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In this review article, we consider discrete-time birth-death processes and their applications to discrete-time queues. To make the
analysis simpler to follow, we focus on transform-free methods and consider instances of non-birth-death Markovian discrete-
time systems. We present a number of results within one discrete-time framework that parallels the treatment of continuous time
models. Tis approach has two advantages; frst, it unifes the treatment of several discrete-time models in one framework, and
second, it parallels to the extent possible the treatment of continuous time models. Tis allows us to draw parallels and contrasts
between the discrete and continuous time queues. Specifcally, we focus on birth-death applications to the single server discrete-
timemodel with Bernoulli arrivals and geometric service times and provide the reader with a simple rigorous detailed analysis that
covers all fve scheduling rules considered in the literature, with attention to stationary distributions at slot edges, slot centers, and
prearrival epochs. We also cover the waiting time distributions. Moreover, we cover three Markovian models that ft the global
balance equations. Our approach provides interesting insights into the behavior of discrete-time queues.Te article is intended for
those who are familiar with queueing theory basics and would like a simple, yet rigorous introductory treatment to discrete-time
queues.

1. Introduction

Tis review article is intended as an introduction to discrete-
time queues by focusing mainly on queueing models that ft
the discrete birth-death equations. We cover most sched-
uling rules in the literature and give the stationary distri-
bution at slot edges, slot centers, and at prearrival instants.
We also cover instances of Markovian models that can be
solved easily by recursive methods. Specifcally, we pick
models whose stationary distribution can be solved using
global balance equations and cover the multiserver, batch
arrival, and fnite population Markovian models. Moreover,
we focus on transform-free methods to make the analysis
simpler to follow and present a number of results within one
discrete-time framework.Tis approach has two advantages;
frst, it unifes the treatment of several discrete-time models
in one framework, and second, it parallels to the extent
possible the treatment of continuous time models.

Moreover, we address BASTA (Bernoulli Arrivals See Time
Averages), sometimes referred to as GASTA (Geometric
arrivals See Time Averages), by giving the stationary dis-
tribution at prearrival epochs for all scheduling rules.

Tis article has several key contributions. We give
a unifed treatment of multiple models within one frame-
work, compare the behavior of these models using multiple
scheduling rules, give a direct proof of the distribution
function of the waiting times in queue (delay), and assert
that the waiting time distribution is the same regardless of
the scheduling rule. Moreover, we address the BASTA issue
in this simpler framework, note that BASTA in discrete-time
queues behaves diferently from its continuous time coun-
terpart, and address non-birth-death queueing models with
solutions that follow from recursive techniques.

Tis article’s focus is on single station queues. All our
models, except for one, deal with single server queues.
Meisling [1] appears to be the frst to study a queueing
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system in discrete time. He used a generating function
approach to obtain the system characteristics. Since then,
queues in discrete-time have gained popularity due to
their wide applicability in computer and communications
networks. Hunter [2] gives detailed analysis of single
server discrete-time queues using Markovian and gen-
erating function methods. Robertazzi [3] covers multi-
server models and uses a recursive method to efciently
compute the system stationary distribution. El-Taha et al.
[4] use transform-free methods to address and prove the
insensitivity of discrete-time queues with processor
sharing, loss, and infnite servers. Tere are a few results in
the literature where authors focus on discrete birth-death
models. Among these are Daduna [5] and Desert and
Daduna [6]. Alfa [7] and Alfa [8] address birth-death
processes in both books, but attention is restricted to the
late arrival models. Bruneel and Kim [9] consider discrete
queueing models that ft with the late arrival model ob-
served at slot edges. Woodward [10] (Chapter 4) studies
single server queues using the early arrival scheduling rule
and the outside observer’s epochs. Halfn [11] discusses
when arrivals see time averages for discrete-time queues
and shows that the arrivals have to follow a Bernoulli
process for GASTA to hold. See also Gravey and Hebu-
terne [12] where the stationary distribution function at
prearrival epochs is given. In discrete-time systems,
prearrival probabilities do not always coincide with the
time-average probabilities observed at slot edges even
with Bernoulli arrivals. See Daduna [5] and Desert and
Daduna [6]. Tere have been recent articles that consider
other aspects of discrete-time birth-death processes.
Daduna [13] gives a detailed analysis of alternating birth-
death processes. Ozawa [14], and Ozawa and Kobayashi
[15] , consider discrete-time two-dimensional quasi birth-
death processes. Fernández and de la Iglesia [16] study
quasi-birth and death multivariate processes. Sasaki [17]
gives examples of exactly solvable birth-death processes.
See also Lenin and Parthasarathy [18], Daduna and
Schassberger [19], Chaudhry [20], Chaudhry et al. [21],
Dattatreya and Singh [22], Louvion et al. [23], Schass-
berger [24], Henderson and Taylor [25], and Neuts [26].
However, our focus is on one-dimensional birth-death
processes that are used to describe ffteen instances of
discrete-time queues by using fve scheduling rules and
three reference epochs. Tis review article highlights
include the following:

