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In the present study, the group acceptance plan is examined when the lifetime of an item follows the odd Perks exponential
distribution, and a large number of items regarded as a group are evaluated simultaneously. e crucial parameters are derived
from the consumer risk and the test termination period. e operating characteristics function values are generated for various
quality levels. An optimized group acceptance plan and comparison of group acceptance sampling plan with the ordinary
sampling plan are also presented. Additionally, a graphical illustration of operating characteristics for diverse groups and
parametric values is provided.eminimum ratios of the actual average life to the stipulated average life are likewise computed at
the prescribed producer’s risk. Examples are used to illustrate the outcomes via our algorithm under the odd Perks exponential
distribution setting. It is explained using a quality control dataset to establish its practical versatility.

1. Introduction

e impact of nanotechnology on our daily lives has become
a well-established fact. Without the employment of ap-
propriate statistical techniques, advancements in nano-
technology could not have been imaginable. e use of
statistical approaches in nanoscale applications was
reviewed in depth by [1]. Although, conventional sampling
methods such as systematic sampling and simple random
sampling and their variants are widely employed to identify a
representative sample. However, novel nanotechnology
sampling methods have been developed [1]. e sampling
approach is intended always to save money and time. In a
competitive global business market, quality control has
evolved as one of the key instruments for separating apart
the various competing businesses. Acceptance sampling and
statistical quality control are two crucial strategies for as-
suring the quality of a product. e basic purpose of the

acceptance sampling strategies is to accept or reject sub-
mitted lots of a size based on the quality of the products that
were examined in a sample obtained from the lot. An ac-
ceptance sampling plan (ASP) is a prede�ned plan to obtain
the minimum sample size to be used for testing. e key
obstacle in most ASPs for a truncated life test is �guring out
how big of a sample to take from the concerned lot.

A group acceptance sampling plan (GASP) can help you
achieve the best sample size and trial length possible. A
GASP based on truncated life tests is the ultimate result of
combining GASP with truncated life testing, and it is based
on the assumption that the lifespan of a product �ts a speci�c
probability distribution. e ordinary sampling plan (OSP)
makes the implicit assumption that each tester will contain
just one item. Nevertheless, in practice, testers that can test
numerous items at once are used because doing so can
reduce testing costs and time. Jun et al. [2] developed the
characteristics of GASP for the truncated life test under the
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assumption that the lifespan of every item followed Weibull
distribution. In such a sampling plan, the number of groups
and acceptance numbers are obtained simultaneously for the
specified producer and consumer risks.

Several researchers developed a GASP predicted on a
truncated life test for instances when the product followed
various sorts of probability distributions. For example, [3]
investigated GASP based on the log-logistic and inverse
Rayleigh distributions, and the same for [4] with the
Marshall-Olkin extended Lomax distribution, [5] with the
Marshall-Olkin extended Weibull distribution, [6] with the
generalized exponential distribution, [7] with the inverse
Weibull distribution, [8] with the odd generalized expo-
nential log-logistic distribution, [9] with the Marshall-Olkin
Kumaraswamy exponential distribution, and [10] with the
exponentiated Bell exponential distribution.

With the potential to induct new parameters, there has
been an increase in interest in developing novel distributions
based on baseline distributions and compounding tech-
niques. In fact, parameter induction has been shown to be
beneficial for examining skewness and tail features as well as
improving the convergent validity of the developedmodel. A
detailed review of it is presented by [9]. -e most pertinent
source for the theoretical framework of the present study is
[11], where the authors used the Perks distribution [12] as
the baseline distribution in the exponential distribution [13]
and investigated many properties of the odd Perks expo-
nential (OPE) distribution. -e main approach of this study
is to investigate GASPs for the OPE distribution as no GASP
has been found in the literature for the Perks distribution. As
described in [11], the following are the main implications of
taking into account the OPE distribution: (i) it outperforms
alternative developed models in terms of fit; (ii) it improves
kurtosis adjustability; (iii) it has greater flexibility in terms of
probability density function (pdf) and hazard rate function
(hrf) shapes; (iv) the Perks distribution has been shown to be
more effective in analyzing various types of lifetime data
([14–18]); and (iv) distinctive submodels of the OP-G family
have been demonstrated to be especially effective at ana-
lyzing lifetime data of diverse types presented by [11].
-rough the use of a basic ratio approach andmany carefully
chosen scaling parameters, the OPE distribution expands the
functionality of the exponential distribution along with
some of its potent exponentiated variants. We therefore
propose the OPE distribution as a perfect potential distri-
bution for GASP.

