of natural resources for
economic growth and development on the one hand and
pollution from the production process on the other hand
causes irreparable damage to the environment. To resolve
these issues, in the production process in addition to in-
creasing outputs with a certain level of inputs, one has to
focus also on the environmental aspect. Data envelopment
analysis (DEA) is a widely used methodology for the e�-
ciency estimation of decision-making units (DMUs) in
various settings such as environmental analysis [3]. As a

nonparametric approach, it has the advantage that it does
not require any prior assumptions on the underlying
functional relationships between variables of inputs and
outputs (e.g., [4–6]. Classical DEA models, with outputs
maximization and inputs minimization, evaluate the per-
formance of DMUs without considering environmental
factors. �us, various extension of classical DEA models are
proposed in the last decades taking into account environ-
mental factors (undesirable input/output) that are summa-
rized in Table 1.

Moreover, original DEA models treat each DMU as a
black box and neglect their internal structure. However, in
the real production process, the internal structures of DMUs
are often multistage. �at is outputs from the one stage
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become the inputs to the other stage (e.g., [14–17]. (e
multistage structures also have been applied for the effi-
ciency evaluation taking into account environmental factors.
Table 2 gives an overview of network DEA (NDEA) research
with a focus on environmental factors.

In all the abovementioned research, input and output
parameters are presumed to be precise and the effect of
uncertainty is ignored. Research indicated that a small noise
in the problem data can lead to serious variation in ranking.
To treat uncertainty in the DEA models, various approaches
such as fuzzy programming, stochastic programming, and
robust optimization are used in the literature. Table 3
summarizes some of DEA and NDEA models under
uncertainty.

Albeit the extant literature has progressed significantly,
but all of the available two-stage NDEA consider either the
pure intermediate undesirable outputs or uncertainties in
problem data. So, in this paper, we present a centralized
additive model to measure the efficiency of the whole system
with both undesirable outputs and uncertainty perspectives.
We apply a stochastic p-robust approach to attain robustness
against the existing uncertainty for centralized game-theo-
retic DEA models of Liang et al. [14]; also, the weak dis-
posable production technology of Kuosmanen [35] is
applied for modelling undesirable outputs. (e stochastic
approaches search to minimize the total expected cost
among all scenarios. (e optimal solution gained by ap-
plying it probably is very good for some scenarios but very
poor for others. However, decision makers are often mo-
tivated to search for min-max regret solutions that appear
effective no matter which scenario is realized. Indeed, the
aim of this study is to introduce a more stable system for
two-stage NDEA models in which major decreases in regret
are possible with small increases in the expected efficiency of
DMUs.(e proposed model has the following contributions
in comparison with existing models: First, both undesirable
outputs and uncertainty of data are considered in the model.
Second, an efficient scenario generation approach is adopted
to model the uncertain parameters to ensure the correctness
and reliability of the final solutions that are close to the
optimal real-world solution. (ird, a robustness factor is
adopted in the proposed approach, which bounds the rel-
ative regret in each scenario when minimizing the expected
objective function.

(e remainder of the paper is unfolded as follows. In the
next section, a short summary of the centralized and
noncentralized models utilized in two-stage DEA models
and a brief review of weakly disposable technology will

follow. Section 3 presents the stochastic p-robust approach
for centralized and noncentralized models. (en, the new
model and related results are presented. We apply the
proposedmodel to a real dataset to demonstrate its efficiency
in Section 4. Sensitivity analysis is discussed in Section 5.
Concluding remarks and some directions for future research
are given in the last section.

2. NDEA Two-Stage Proposed Structure with
Resource Waste

Consider the two-stage structure in Figure 1 in which each
DMU is composed of two sub-DMUs sequentially, and
undesirable outputs from stage 2 are wastages that can be
sent back as inputs to stage 1.

Suppose we have n DMUs. In the first stage, each
DMUj(j � 1, . . . , n) uses m inputs x1s

ij (i � 1, . . . , m) and
produces H outputs y1s

hj(h � 1, . . . , H) and D intermediate
outputs zs

dj(d � 1, . . . , D) under scenario sϵS that serve as
the inputs to the second stage. Also, there are T inputs
x2s

tj (t � 1, . . . , T) of the second stage under scenario sϵS.
Outputs from the second stage take three forms; desirable
outputs y2s

rj(r � 1, . . . , A), undesirable outputs
z2s

qj(q � 1, . . . , Q) and a feedback variable
fs

gj(g � 1, . . . , G) under scenario. sϵS.

For each DMUj, the efficiency score of the first stage
(leader) is denoted by e1s

0 and the efficiency of the second
stage (follower) is denoted by e2s

0 under the sth scenario.
Model (1) displays a generic form of the efficiency evaluation
of the follower stage that is computed by replacing the ef-
ficiency of leader stage equal to e1s∗

0 as a constraint which
can be obtained by a linear CCR-type model:

e
2s∗
0 � max e

2s
0

s.t

e
1s
j ≤ 1, ∀j,∀sϵS,

e
2s
j ≤ 1, ∀j,∀sϵS,

e
1s
0 � e

1s∗
0 ∀sϵS.

(1)

2.1. Undesirable Outputs. A production technology using
the weakly disposable axiom of outputs tomodel undesirable
outputs in the DEA framework is propounded in [35].
Under this technology, inputs and desirable outputs are

Table 1: Some advances of environmental factor applications in DEA.