(1) Te article uses a unifed approach that combines
direct sample path and stochastic techniques and
avoids generating-functions methods to provide an
accessible summary of all birth-death discrete-time
queueing models in one framework.

(2) Provides new insights into these models through
a combination of generalizations, new results, new
proofs, and comparisons of these models. However,
the majority of the results are not new.

(3) Presents in one unifed space results for the fve
scheduling rules in the literature with each model

studied using slot edges, slot centers, and prearrival
epochs, thus allowing readers to compare these
models at ffteen instances of these combinations.

(4) Addresses BASTA and provides formulas for the
prearrival probabilities for all fve scheduling rules.

(5) Addresses the waiting time distribution functions for
all fve scheduling rules using a unifed approach.

(6) Give three Markovian models that do not ft the
birth-death equations contrary to their continuous
time counterparts.

Te rest of the article is organized as follows. In Section
2, we introduce the generalized birth-death process and
give a general solution for the model. In Section 3, we study
two special cases where in the frst model, a customer that
arrives at an idle server can leave within the same slot and
in the other model, an arrival to fnd a server idle cannot
leave in the same time slot. It turns out that these two
specializations of the birth-death model cover all but one of
the situations encountered in all fve scheduling rules. In
Section 4, we apply these two birth-death models to fnd the
stationary distribution functions for all fve scheduling
rules at slot centers and at slot edges. In Section 5, we
address BASTA issues; specifcally, we give formulas for
prearrival probabilities for all fve scheduling rules. In
Section 6, we address the waiting times and show that all
rules lead to the same waiting time distribution function. In
Section 7, we give instances of Markovian models that can
be solved by recursive methods. Specifcally, we cover the
multiserver, batch arrival, and fnite population models.
Note that the multiserver and fnite population models in
continuous time can be represented by birth-death equa-
tions. Tis is not the case for the corresponding discrete-
time models. Finally, in Section 8, we give concluding
remarks.

2. Generalized Birth-Death Equations

In this section, we start with a sample-path version of the
generalized birth-death equations, then introduce the
stochastic version, and show how the stochastic birth-
death equations ft into our sample path framework. We
point out that our focus is exclusively on one-dimensional
birth-death models. We use the term “generalized” be-
cause we do not make any stochastic assumptions in this
section. Te results follow by assuming that the relevant
limits exist.

To formalize this approach, let Z(τ), τ � 1, 2, · · ·{ } be
a discrete-time process with state space S � I, where I is the
set of non-negative integers. Since we shall be using
a sample-path framework, it is helpful to think of
Z � Z(τ), τ � 1, 2, · · ·{ } as a deterministic one realization
(sample path) of a stochastic process. Te process makes
a transition from one state to another, possibly itself, at every
time instant τ � 1, 2, · · ·. In other words, we allow Z(τ) to
make a transition from a state to itself.

For any state i ∈ I; j ∈ I, let
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C(i, j; τ) ≔ 􏽘
τ

k�1
1 Z(k) � i, Z(k + 1) � j􏼈 􏼉,

Y(i; τ) ≔ 􏽘
τ

k�1
1 Z(k) � i{ }.

(1)

During time (0, τ], C(i, j; τ) counts the transitions from
state i to state j andY(i, τ) is the total time in state i. Now, we
defne the following limits when they exist:

p(i, j) ≔ lim
τ⟶∞

C(i, j; τ)

Y(i; τ)
,

Λ(i, j) ≔ lim
τ⟶∞

C(i, j; τ)

τ
,

π(i) ≔ lim
τ⟶∞

Y(i; τ)

τ
.

(2)

Here, p(i, j) is the conditional long-run fraction of
transitions from i to j, Λ(i, j) is the unconditional long-run
transition rate from i to j, and π(i) is the long-run fraction of
time in state i. In a Markov chain setting, these quantities
represent the one-step transition probabilities, the un-
conditional transition probabilities, and the stationary
probabilities, respectively.