Plans for acceptance sampling come in a variety of forms
which include variable acceptance plans, attributes accep-
tance plans, accelerated and progressively plans, and group
acceptance plan. However, the major objective of these plans
is to defend both the producer and the customer while
making a judgement on the supplied lot with a minimal
sample size. Acceptance sampling plans (ASP) are frequently
created in order to provide criteria by which items might be
accepted or rejected depending on sample data. -e de-
velopment of ASP is a frequent subject in reliability and
quality control for lot acceptability objectives. -is subject is
fundamentally an optimization technique with constraints.
Typically, the analyst must reduce the sample size or a

certain cost function while taking into account a number of
restrictions put forward by the manufacturer and the cus-
tomer. -e lifespan of a product is a crucial quality attribute
in many practical disciplines, particularly in reliability
analysis and quality control. In these situations, the optimal
life test and reliability strategies offer quick ways to assess the
acceptability of a product based on the optimal acceptance
design. -e optimal designs for developing these sample
programmes are subsequently explored by [2, 19–29].
According to the best of our knowledge, there is no work on
a sampling plan using the OPE model. In this paper, we will
design GASP for the OPE model.

-e rest of the article is structured as follows: In Section
2, we lay forth the theoretical foundation for OPE distri-
bution with cdf, pdf, and quantile function (qf). Section 3
encompasses the development of GASP for the lifespan
percentiles, followed by a truncated life test along with
optimal GASP. An illustrative example of the GASP for the
OPE distribution is presented in Section 4. An application
and a summary of the suggested approach using actual data
are furnished in Section 5. A comparative study of GASP
with the OSP is presented in Section 6. -e outcomes of the
articles are finally summarized in Section 7.

2. Odd Perks-G Exponential Distribution

First, let us describe the cdf, pdf, and qf of the odd Perks-G
(OP-G) family taken from [11], under which the cdf, pdf,
and qf of odd Perks exponential (OPE) distribution are
generated. -e cdf of the OP-G family is indicated as

F(x) � 1 −
1 + β

1 + βe
θ(G(x;δ)/G(x;δ))

, x ∈ R, (1)

where θ> 0, β> 0, and G(x; δ) is the baseline cdf of an
absolutely continuous distribution with a parameter vector
δ, and G(x; δ) � 1 − G(x; δ) is the baseline reliability
function. With these notations, the pdf of the OP-G family is
expressed as follows:

f(x) �
βθ(1 + β)g(x; δ)e

θ[G(x;δ)/G(x;δ)]

G(x; δ)
2 1 + βe

θ(G(x;δ)/G(x;δ))
 

2, (2)

where g(x; δ) is the pdf of a baseline distribution. -e as-
sociated qf is given as

Q(u) � G
− 1 (1/θ)log[β + u/β(1 − u)]

(1/θ)log[β + u/β(1 − u)] + 1
; δ , (3)

where it is understood that G− 1(x; δ) is the qf of the baseline
distribution. Now, taking into account the cdf and pdf of
exponential distribution with parameter δ � λ as G(x; δ) �

1 − e− λx and g(x; δ) � λe− λx, with λ> 0, in equations (1) and
(2), the cdf and pdf of the OPE distribution is taken from
[11] and are as follows:

F(x) � 1 −
1 + β

1 + βe
θ eλx−1( )

, x> 0, (4)

and the pdf of the OPE distribution is given by
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f(x) �
βθ(1 + β)λe

θ eλx− 1( )

e
−λx 1 + βe

θ eλx−1( ) 
2, x> 0. (5)

It is understood that f(x) � F(x) � 0 for x≤ 0.
Furthermore, the qf of the OPE distribution using

equation (4) is given by

q(u) �
1
λ

log 1 +
1
θ
log

β + u

β(1 − u)
   , u ∈ (0, 1). (6)

-e functions will be used to elaborate our GASP
algorithm.