Authors DEA model Environmental factor Applications scope
Aslam et al. [7] CCR Output Financial systems
Matsumoto et al. [8] CCR Output European countries
Mozaffari et al. [9] CCR/FUZZY Output Petrochemical sector
Li et al. [10] CCR Output Water pollution
Wang and Zhao [11] ADD Output Energy
Murty and Russell [12] CCR Output Emission-generating technology
Zhang et al. [13] SBM Output/Input Manufacturing industry
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considered to be freely disposable, undesirable outputs are
weakly disposable, and the outputs set is assumed to be
convex under a constant return to scale (CRS) assumption.
(e linear programming model of this technology to eval-
uate the performance of a DMU is as follows (for further
details, see [36]):

max 
A

r�1
ury

2s
rjo

− 
D

q�1
ϑqz

2s
qjo

s.t



A

r�1
ury

2s
rj − 

D

q�1
ϑqz

2s
qj + 

m

i�1
vix

1s
ij ≤ 0, ∀j,∀sϵS

ur, vi ≥ 0 , ∀r, i, ϑq free ∀q.

(2)

In model (2), the vi, ur , and ϑq are decision variables of
inputs, desirable outputs, and undesirable outputs,

respectively. Constraints (2) guarantee that efficiency value
is less than or equal to one for each DMU. In the sequel,
according to the concepts of the leader-follower or the
Stackelberg game theory [14], we will discuss the efficiency of
the substages under the noncentralized model in the pres-
ence of undesirable outputs.

2.2. Generic NoncentralizedModel with Undesirable Outputs.
As mentioned above, by accepting that the first and second
stages are the leader and the follower, respectively, model (3)
computes the maximum achievable value for the efficiency
of the first stage under the sth scenario, based on the original
CRS-DEAmodel.(us we have the following input-oriented
DEA model for the first stage in the presence of undesirable
outputs according to Kuosmanen [35]’s production
technology:

e
1s∗
0 � max


H
h�1 ηhy

1s
hjo

+ 
D
d�1 wd z

s
djo


m
i�1 vix

1s
ijo

+ 
G
g�1 zgf

s
gjo

s.t


H
h�1 ηhy

1s
hj + 

D
d�1 wd z

s
dj


m
i�1 vix

1s
ij + 

G
g�1 zgf

s
gj

≤ 1, ∀j,∀sϵS,

zg, wd, ηh, vi ≥ 0, ∀g, d, h, i.

(3)

Model (3) is nonlinear but can be linearized using the
Charnes and Cooper [37] transformation as follows:

Table 2: Some advances of environmental factor applications in NDEA.

Authors DEA model Environmental factor Applications scope
Lozano [18] SBM Output Coal-fired power plant
Chen and Zhu [19] CCR Output Industrial systems
Li and Xiao[20] SBM Output Pulp and paper industry
Michali et al. [21] CCR Output Railway transport
Asanimoghadam et al. [22] ASBM Output Airport
Salahi et al. [23] ASBM Output Industry
Wang and Feng[24] CCR Output Industrial eco-efficiency
Mozaffari et al. [9] CCR/Fuzzy Output Petrochemical sector
Wu et al. [25] BCC/output Output Provincial environmental
Vaezi et al. [26] CCR Output Factory

Table 3: Progress in stochastic, fuzzy and robust optimization applications in DEA and NDEA.

Authors DEA/Uncertainty parameters Robust approach Applications scope
Blagojević et al. [27] SBM/Input Fuzzy/AHP Railway undertaking
Rasoulzadeh et al. [28] CCR/input Fuzzy Portfolio of finance
Wu et al. [25] CCR/output Max-min Hybrid poplar clones
Salahi et al. [29] CCR-CSW/in-output Interval Energy/forest district
Salahi et al. [30] Russell/in-output Russell measure Banking sector
Zhou et al. [31] CCR Stochastic Banking sector
Shakouri et al. [32] CCR/input Stochastic p-robust Banking sector
Huang et al. [33] CCR Stochastic Banking sector
Peykani et al. [34] CCR Fuzzy Investment firms

Feedback

Stage 1 Stage 2
xij1s

yhj1s

f sgj

zsdj
xtj2s

yrj2s

zqj2s

Figure 1: A DMUj in the two-stage process with an undesirable
output.
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Let α � 1/
m
i�1 vix

1s
ijo

+ 
G
g�1 zgfs

gjo
, then


m
i�1 αvix

1s
ijo

+ 
G
g�1 αzgfs

gjo
� 1, αvi � vi, αzg � zg,

αηh � ηh, αwd � wd. Now, model (3) becomes the fol-
lowing linear model:

e
1s∗
0 � max 

H

h�1
ηhy

1s
hjo

+ 
D

d�1
wd z

s
djo

s.t



H

h�1
ηhy

1s
hj + 

D

d�1
wd z

s
dj − 

m

i�1
vix

1s
ij − 

G

g�1
zgf

s
gj ≤ 0, ∀j,∀sϵS,


m

i�1
vix

1s
ijo

+ 
G

g�1
zgf

s
gjo

� 1, ∀sϵS,

zg, wd, ηh, vi ≥ 0, ∀g, d, h, i.