A discrete-time generalized birth-death process is
a process where from any state the process can make
a transition only to a neighboring state or the state itself. We
use the term “generalized” because we do not require the
process to be Markovian. We give a formal defnition as
follows.

Defnition 1. Let I be the set of non-negative integers. Te
process Z(τ), τ � 1, 2, · · ·{ } is said to be a discrete birth-death
process if for each i ∈ I, b(0) � 0 and

p(i, j) �

a(i), if j � i + 1,

b(i), if j � i− 1,

c(i), if j � i,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

Note that for all i ∈ I, a(i) + b(i) + c(i) � 1, and a(− |i) �

b(− |i) � c(− |i) � 0 for all i> 0. Now, we give the generalized
birth-death equations.

Lemma 2. Let a(k) � p(k, k + 1), k � 0, 1, · · ·; b(k) � p(k,

k− 1), k � 1, · · ·. Ten, the generalized birth-death equations
are given by

a(k)π(k) � b(k + 1)π(k + 1); k � 0, 1, · · · . (4)

Proof. It follows from the defnitions that

Λ(k, k + 1) � lim
τ⟶∞

C(k, k + 1; τ)

Y(k; τ)

Y(k; τ)

τ
� a(k)π(k).

(5)

Similarly,

Λ(k + 1, k) � lim
τ⟶∞

C(k + 1, k; τ)

Y(k + 1, τ)

Y(k + 1; τ)

τ + 1
� a(k + 1)π(k + 1).

(6)

Now, note that for all k and τ

|C(k, k + 1; τ− )C(k + 1, k; τ)|≤ 1. (7)

In (7), divide by τ and take limits as τ⟶∞ to conclude
that

Λ(k, k + 1) � Λ(k + 1, k). (8)

Tis completes the proof of the result.
Te equations in (4) are valid without the assumption

that the process Z(τ); τ � 1, 2, · · ·{ } is a Markov chain. We
only need to assume that the relevant limits exist.

In a Markovian stochastic setting, one typically starts
with the global balance equations of birth-death process
represented by Z(τ); τ � 1, 2, · · ·}. Ten,

π(k) � a(k− 1)π(k− 1) + b(k + 1)π(k + 1) + c(k)

π(k); k � 0, 1, · · · .
(9)

Equations (9) are simply the expanded version of the
stationary equations encountered in Markov chains (see,
for example Alfa [7]). Te equations given by (9) can be
represented by the fow balance principle, which states
that for each state k≥ 0: the probability fow out of state
k � the probability fow into state k. Equations (9) may be
written as

a(0)π(0) � b(1)π(1), (10)

π(1) � a(0)π(0) + b(2)π(k + 1) + c(1)π(1), (11)

π(2) � a(1)π(1) + b(3)π(3) + c(2)π(2). (12)

Now, add equations (10) and (11) to obtain

a(1)π(1) � b(2)π(2). (13)

Add (12) and (13) to obtain

a(2)π(2) � b(3)π(3), (14)

and so on. In general, using induction, we obtain

a(k− 1)π(k− 1) � b(k)π(k); k � 1, · · · . (15)

We obtained these same equations in Lemma 2 without
the Markovian assumption and using only the assumption
that relevant limits exist.Te equations in (15) are referred to
as the detailed (or local) balance equations. Tey represent
the probability fow between states.

Solution to the generalized birth-death equations.
Solving (4) (equivalently (15)) recursively, one obtains

π(k) � Πk
j�1

a(j − 1)

b(j)
π(0), k≥ 1. (16)

Now, assuming that π(k); k ∈ I{ } exist, 􏽐
∞
k�1π(k) � 1,

and normalizing, we obtain
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π(0) � 1 + 􏽘
∞

m�1
Πm

j�1
a(j − 1)

b(j)
⎡⎣ ⎤⎦

− 1

� 􏽘
∞

m�0
Πm

j�1
a(j − 1)

b(j)
⎡⎣ ⎤⎦

− 1

,

(17)

where a 􏽑 over an empty set is 1. Te second form is more
compact but requires us to assume a(− 1) � 1. Note that
π(0)> 0 if and only if 􏽐

∞
m�1Π

m
j�1a(j − 1)/b(j)<∞.