3. Description of the GASP under the
OPE Model

For the present research, the median is used as the quality
index. As [3] claimed, the median outperforms rather than
the mean as a criterion for a skewed distribution. Because of
the skewed distribution of the OPE distribution, the per-
centile point must be employed as the quality index. As a
result, the key goal of the current research is to provide a
GASP presuming that the lifespan of an item followed an
OPE model with known parameters β, θ, and λ having cdf in
equation (4). GASP is a valuable quality control instrument
that enables a corporation to test randomly picked samples
and check the performance of an overall product lot using
statistical techniques. -e phases for taking the GASP into
practice and acquiring the design parameters of the OPE
model were taken from [3, 4, 9] and those are as follows:

(1) Selecting the number of groups g and assigning
specified r items to each group, yielding a sample size
for each lot as n � g × r

(2) Choosing an acceptance number c for each group
with a set experiment time to

(3) Carrying out the experiment for all g groups si-
multaneously, and making a count of how many
times each group fails

(4) Accepting the lot if each of the groups has at most c

failures by the end of the trial
(5) Terminating the trial and discarding the entire lot

when more than c components fail in any group

-us, for a given r, the hypothesized GASP described by
two design parameters (g, c) is defined for the OPE model.
-e cdf of the OPE model is expressed in equation (4) and is
dependent on β, θ, and λ, whereas the median life is
expressed in equation (6). -e probability of accepting a lot
is expressed in the following expression:

pa(p) � 
c

i�0

r

i
 p

i
(1 − p)

r− i⎡⎣ ⎤⎦
g

, (7)

where p denotes the probability that an item in a group
would fail before to and is obtained by inserting equations
(6) in (4). Based on equation (6), we put

m �
1
λ

log 1 +
1
θ
log

β + 0.5
0.5β

   , (8)

and

η � log 1 +
1
θ
log

β + 0.5
0.5β

   . (9)

When η is substituted in equation (8), λ � η/m is ob-
tained. Let m � η/λ and to � a1mo. -e quality level of a
product can be expressed as the ratio of its median lifespan
to the prescribed lifespan m/mo. Substituting λ � η/m and
to � a1mo in equation (4), the probability of failure is
expressed as

p � 1 −
1 + β

1 + βe
θ eλt−1( )

, (10)

which can also be written as

p � 1 −
1 + β

1 + βe
θ eηa1 m/mo( )−1

−1 
. (11)

Equation (11) can be used to calculate p for specified β
and θ when a1 is given and r2 � m/mo. Now, we have two
failure probabilities, p1 and p2, which are used to represent
the consumer and producer risks, respectively, where the
producer’s risk refers to the probability of rejecting a good
lot and the consumer’s risk refers to the probability of
accepting a bad campaign. For given values of β, θ, a1, and r2,
we must evaluate the values of g and c that satisfy the
following two equations simultaneously:

pa p1|m/mo�r1( ) � 
c

i�0

r

i
 p

i
1 1 − p1( 

r− i⎡⎣ ⎤⎦
g

≤ c, (12)

and

pa p2|m/mo�r2( ) � 
c

i�0

r

i
 p

i
2 1 − p2( 

r− i⎡⎣ ⎤⎦
g

≥ 1 − α, (13)

where r1 and r2 are the median ratios of consumer risk and
producer risk, respectively. -e probabilities to be used in
equations (12) and (13) are given by

p1 � 1 −
1 + β

1 + βe
θ eηa1−1[ ]