(4)

Also, according to model (1), the efficiency score of the
second stage with undesirable outputs is computed as
follows:

e
2s∗
0 � max


s
r�1 ur y

2s
rjo

+ 
G
g�1 zgf

s
gjo

− 
Q
q�1 ϑqz

2s
qjo


D
d�1 wd z

s
djo

+ 
T
t�1 δtx

2s
tjo

s.t


s
r�1 ur y

2s
rj + 

G
g�1 zgf

s
gj − 

Q
q�1 ϑqz

2s
qj


D
d�1 wd z

s
dj + 

T
t�1 δtx

2
tj

≤ 1, ∀j, ∀sϵS,


H
h�1 ηhy

1s
hjo

+ 
D
d�1 wd z

s
djo


m
i�1 vix

1s
ijo

+ 
G
g�1 zgf

s
gjo

≤ 1, ∀j,∀sϵS,


H
h�1 ηhy

1s
hjo

+ 
D
d�1 wd z

s
djo


m
i�1 vix

1s
ijo

+ 
G
g�1 zgf

s
gjo

� e
1s∗
0 , ∀sϵS,

ur, wd, zg, δt, ηh, vi, ϑq ≥ 0, ∀ r, d, g, t, h, i, q.

(5)

As before, using Charnes and Cooper [37] transfor-
mation, it is linearized as follows:

e
2s∗
0 � max

s

r�1
ur y

2s
rjo

+ 

G

g�1
zgf

s
gjo

− 

Q

q�1
ϑqz

2s
qjo

s.t



s

r�1
ur y

2s
rj + 

G

g�1
zgf

s
gj − 

Q

q�1
ϑqz

2s
qj − 

D

d�1
wd z

s
dj − 

T

t�1
δtx

2
tj ≤ 0, ∀j, ∀sϵS,



D

d�1
wd z

s
djo

+ 
T

t�1
δtx

2s
tjo

� 1, ∀sϵS,



H

h�1
ηhy

1s
hj + 

D

d�1
wd z

s
dj − 

m

i�1
vix

1s
ij − 

G

g�1
zgf

s
gj ≤ 0, ∀j,∀sϵS,



H

h�1
ηhy

1s
hjo

+ 
D

d�1
wd z

s
djo

− e
1s∗
0 

m

i�1
vix

1s
ijo

+ 
G

g�1
zgf

s
gjo

⎛⎝ ⎞⎠ � 0, ∀sϵS,

ur, wd, zg, δt, ηh, vi, ϑq ≥ 0, ∀ r, d, g, t, h, i, q.

(6)

2.3. Centralized Model with Undesirable Outputs. In this
section, we combine the two stages as the weighted sum of

efficiency scores of stages 1 and 2 with undesirable outputs
under the sth scenario as follows:

e
cs∗
o � max ξs

1 e
1s
0 + ξs

2 e
2s
0

s.t

e
1s
0 �


H
h�1 ηhy

1s
hj + 

D
d�1 wd z

s
dj


m
i�1 vix

1s
ij + 

G
g�1 zgf

s
gj

≤ 1, ∀j,∀sϵS,

e
2s
0 �


s
r�1 ur y

2s
rj + 

G
g�1 zgf

s
gj − 

Q
q�1 ϑqz

2s
qj


D
d�1 wd z

s
dj + 

T
t�1 δtx

2
tj

≤ 1, ∀j, ∀sϵS,

ur, wd, zg, δt, ηh, vi, ϑq ≥ 0, ∀ r, d, g, t, h.

(7)
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where ξs
1 and ξs

2 are the weights of the first and second
stages, respectively, reflecting the importance of the two
stages in the overall system (ξs

1 + ξs
2 � 1). We let

ξs
1 � (

m
i�1 vix

1s
ijo

+ 
G
g�1 zgfs

gjo
)/(

m
i�1 vix

1s
ijo

+ 
G
g�1 zgfs

gjo

+ 
D
d�1 wd zs

djo
+ 

T
t�1 δtx

2
tjo

) and ξs
2 � (

D
d�1 wdzs

djo

+ 
T
t�1 δtx

2
tjo

)/(
m
i�1 vix

1s
ijo

+ 
G
g�1 zgfs

gjo
+ 

D
d�1 wdzs

djo

+ 
T
t�1 δtx

2
tjo

) in order to linearize the model. (en, model
(7) becomes as follows:

e
cs
o � max


H
h�1 ηhy

1s
hjo

+ 
D
d�1 wd z

s
djo

+ 
s
r�1 ur y

2s
rjo

+ 
G
g�1 zgf

s
gjo

− 
Q
q�1 ϑqz

2s
qjo


m
i�1 vix

1s
ijo

+ 
G
g�1 zgf

s
gjo

+ 
D
d�1 wd z

s
djo

+ 
T
t�1 δtx

2
tjo

s.t

e
1s
0 �


H
h�1 ηhy

1s
hj + 

D
d�1 wd z

s
dj


m
i�1 vix

1s
ij + 

G
g�1 zgf

s
gj

≤ 1, ∀j,∀sϵS,

e
2s
0 �


s
r�1 ur y

2s
rj + 

G
g�1 zgf

s
gj − 

Q
q�1 ϑqz

2s
qj


D
d�1 wd z

s
dj + 

T
t�1 δtx

2
tj

≤ 1, ∀j, ∀sϵS,

ur, wd, zg, δt, ηh, vi, ϑq ≥ 0, ∀ r, d, g, t, h.