Terefore,

π(k) �
Πk

j�1a(j− 1)/b(j)

􏽐
∞
m�0Π

m
j�1a(j− 1)/b(j)􏽨 􏽩

, k≥ 1. (18)

Tis solution is valid without any stochastic assump-
tions. We only assumed the existence of limits. We shall
investigate Markovian queueing models using detailed
balance equations. Specifcally, we focus on models that can
be represented as generalized birth-death equations. In
Section 7, we discuss a number of models using global
balance equations that can be solved by iterative methods.
Since most applications involve the geometric distribution
function, we give a quick review of this distribution. A
random variable X is said to have a geometric pmf with
parameter p, 0<p< 1, if

P(X � n) � q
n− 1

p (n � 1, 2, · · ·; p> 0, q � 1 − p). (19)

Te geometric distribution has properties similar to the
exponential distribution. Te frst and second moments are
given by E[X] � 1/p and E[X2] � 2/p2 − 1/p, and the
variance is also given by (X) � q/p2 .Te complement of the
cumulative distribution functions (CDF) is P(X≥ k) � qk− 1

Moreover, it has the memoryless property; i.e.,
P(X � n + k | X> n) � P(X � k); k� 1, 2, · · ·. In particular,
if k � 1, we obtain P(X � n + 1 | X> n) � p.

2.1. A State-Dependent Generalized Birth-Death Process.
Consider a state-dependent birth-death process that rep-
resents a Bernoulli queue where an arrival will occur with
probability α(j) ∈ (0, 1) if the system state is j≥ 0, i.e., there
are j customers in the system. Similarly, a service completion
will occur with probability β(j) ∈ (0, 1) when the system
state is j≥ 1. When j � 0, we assume β(0) � 0 or β(0) � β,
where β is a constant such that 0< β< 1. Now, we use the
birth-death model in the previous section with

a(j) � α(j)(1 − β(j)); j≥ 0;

b(j) � β(j)(1 − α(j)); j≥ 1.
(20)

Substitute in (18) to get

π(n) � Πn
j�1

α(j − 1)(1 − β(j − 1))

β(j)(1 − α(j))
π(0), n≥ 1; (21)

where

π(0) � 􏽘
∞

k�0
Πk

j�1
α(j − 1)(1 − β(j − 1))

β(j)(1 − α(j))
⎡⎣ ⎤⎦

− 1

. (22)

Te birth-death equations are not particularly useful at
this level of generality. In the next section, we consider two
special instances that are not only useful but cover a good
number of situations related to Markovian single server
queues in discrete time.

We point out that the results in this section are not new.
Daduna [5] and Desert and Daduna [6] give a formula for
a birth-death process with state-dependent arrival and
service completion probabilities, for the case where β(0)> 0.
Alfa [7] considers a birth-death process with β(0) � 0 and
uses matrix geometric and generating functions methods in
his analysis. Our birth-death process does not have these
restrictions; thus, we are able to study a wider class of
systems with a larger selection of observation epochs by
switching between β(0) � 0 and β(0) � β where 0< β< 1 is
a constant.Tis leads to a unifed and simplifed treatment of
all scheduling rules at multiple reference points, as we shall
see in Section 3.

3. Two Special Birth-Death Processes

In this section, we are motivated by single server queues with
Bernoulli arrivals and geometric service times. Tat is,
Markovian single server queues that can be modeled by
a birth-death process. At this point, we do not consider
specifc scheduling rules or specifc observation epochs. In
general, there are fve scheduling rules and three observation
epochs that are of interest, giving us a large number of
situations that will be covered in Section 4. For the vast
majority of situations, as we shall see later, the stationary
distribution will be given by one of the two cases we cover in
the two subsections as follows.

3.1. Te Birth-Death Process with β(0) � 0. Consider
a Markovian single server discrete-time queue with infnite
waiting room. Arrivals follow a Bernoulli process such that
the probability of arrival at any given time instant is α.
Equivalently, the time between arrivals follows a geometric
distribution with mean 1/α. Service times are i.i.d. such that

P(S � k) � (1 − β)
k− 1β; 0< β< 1, k � 1, 2, · · · , (23)

that is, the service times follow a geometric distribution
function with mean 1/β. Tis means that
α(k) � α; k � 0, 1, · · ·, and β(k) � β; k � 1, 2, · · ·. In addition,
we assume β(0) � 0. See Figure 1 for a fow balance diagram.
Substitute in (21) to obtain

π(n) �
1

1 − β
α(1 − β)

β(1 − α)
􏼢 􏼣

n

π(0), (24)

where 􏽐
∞
n�0π(n) � 1 implies

π(0) � 1 + 􏽘

∞

i�1

1
1 − β

α(1 − β)

β(1 − α)
􏼢 􏼣

i

⎡⎣ ⎤⎦

− 1

,

� 1 +
α

β(1 − α)
􏽘

∞

j�0

α(1 − β)

β(1 − α)
􏼢 􏼣

j

⎡⎢⎢⎣ ⎤⎥⎥⎦

− 1

.