, (14)

and

p2 � 1 −
1 + β

1 + βe
θ eηa1 r2( )−1

−1 
. (15)

3.1. Optimal Group Sampling Plan. A statistical lifespan test
is required to show if the median lifespan of the product
under consideration has reached the necessary level. For this
purpose, we may specify the corresponding null and al-
ternative hypothesis as
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Ho: m � r2 × mo;

H1: m � r1 × mo,
(16)

with r1 � 1. -e performance of the proposed lifespan test
can also be understood by its operating characteristics (OC)
curve, that plots the associated probabilities of lot acceptance
against predicted lifespan. -e purpose of acceptance
sampling programmes is often to ensure that the likelihood
of producer’s risk and the consumer’s risk are both relatively
low, usually at most α and c, respectively (α, c< 0.5). -e
specifications of the admissible and rejectable median life-
spans, m0 and m1, as well as the choice of the maximum
permitted producer and consumer risks α and c, are often
taken into consideration when developing the appropriate
sampling strategy. -e least sample size GASP that satisfies

the discrepancy constraints defined in equations (12) and
(13) would thus be the optimal design. Nonlinear optimi-
zation programming may be used to solve the optimization
issue to find the least number of failures and g and hence
formulated as

Minimize g and c

Subject to

pa p1|m/mo�r1( )≤ c,

pa p2|m/mo�r2( )≥ 1 − α,

g, r ∈ Z
+
, 0≤ c< r,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

where Z+ � 1, 2, 3, . . .{ } denotes the set of positive integers.
For this scenario, the admissible region is determined by

Ω1 � (g, r, c): pa p1|m/mo�r1( )≤ c, pa p2|m/mo�r2( )≥ 1 − α, g, r ∈ Z
+
, 0≤ c< r . (18)

Consequently, we may rewrite the optimization problem
defined in equation (17) to make it more concise as min
{g, c: (g, r, c) ∈ Ω1}. -us, for a given r, the g and c are the
design variables in equation (17) for 0≤ c< r. During the
simulation, for the prefixed values of r, it is observed that
several combinations of the plan parameters exist that follow
the given conditions of equation (18). We selected the op-
timal values of g and c, with maximum tolerated producer’s
risk of 5%.

4. Discussion with Illustrative Examples

Tables 1 and 2 demonstrate the design parameters under
GASP for different values of θ (1.25 and 1.5), c (0.25, 0.1,
0.05, and 0.01), r2 (2, 4, 6, and 8) with a1 (0.5 and 1), and
taking r into account (5 and 10). According to the analysis,
minimizing c (consumer’s risk) tends to increase the
number of groups. Furthermore, when r2 increased, the
number of groups gradually decreased. However, beyond a
certain point with constant g and c, pa(p) (probability of
accepting a lot) increased. Tables 1 and 2 show the effect of
a1(0.5, 1), revealing that when c � 0.25, a1 � 0.5, r2 � 4,
θ � 1.25, and r � 5, 85(17 × 5) units should be required to be
put on the life test. However, when climbing to 10, 30(3 ×

10) units are necessary to be put on a life test. In this case, 10
groups would be more appropriate. Under the OPE model,
the value of the OC rises and the number of groups reduces
as the true median life rises for the considered GASP when
median lifetime is used as a quality parameter. When
c � 0.1, a1 � 1, and θ � 1.5 for r � 5, Table 3 represents the
true median lifetime with g, c, and OC values taken from
Table 2. It can be observed from Table 3 that as the true
median lifetime increased, the values of g and c decreased,
but beyond a certain point with constant g and c, the pa(p)

(OC values) increased. Figure 1 depicts this phenomenon by
plotting r2 values with respect to g and OC values from
Tables 1 and 2, respectively. It can be seen clearly in Figure 1

that as true median lifetime rises, the g first tends to decrease
and then remains constant, but the OC values tend to rise
rapidly. Hence, at those points, the investigated lot will be
accepted under the OPE model. It would be better to accept
the lot for r � 10 in Figure 1 as the least number of groups
will be tested as compared to r � 5 because it would save
time and cost.