(8)

Now, let t1 � (
m
i�1 vix

1s
ijo

+ 
G
g�1 zgfs

gjo
+ 

D
d�1 wd zs

djo

+ 
T
t�1 δtx

2
tjo

)− 1 , vi � t1vi, zg � t1zg, ηh � t1ηh, ur � t1ur,

δt � t1δt, wd � t1wd and ϑq � t1ϑq; then, model (8) is
transformed into the following linear model:

e
cs∗
o � max 

H

h�1
ηhy

1s
hjo

+ 
D

d�1
wd z

s
dj + 

s

r�1
ur y

2s
rjo

+ 
G

g�1
zgf

s
gjo

− 

Q

q�1
ϑqz

2s
qjo

⎛⎝ ⎞⎠

s.t



H

h�1
ηhy

1s
hj + 

D

d�1
wd z

s
dj − 

m

i�1
vix

1s
ij − 

G

g�1
zgf

s
gj ≤ 0, ∀j,∀sϵS,



s

r�1
ur y

2s
rj + 

G

g�1
zgf

s
gj − 

Q

q�1
ϑqz

2s
qj − 

D

d�1
wd z

s
dj − 

T

t�1
δtx

2s
tj ≤ 0, ∀j, ∀sϵS,



m

i�1
vix

1s
ijo

+ 
G

g�1
zgf

s
gjo

+ 
D

d�1
wd z

s
djo

+ 
T

t�1
δtx

2s
tjo

� 1, ∀sϵS,

ur, wd, zg, δt, ηh, vi, ϑq ≥ 0, ∀ r, d, g, t, h.

(9)

In model (9), ecs∗
o displays the average of the efficiency

score of the two-stage process.

Definition 1. (e two-stage process is efficient if and only if
e1s

j � e2s
j � 1.

It is noted that, if there is uncertainty in data set, models
(4), (6), or (9) might be infeasible at optimal solution of
nominal problem. (us, it is essential to choose alternative
models such that small variation in data cannot change the
rankings. To cope this case, we apply the stochastic p-robust
optimization approach of Snyder and Daskin [38] that will
be illustrated in the next section.

3. Proposed NDEA Models with Uncertainty

In this section, first, we depict the stochastic p-robust op-
timization concept; then, we apply it to the proposed two-
stage models of Section 2.

3.1. Stochastic P-Robust Concept. Let S be a collection of
scenarios, and Ps be a deterministic maximization problem
for each scenario s (there is a different problem Ps for each
scenario s ϵ S). For each s,, let Fs∗ > 0 be the optimal effi-
ciency score for Ps As well, let Χ be a feasible solution for Ps
for all s ϵ S and let Fs(Χ) be the efficiency score of Ps under
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solution Χ. (erefore, Χ is called p robust if for all s ϵ S the
following inequality holds:

p≥
F

s∗
− F

s
(Χ)

F
s∗ . (10)

In equation (10), the right-hand side is the relative regret
for scenarios and p≥ 0 is a parameter (constant) that limits
the relative regret for each scenario. It is obvious that in-
equality (10) can be written as follows:

(1 − p)F
s∗ ≤F

s
(Χ). (11)

(erefore, in order to control the relative regret perti-
nent to all scenarios, the p-robust constraints (11) are put in
the models.

Definition 2. DMUj is stochastic p -robust efficient in dif-
ferent scenarios if and only if its optimal objective function is
one.

3.2. Stochastic p -Robust Noncentralized Model. Here, we
present the stochastic p robust Stackelberg game versions of
uncertain DEA models (4) and (6). (e stochastic p robust
model for the first stage of model (4) is as follows:

f
1s∗
0 � max

S

s�1
q

s


H

h�1
ηhy

1s
hjo

+ 
D

d�1
wd z

s
djo

⎡⎣ ⎤⎦

s.t


H

h�1
ηhy

1s
hjo

+ 
D

d�1
wd z

s
djo
≥ (1 − p)e

1s∗
0 , ∀sϵS,



H

h�1
ηhy

1s
hj + 

D

d�1
wd z

s
dj − 

m

i�1
vix

1s
ij − 

G

g�1
zgf

s
gj ≤ 0, ∀j,∀sϵS,


m

i�1
vix

1s
ijo

+ 
G

g�1
zgf

s
gjo

� 1, ∀sϵS,

zg, wd, ηh, vi ≥ 0, ∀g, d, h, i.

(12)

(e objective function of model (12) computes the ex-
pected efficiency value of DMUs according to the data from
each scenario in the leader stage. Also, qs in the objective
function is the probability that scenario s happens (it is clear
that, there is no information about the probability of chance
of each scenario). Constraints (12) represent the p robust
restrictions. (is set of restrictions may not allow the sce-
nario efficiency to take value more than 100(1 − p)% of the
ideal efficiency scores gained by each scenario. Also, the
parameter p controls the relative regret between all sce-
narios, and if p �∞, then the p robust constraints in model
(12) become inactive. (e third to the fifth set of constraints
are the same constraints as in model (4) which must hold for
each sϵS.

Remark 1. By assuming fs
ko � max fs

go|1≤g≤G > 0 ,
xs

ko � max xs
io|1≤ i≤m > 0 and then setting

(η1, . . . , w1, . . . , , v1, . . . , z1, . . .) � (0, . . . , 1/xs
ko, 0, . . . , 1/

fs
ko, 0, . . .), constraints 

m
i�1 vix

1s
ijo

+ 
G
g�1 zgfs

gjo
� 1 and


H
h�1 ηhy1s

hj + 
D
d�1 wd zs

dj − 
m
i�1 vix

1s
ij − 

G
g�1 zgfs

gj ≤ 0 im-
ply 

H
h�1 ηhy1s

hjo
+ 

D
d�1 wd zs

djo
≤ 1. (us, we get

e1s∗
0 ≤ 1/1 − p . So for very small p’s, there may not be

p-robust solutions for model (12); therefore, it may be
infeasible.