-e results of Tables 1–3 are illustrated here with an
example, and readers are directed to [7] for more infor-
mation. Let us say the lifespan of a ball bearing is put to the
test using an OPE model with a value of θ � 1.25 and the
lifespan of a ball bearing is 2000 cycles. When the average
lifetime is 3000 and 5000 cycles, the consumer and producer
face a 25% and 5% risk, respectively. Now, an investigator
wishes to undertake a 2000-cycle experiment with 10 units in
each group to test if the median life of the ball bearing
exceeds the stated life. For this structure, we have mo � 2000
cycles, θ � 1.5, a1 � 0.5, c � 0.25, r2 � 4, r � 10, r1 � 1, the
producer’s risk equal to 0.05, and r2 � 4. Furthermore, from
Table 2, we have g � 16 and c � 2. -is involves the es-
tablishment of 80(16 × 5) units with 5 units being allocated
to all of the 16 groups. If no more than two units in all of
these groups expire before 2000 cycles, the average life of a
ball bearing will statistically be proven to be longer than the
prescribed life. If an investigator intends to test the hy-
pothesis that ball bearings have a life span of 5000 cycles, but
a true median life of four times, the investigator can test 16
groups of 5 units each. If more than 2 units expire in 2000
cycles, as a1 � 0.5 and the true median life length is in 2000
of cycles, the investigator will conclude with 95% confidence
that the life is more than 5000 cycles. As a result, the in-
vestigated lot should be accepted.

5. Application

-e dataset is taken from [30] which consisted of the lifespan
of Kevlar 373/epoxy fatigue fractures, which were placed
under steady pressure at a 90 percent stress level unless all of
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them collapsed. As a result, the data with precise failure
times were given as

0.4763, 0.0251, 0.3451, 0.3113, 0.2501, 0.0891, 0.0886, 0.8375, 0.5671, 0.7696, 0.6753,

0.6753, 0.6748, 0.6566, 1.0483, 0.8425, 0.9836, 0.9120, 0.9120, 0.8851, 0.8645, 1.3503,

1.0773, 1.3211, 1.2986, 1.2985, 1.2570, 1.1733, 1.7460, 1.4595, 1.7263, 1.7083, 1.7083,

1.5728, 1.4880, 1.8881, 1.7746, 1.8878, 1.8808, 1.8808, 1.8375, 1.8275, 2.2100, 1.9558,

2.1330, 2.1093, 2.1093, 2.0408, 2.0048, 2.9911, 2.2878, 2.5260, 2.4952, 2.4951, 2.3470,

2.3203, 4.8073, 3.2678, 3.9143, 3.7456, 3.7455, 3.4846, 3.4045, 9.0960, 5.4435, 6.5541, 5.5295

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (19)

Table 1: GASP under the OPE model, showing minimum g and c when β � 1 and θ � 1.25.

c r2

r � 5 r � 10
a1 � 0.5 a1 � 1 a1 � 0.5 a1 � 1

g c pa(p) g c pa(p) g c pa(p) g c pa(p)

0.25

2 — — — 44 4 0.9735 112 5 0.9771 3 5 0.9634
4 17 2 0.9791 3 2 0.9698 3 2 0.9636 1 3 0.9842
6 4 1 0.9582 1 1 0.9584 3 2 0.9885 1 2 0.9725
8 4 1 0.9763 1 1 0.9764 2 1 0.9510 1 2 0.9877

0.1

2 — — — 73 4 0.9564 186 5 0.9622 — — —
4 28 2 0.9658 4 2 0.9599 13 3 0.9855 2 3 0.9686
6 28 2 0.9899 4 2 0.9881 5 2 0.9809 1 2 0.9725
8 6 1 0.9646 2 1 0.9533 2 1 0.9510 1 2 0.9877