As retaining the leader’s efficiency fixed, the stochastic p
robust model for the second stage for all scenarios can be
modeled as follows:

f
2s∗
0 � max

S

s�1
q

s


s

r�1
ur y

2s
rjo
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G

g�1
zgf

s
gjo
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Q
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ϑqz
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ur, wd, zg, δt, ηh, vi, ϑq > 0,∀ r, d, g, t, h, i, q.

(13)
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According to data from each scenario, the objective
function of model (13) maximize the expected efficiency
value of all DMUs. Constraints (13) impose the p robust
criterion associated with all expert’s probabilities. Further,
the relative regret among all scenarios is controlled by the
parameter p. Constraints (13) show the efficiency value of
the first stage under scenario s. (e other set of constraints
are the same as in model (6) whichmust hold for each sϵS. In
addition, the relation between the overall efficiency and the
efficiency score of each stage, i.e., fs∗

0 , f1s∗
0 andf2s∗

0 , re-
spectively, are given below.

Definition 3. DMU0 for the sth scenario is overall efficient if
and only if it is efficient in both stages under the sth scenario.

Definition 4. DMU0, under the sth scenario and kth stage is
efficient if only if fks

j � 1, j � 1, . . . , n and k � 1, 2.

3.3. Stochastic p-Robust Centralized Proposed Model.
Similar to the previous subsection, the stochastic p robust
centralized model (9) under uncertainty is as follows:
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(14)

(e objective function of model (14) maximizes the
expected efficiency value of all DMUs. Constraints (14)
impose the p-robust restrictions that may not permit
the scenario efficiency to take value more than 100(1 −

p)% of the ideal efficiency scores gained by each scenario.
(e relative regret between all scenarios is controlled
by the parameter p. (e p robust constraints in model
(14) become ineffective if p �∞. (e other constraints
are the same as in model (9) which must be retained for
all sϵS. It is noteworthy that the p values generally
are assumed greater than 0.2 and their upper bound is
gained by try and error. Also, these values can be different
for any problem and are usually defined by the decision
maker.

Lemma 1. ;e expected efficiency values of model (9) for
different scenarios are greater than those of the robust model
(14).

Proof. Since the feasible set of model (14) is the subset of the
feasible set of model (9); thus, the result follows. □

Theorem 1. ;e expected regret values of model (9) in
various scenarios are not less than those of model (14).

Proof. Let the gap between the expected efficiency values of
each model with the average ideal efficiency be as follows:

θ � 
sεS

q
s
F

s
(Χ) − 

sεS
q

s
F

s∗
. (15)

Obviously, the smaller θ amount of a model means that
the model gives more exact results. According to Lemma 1,
we have

f
cs∗
o ≤ Ω, (16)

in which Ω is the expected optimal objective value of model
(9). From inequality (16), we further can obtain

f
cs∗
o − 

sεS
q

s
F

s∗ ≤ Ω − 
sεS

q
s
F

s∗
. (17)

(e left-hand side in (17) is the gap value for model (14)
and the right-hand side represents the gap value of the
expected value of model (9). (us, the result follows. □

4. Real Case Study and Discussion

In this section, the advantage of the proposed models for a
dataset of Persian Gulf oilfields is discussed. In compre-
hensive reservoir management, achieving maximum eco-
nomic advantage is the most important goal in the
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development of an oilfield. One of the most important
variables in achieving this maximum advantage is the
number of wells drilled oilfields [39]. When oil production is
increased, more water is being used and more oilfield
wastewater is being generated, and while any reduction in
water use means less oilfield wastewater releases, it also
means a reduction in oil production.

(us, some inputs are utilized to generate both the
desirable and undesirable outputs and minimizing total
costs and maximizing the desirable outputs are the aims.
Moreover, in accordance with the supportable expansion
program, it is required to reuse wastewater to warrant the
water reserve in the water-deficient regions [40]. (us, the
wastewater here behaves as a feedback variable which makes
better the efficiency of the total oilfield system. Further,
uncertainty in the number of wells is an important issue in
the development of oil fields.(erefore, every decision needs
to take into account all the uncertainties in all stages of field
development. (e flowchart of the methodology is given in
Figure 2.

First, we evaluate ideal efficiency values of the two-stage
NDEA models under discrete scenarios, provided by the
oilfield system analyzers (i.e., s1 � pessimistic and s2
� optimistic). According to the study by Snyder and Daskin
[38]; we assume that all scenarios have equiprobable that is
qs � 0.5. Further, we consider five inputs in stage1, number
of generating wells, cost of oil, cost of water, water increasing
rate, and reusable water; desirable outputs and undesirable
output are actual oil generation and incremental oil gen-
eration, respectively. In stage 2, undesirable wastewater is
refined by applying the inputs as operating costs, con-
sumption cost, construction expenditure, hydrocarbons
(ammonia); therefore, hydrocarbons removal rates and the
quantity of reusable refined wastewater are desirable outputs
and unrefined wastewater is undesirable output. Table 4
shows inputs, intermediates, and outputs data of 11 ports of
the Persian Gulf oilfields.

First, using models (4), (6), and (9), we obtain the ideal
efficiency score of each DMU based on each scenario. (en,
we apply models (12)–(14) for the efficiency analysis of
DMUs. In Table 5, the relevant results are reported. As well,
the ideal efficiency score matching the amounts specified in
each scenario is shown in the columns of Table 5.