0.05

2 — — — — — — 242 5 0.9511 — — —
4 36 2 0.9563 5 2 0.9501 16 3 0.9822 2 3 0.9686
6 36 2 0.9870 5 2 0.9852 6 2 0.9772 2 3 0.9932
8 8 1 0.9531 2 1 0.9533 6 2 0.9901 2 2 0.9756

0.01

2 — — — — — — — — — — — —
4 418 3 0.9863 24 3 0.9867 25 3 0.9723 3 3 0.9533
6 55 2 0.9802 7 2 0.9793 9 2 0.9659 3 3 0.9897
8 55 2 0.9917 7 2 0.9913 9 2 0.9851 2 2 0.9756

Hyphens (—) are presented in the required cells for a large sample size.

Table 2: GASP under the OPE model, showing minimum g and c when β � 1 and θ � 1.5.

c r2

r � 5 r � 10
a1 � 0.5 a1 � 1 a1 � 0.5 a1 � 1

g c pa(p) g c pa(p) g c pa(p) g c pa(p)

0.25

2 — — — 44 4 0.9704 100 5 0.9752 3 5 0.9591
4 16 2 0.9779 3 2 0.9667 3 2 0.9595 1 3 0.9822
6 4 1 0.9549 1 1 0.9555 3 2 0.9871 1 2 0.9697
8 4 1 0.9742 1 1 0.9745 3 2 0.9944 1 2 0.9863

0.1

2 — — — 73 4 0.9513 166 5 0.9592 — — —
4 26 2 0.9643 4 2 0.9559 12 3 0.9844 2 3 0.9647
6 26 2 0.9894 4 2 0.9868 5 2 0.9786 1 2 0.9697
8 6 1 0.9616 4 2 0.9944 5 2 0.9906 1 2 0.9863

0.05

2 — — — — — — — — — — — —
4 34 2 0.9536 15 3 0.9900 15 3 0.9806 2 3 0.9647
6 34 2 0.9862 5 2 0.9835 6 2 0.9744 2 3 0.9922
8 34 2 0.9941 5 2 0.9930 6 2 0.9888 2 2 0.9728

0.01

2 — — — — — — — — — — — —
4 384 3 0.9853 23 3 0.9848 23 3 0.9704 5 4 0.9875
6 52 2 0.9789 7 2 0.9770 9 2 0.9619 3 3 0.9883
8 52 2 0.9911 7 2 0.9903 9 2 0.9832 2 2 0.9728

Hyphens (—) are presented in the required cells for a large sample size.
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-e maximum likelihood (ML) estimates with standard
errors (in parenthesis) of the three parameters of OPE for the
data are β � 0.525(0.332), θ � 42.258(4.545), and
λ � 0.019(0.018). According to the Kolmogorov–Smirnov
(K–S) test, the maximum distance between the fitted OPE
distribution and the data is 0.103 with a p value of 0.4694.

Figure 2 is furnished to represent the better fit of the data
under the OPE model by incorporating the empirical cdf
with the estimated cdf, the quantile-quantile (Q-Q) plot, the
probability-probability (P-P) plot, and the histogram of the
estimated pdf. Figure 3 presents the total time on test (TTT)
plots and the estimated hrf. Both the TTT plot and the
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Figure 1: Graphical illustration of g and OC for some parametric values taken from Tables 1 and 2, respectively.

Table 3: True median lifetime with c, g, and pa(p).

m/mo � r2 4 6 8

g 2 1 1
c 3 2 2
pa(p) 0.9647 0.9697 0.9863
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increased estimated hrf showed that the dataset can better be
fitted under the OPE model. Similarly, Table 4 demonstrates
the GASP for the OPE distribution considering the ML
estimates: β � 0.5 and θ � 42, by taking r into account (5 and
10). It can be observed that the performance of the planned
parameters in Table 4 is consistent with the values in Tables 1
and 2.

6. Comparison of GASP with OSP

While using sample plans, a process known as lot sentencing
determines whether entering or exiting batches should be
accepted or rejected depending on a prespecified quality.-e
two most important elements for professional engineers to
think about are the sample size and the length of the trial,
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Figure 2: (a) P-P plot, (b) Q-Q plot, (c) histogram fitted by the estimated pdf, and (d) empirical cdf fitted by estimated cdf.
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and both ought to be maximized. Although OSPs can aid in
achieving this optimization, yet it is assumed that only one
itemwill be tested at a time in this scenario. Comparatively, a
GASP can also achieve the optimized cost and time when
more than one item can be tested in a tester by making
groups of the items. -e major advantages of GASP as
compared to OSPs are as follows:

(i) -is approach can be used in sectors with a high
level of mass production and industries that adhere
to a predetermined manufacturing process

(ii) -is approach is practical and simple to
comprehend

(iii) -is approach required relatively lesser computa-
tional labour

(iv) -is approach diminishes tiredness and dullness

-e suggested GASP is an expansion of the OSP for g �

1 when n � r. In this section, we compared the suggested
GASP with the OSP by taking g � 1. For this purpose, we
presented a comparison of the suggested GASP under r � 5

Table 4: GASP under the OPE model, showing minimum g and c when the ML estimates are considered: β � 0.5 and θ � 42.

c r2

r � 5 r � 10
a1 � 0.5 a1 � 1 a1 � 0.5 a1 � 1

g c pa(p) g c pa(p) g c pa(p) g c pa(p)

0.25

2 — — — 44 4 0.9583 71 5 0.9701 — — —
4 13 2 0.9756 3 2 0.9566 6 3 0.9885 1 3 0.9753
6 13 2 0.9926 3 2 0.9867 3 2 0.9825 1 2 0.9604
8 4 1 0.9682 1 1 0.9689 1 1 0.9672 1 2 0.9818

0.1

2 — — — — — — 117 5 0.9511 — — —
4 22 2 0.9591 12 3 0.9884 10 3 0.9809 2 3 0.9512
6 22 2 0.9876 4 2 0.9823 4 2 0.9767 1 2 0.9604
8 6 1 0.9527 4 2 0.9924 4 2 0.9898 1 2 0.9818

0.05

2 — — — — — — — — — — — —
4 192 3 0.9888 15 3 0.9855 12 3 0.9771 2 3 0.9512
6 28 2 0.9842 5 2 0.9779 5 2 0.9710 2 3 0.9886
8 22 2 0.9948 5 2 0.9906 5 2 0.9873 2 2 0.9640

0.01

2 — — — — — — — — — — — —
4 295 3 0.9829 23 3 0.9779 19 3 0.9639 5 4 0.9808
6 43 2 0.9759 7 2 0.9692 8 2 0.9540 3 3 0.9830
8 28 2 0.9934 7 2 0.9868 8 2 0.9797 2 2 0.9640

Hyphens (—) are presented in the required cells for a large sample size.
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Figure 3: (a) TTT plot and (b) estimated hrf.
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and r � 10 with the OSP under g � 1 for the OPE distri-
bution with β � 0.525 and θ � 42.258, for a given
c � (0.25, 0.1, 0.05 and 0.01) and a1 � 1. Comparison of
sample sizes of GASP and OSP from Table 5 revealed that
GASP is the best strategy as compared to the OSP as using
OSP determined a large sample size, rather than the GASP
providing reliable sample size with optimized cost and time
by making groups of items and testing multiple items at
once.

7. Conclusion

In this research, we proposed a GASP using the median as
the quality index. -e true median life time along with the
number of groups, acceptance number, and OC values were
obtained and presented graphically. It can be observed that
as the true median life time tends to rise, the number of
groups and acceptance numbers tend to fall rather than the
OC values tend to rise gradually. More precisely, the GASP
can be utilized when embedded objects are recruited for a
trial run at once, and it will be advantageous in optimizing
the test time and cost as several objects can be evaluated at
once.
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