With respect to Table 5, the efficiency scores in model (4)
for most DMUs are equal to one in two scenarios that is 72%
of the total oilfield regions in the first scenario and 90% in
the second scenario. In model (6), most DMUs gained an
efficiency score of one that is 0.81% of total oilfield regions
and finally, in model (9) all DMUs are efficient in two
scenarios.

Subsequently, we solved models (12)–(14) to gain the
efficiency scores for different p values in each scenario that
are presented inTables 6–8. As can be seen, models (12)–(14)
give infeasible results for some DMUs when p≤ 0.47 that we
do not report those here.

As mentioned in Section 3.2, for small values of p, the
offered models give infeasible results in some scenarios. In
this perusal, on the one hand, when p< 0.47 with respect to
the results, our models give infeasible results for most

DMUs. As the p value enhances, the efficiency scores set
better and the number of infeasible DMUs gradually reduces
and we see feasible results. On the other hand, for p≥ 0.52,
the efficiency scores remain fixed. So, we do not carry on and
stop it for the other p-values. (us, here, we only consider
p≥ 0.47 and do not report the results of p≤ 0.47. For ex-
ample, with increasing the p value from 0.47 to 0.50, the
efficiency score of DMU #7 shifts. (is shift also can be seen
in other DMUs. Models (12)–(14) maximize the expected
efficiency scores of DMUs in each scenario, while p robust
constraints control the respective variation between their
efficiency scores produced by the model and ideal efficiency
under each scenario. We should note that the overall effi-
ciency of DMU0 for models (12) and (13) can be specified as
fs∗
0 � f1s∗

0 + f2s∗
0 as reported in Table 9.

In order to compare the overall efficiency scores of
model (14), we let p � 0.49 for each DMU.(e related results
are given in Table 10, and as well, are shown in Figure 3.

As seen in Table 10, the robust centralized model (i.e.,
fcS∗

o ) gives better results for the overall efficiency scores
(i.e., fs

0) compared to the robust noncentralized model.
(us, one can conclude that the centralized approach is
preferred over the noncentralized approach.

It is obvious that, for all DMUs, the efficiency scores in
model (14)are more premier than the other one. So, model
(14) as a superior model is chosen, and to gain a profound
understanding of the stochastic p robust NDEA models, we
compare model (14) with model (9).

After solving each model and gaining Fs(Χ), we present
two criterions as sεS qs Fs(Χ) and
sεSqs(Fs∗ − Fs(Χ))/Fs∗, where the first criterion measures
the expected efficiency score of all DMUs by taking into
account the occurrence probabilities of each scenario, and
the second criterionmeasures the expected relative regret for
each DMU, respectively. Finally, the computed efficiency
scores by the robust model (14) are balanced with these two
criteria under two scenarios. (e results of this comparison
are reported in Table 11 and illustrated in Figure 4. It should
be noted that, in this trial, we put p � 0.49. As seen in
Figure 4, both efficiency scores and regret values of model
(14) are less than the other one. As mentioned before, the
relative regret value demonstrates the relative difference
between the ideal efficiency gain in each scenario and the
efficiency of a model that is displayed according to Lemma 1
and (eorem 1.

5. Sensitivity Analysis

In this section, we run some experiments for understanding
the sensitivity of the proposed model (model (14)) to the
experts’ probabilities and compare the results to the sen-
sitivity of model (9) . (e first row of Table 12 and 13 show
the value of probabilities as qs � (q1, q2), and columns 2–4
present the difference between the expected efficiency values
of each model and the average ideal efficiency score. In fact,
each model is solved using these probabilities and the dif-
ference between the expected efficiency of each DMU with
the average ideal efficiency (i.e., the gap value) is obtained
using equation (15).
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CCR two-stage NDEA model
under scenario

Undesirable 
outputs 

Ideal efficiency values in
scenarios S1, S2 Efficiency evaluation 

with different p-values

Regret value calculation
in S1, S2

Stochastic p-robustness
NDEA model

Expected value calculation in
S1, S2

Comparison of regret and expected values in both
models (Stochastic p-robustness and NDEA)

Sensitivity analysis of the experts’ probabilities

Figure 2: Flowchart of two-stage stochastic p robust.

Table 4: (e data set of three scenarios for 11 oilfields.

DMUs
x1
1 x1

2 x1
3 x1

4 y1
1 y1

2 z1
s1 s2 s1 s2 s1 s2 s1 s2 s1 s2 s1 s2 s1

1 75000 90000 0.498 0.510 92.22 121.57 67.45 60.8 510.1 638.1 102.0 68.0 433.0
2 48000 84000 0.442 0.453 73.36 132.05 85.5 95 797.1 997.1 72.0 96.0 344.4
3 52000 87000 0.434 0.462 113.18 117.38 55.1 64.6 542.0 678.0 87.0 116.0 531.3
4 4000 74000 0.533 0.546 209.60 138.34 30.4 27.55 231.2 289.2 150.0 200.0 984.0
5 35000 63000 0.410 0.420 79.65 125.76 78.85 82.65 693.5 867.5 85.5 114.0 373.9
6 30000 90000 0.342 0.351 127.86 117.38 48.45 40.85 342.8 428.8 87.0 116.0 600.2
7 18000 90000 0.513 0.525 138.34 119.47 45.6 40.85 342.8 428.8 96.0 128.0 649.4
8 6000 95000 0.368 0.377 119.47 117.38 52.25 52.25 438.4 548.4 90.0 120.0 560.9
9 46000 95000 0.523 0.536 85.94 123.66 72.2 64.6 542.0 678.0 52.5 70.0 403.4
10 23700 90000 0.564 0.577 113.18 117.38 56.05 46.55 390.6 488.6 82.5 110.0 531.3
11 12000 84000 0.318 0.326 88.03 121.57 71.25 58.9 494.2 618.2 61.5 82.0 413.3

DMUs x21 x22 x23
s1 s2 s1 s2 s1 s2

1 477.0 117 135.0 17479.9 24279.9 92.6
2 379.4 109 126.0 12338.8 17138.8 117.4
3 585.3 113 130.5 14909.4 20709.4 47.4
4 108.4 96 111.0 25705.8 35705.8 65.5
5 411.9 82 94.5 14652.3 20352.3 61.0
6 661.2 117 135.0 14909.4 20709.4 103.9
7 715.4 117 135.0 16451.7 22851.7 85.8
8 617.9 124 142.5 15423.5 21423.5 76.8
9 444.4 124 142.5 8997.0 12497.0 173.9
10 585.3 117 135.0 14138.2 19638.2 88.1
11 455.3 109 126.0 10539.4 14639.4 67.7

DMUs f1 z21 y21
s1 s2 s1 s2 s1 s2

1 239.4 489.3 10.4 30.4 0.41 0.71
2 191.5 391.4 8.3 24.3 0.52 0.9
3 478.8 978.5 20.8 60.8 0.21 0.58
4 339.9 694.7 14.8 43.2 0.29 0.32
5 363.9 743.7 15.8 46.2 0.27 0.83
6 215.5 440.3 9.4 27.4 0.46 0.51
7 263.3 538.2 11.4 33.4 0.38 0.48
8 292.1 596.9 12.7 37.1 0.34 0.55
9 129.3 264.2 5.6 16.4 0.77 0.76
10 253.8 518.6 11.0 32.2 0.39 0.59
11 330.4 675.2 14.4 42.0 0.3 0.75
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Table 5: Ideal efficiency scores under scenarios for models (4), (6) and (9).

DMUs
Model (4) Model (6) Model (9)

s1 s2 s1 s2 s1 s2
1 1 1 1 1 1 1
2 0.7697 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 0.7281 0.9451 1 1 1 1
6 1 1 0.9765 0.8936 1 1
7 1 1 0.8320 1 1 1
8 1 1 1 1 1 1
9 0.9549 1 1 1 1 1
10 1 1 1 1 1 1
11 1 1 1 1 1 1

Table 6: (e results of solving model (12).

p value 0.47 0.48 0.49 0.50 0.51 0.52DMUs
1 0.058 0.088 0.034 0.041 0.039 0.039
2 0.045 0.045 0.019 0.150 0.150 0.150
3 0.052 0.102 0.064 0.067 0.065 0.065
4 0.054 0.094 0.076 0.069 0.069 0.069
5 INF 0.063 0.038 0.063 0.065 0.065
6 0.043 0.043 0.040 0.061 0.067 0.067
7 0.049 0.098 0.013 0.098 0.096 0.096
8 0.034 0.066 0.025 0.061 0.063 0.063
9 0.046 0.096 0.002 0.013 0.013 0.013
10 0.051 0.015 0.047 0.049 0.049 0.049
11 0.062 0.062 0.041 0.045 0.042 0.042

Table 7: (e results of solving model (13).

p value 0.47 0.48 0.49 0.50 0.51 0.52DMUs
1 0.010 0.104 0.058 0.058 0.058 0.058
2 0.123 0.113 0.097 0.101 0.101 0.101
3 0.026 0.024 0.028 0.030 0.028 0.028
4 0.144 0.132 0.037 0.039 0.039 0.039
5 0.091 0.081 0.065 0.070 0.070 0.070
6 INF INF 0.057 0.060 0.060 0.060
7 0.101 0.101 0.101 0.105 0.105 0.105
8 0.119 0.021 0.035 0.049 0.049 0.049
9 INF 0.090 0.005 0.001 0.002 0.002
10 INF INF 0.019 0.018 0.017 0.017
11 0.122 0.127 0.019 0.021 0.023 0.023

Table 8: (e results of solving model (14).

p value 0.47 0.48 0.49 0.50 0.51 0.52DMUs
1 0.048 0.047 0.224 0.275 0.275 0.275
2 0.051 0.152 0.216 0.260 0.260 0.260
3 0.049 0.247 0.228 0.381 0.381 0.381
4 0.060 0.231 0.295 0.234 0.234 0.234
5 0.044 0.144 0.160 0.257 0.257 0.257
6 INF 0.124 0.207 0.438 0.439 0.439
7 0.042 0.162 o. 184 0.229 0.229 0.229
8 0.048 0.168 0.283 0.402 0.402 0.402
9 0.052 0.182 0.220 0.263 0.265 0.265
10 INF INF 0.389 0.396 0.398 0.398
11 0.050 0.160 0.184 0.378 0.378 0.378
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Figure 3: Comparison of the overall efficiency with model (14).

Table 9: (e sum of the efficiency scores of models (12) and (13).

p value 0.47 0.48 0.49 0.50 0.51 0.52DMUs
1 0.068 0.192 0.092 0.099 0.097 0.136
2 0.168 0.158 0.116 0.251 0.251 0.401
3 0.078 0.126 0.092 0.097 0.093 0.093
4 0.198 0.226 0.113 0.108 0.108 0.177
5 INF 0.144 0.103 0.133 0.135 0.200
6 INF INF 0.097 0.121 0.127 0.194
7 0.150 0.199 0.114 0.203 0.201 0.297
8 0.153 0.087 0.060 0.110 0.112 0.175
9 INF 0.186 0.007 0.014 0.015 0.015
10 INF INF 0.066 0.067 0.066 0.066
11 0.184 0.189 0.060 0.066 0.065 0.107

Table 10: (e results of the overall efficiency of model (14) with p � 0.49.

Efficiency
f1s∗
0 f2s∗

0 fs
0 � f1s∗

0 + f2s∗
0 fcS∗

oDMUs

1 0.034 0.058 0.092 0.224
2 0.019 0.097 0.116 0.216
3 0.064 0.028 0.092 0.228
4 0.076 0.037 0.113 0.295
5 0.038 0.065 0.103 0.160
6 0.040 0.057 0.097 0.207
7 0.013 0.101 0.114 0.184
8 0.025 0.035 0.060 0.283
9 0.002 0.005 0.007 0.220
10 0.047 0.019 0.066 0.389
11 0.041 0.019 0.060 0.184
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Figure 4: Comparison of regret and expected efficiency of models (9) and (14).

Table 11: (e results of expected and regret values of models (9) and (14)in two scenarios.

Efficiency Expected value Regret value p Robust Regret value
DMUs Model (9) Model (9) Model (14) Model (14)
1 0.671 0.158 0.131 0.063
2 0.587 0.090 0.158 0.043
3 0.782 0.143 0.230 0.049
4 0.528 0.095 0.069 0.034
5 0.792 0.132 0.165 0.046
6 0.556 0.099 0.167 0.051
7 0.727 0.141 0.196 0.062
8 0.586 0.152 0.163 0.056
9 0.501 0.137 0.113 0.052
10 0.858 0.079 0.207 0.044
11 0.762 0.107 0.142 0.066

Table 12: (e gap values of model (9).

qs (0.3, 0.7) (0.6, 0.4) (0.2, 0.8)DMUs
1 0.635 0.659 0.647
2 0.551 0.575 0.563
3 0.746 0.770 0.758
4 0.492 0.516 0.504
5 0.756 0.780 0.768
6 0.520 0.544 0.532
7 0.691 0.715 0.703
8 0.550 0.574 0.562
9 0.465 0.489 0.477
10 0.822 0.846 0.834
11 0.726 0.750 0.738

Table 13: (e gap values of model (14).

qs (0.3, 0.7) (0.6, 0.4) (0.2, 0.8)DMUs
1 0.635 0.659 0.647
2 0.551 0.575 0.563
3 0.746 0.770 0.758
4 0.492 0.516 0.504
5 0.756 0.780 0.768
6 0.520 0.544 0.532
7 0.691 0.715 0.703
8 0.550 0.574 0.562
9 0.465 0.489 0.477
10 0.822 0.846 0.834
11 0.726 0.750 0.738
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(e smaller value of the gap for a model approves that
the model generates more accurate results, since the ex-
pected efficiency of that model is closer to the ideal ex-
pected efficiency. It can be viewed from Tables 12 and 13
that model (14) gives better results than the expected
model (9). (is approves the superiority of our proposed
stochastic p-robust model (model (14)) compared to
model (9).

6. Conclusions and Future Research

Uncertainty is an essential part of real performance
evaluation that imposes serious challenges in this context.
In this research, scenario-based robust centralized and
noncentralized models are designed for appraising the
efficiency of a two-stage NDEA model in the presence of
undesirable outputs according to Snyder and Daskin’s
approach (2006). (e objective function of this model
sustains the robustness of the solution and achieves the
optimal solution from the expected efficiency in each
scenario. (is model is substantially sensitive to the
variation of the parameters pertinent to the robustness
level between the values under different scenarios and
allows controlling the conservatism level. Further,
managers can make a balance between the regret amount
and the expected amount of DMUs in feasible scenarios,
and as well as a balance between the robustness of the
model and the robustness of the solution. Moreover, it
combines the benefits of original stochastic and robust
optimization models, and the robustness of results is
increased significantly without substantial decrease in the
expected efficiency. It has relatively low conservatism
than the other existing uncertainty models and the so-
lution is immunized against scenarios that are rarely to
occur. To appraise the validity and reliability of the
proposed models, we applied them to a real dataset drawn
from the oilfield system with undesirable outputs in the
Persian Gulf region where oil generation is the first stage
and wastewater treatment is the second stage. (e results
indicated, for maximizing the oil generation, the election
of the centralized approach for all DMUs gives preferable
efficiency in comparison with the noncentralized ap-
proach. When oil generation is enhanced, more water is
applied and in Stage 2, more oilfield wastewater is ob-
tained, while any decrease in water usage means not so
much oilfield wastewater issuances, and it causes a de-
crease in the input to Stage 1. Moreover, sensitivities
analysis on different probability vectors confirms that the
proposed p-robust stochastic DEA model produces better
results than the differences gained by our model are
smaller than those obtained by another model. Extension
of the proposed model into the Malmquist indicator
Bansal and Mehra [41] under dynamic conditions can be
considered as future research direction. In addition, the
idea of uncontrollable inputs Zarbakhshnia and Jaghdani
[42], and nondiscretionary factors [43] Shakouri and
Salahi [44] have also extensive applications, so including
them in the proposed models would be an absorbing
future research direction.
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