(25)
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Te system is stable, i.e., π(0)> 0 if and only if
α(1 − β)/β(1 − α)< 1, which implies

π(0 � 1 +
α

β(1 − α)

1
1 − α(1 − β)/β(1 − α)

􏼢 􏼣

− 1

. (26)

Te stability condition α(1 − β)/β(1 − α)< 1 is implied
by α/β< 1. Tis is so because α< β implies that 1 − α> 1 − β
which implies that (1 − β)/(1 − α), thus α(1 − β)/β
(1 − α)< 1. Simplify to obtain

π(0) � 1 +
α

β(1 − α)

β(1 − α)

β(1 − α) − α(1 − β)
􏼢 􏼣

− 1

,

� 1 +
α

β − α
􏼢 􏼣

− 1

,

� 1 −
α
β

.

(27)

Terefore,

π(n) �
β − α

β(1 − β)
􏼢 􏼣

α(1 − β)

β(1 − α)
􏼢 􏼣

n

, n � 0, 1, · · · . (28)

Let ρ � α/β and c � α(1 − β)/β(1 − α).Ten, we have the
following result.

Theorem 3. Consider the state-independent birth-death
model with β(0) � 0. Ten, the stationary distribution
function is given by

π(n) �
ρ(1 − c)c

n− 1
, n � 1, 2, · · · ,

1 − ρ, n � 0.

⎧⎨

⎩ (29)

Tis is the same formula given by El-Taha et al. [4] for the
M/G/1 round Robin model. Te round Robin model is
known to have the insensitivity property; that is, its stationary
distribution does not depend on the shape of the service time
distribution function but only on its mean. See also Hunter
[2]. Now, we give performance measures and show that their
proofs are similar to those of the M/M/1 case.

Theorem 4. Te mean number of customers in the system, L,
and themean number of customers in the queue, Lq, are given by

L �
α(1 − α)

β − α
,

Lq �
α2

β
1 − β
β − α

.

(30)

Proof. By defnition L � 􏽐
∞
n�0π(n), therefore,

L �
β − α

β(1 − β)
􏽘

∞

n�0
n

α(1 − β)

β(1 − α)
􏼢 􏼣

n

,

�
β − α

β(1 − β)

α(1 − β)

β(1 − α)
􏽘

∞

n�1
n

α(1 − β)

β(1 − α)
􏼠 􏼡

n− 1

,

�
α
β2

β − α
1 − α

1
[1 − α(1 − β)/β(1 − α)]

2,

�
α
β2

β − α
1 − α

1
[(β(1 − α) − α(1 − β))/β(1 − α)]

2,

�
α
β2

β − α
1 − α

β2(1 − α)
2

(β − α)
2 ,

� α
1 − α
β − α

,

(31)

where we have used the relation 􏽐
∞
n�1nρ

n− 1 � 1/(1 − ρ)2. See
Gross et al. [27] for details. Now,

Lq � L − (1 − π(0)),

�
α(1 − α)

β − α
−
α
β

,

�
αβ(1 − α) − α(β − α)

β(β − α)
,

�
αβ − α2β − αβ + α2

β(β − α)
,

�
α2 − α2β
β(β − α)

,

�
α2

β
1 − β
β − α

.

(32)

□

3.1.1. Mean Delay of the B/G/1 Model. We can use Little’s
law to evaluate the waiting time in the system and the queue
W and Wq, respectively. Instead, we will use an intuitive
approach similar to the one used to compute Wq in the
continuous M/G/1 case.

Here, we still assume that we have a Bernoulli arrival
process with parameter α, but general discrete service times
with mean E[S] � 1/β and second moment E[S2]. We as-
sume that the system is stable in the sense that ρ � αE[S]< 1.
Moreover, we assume a FIFO discipline. We use an intuitive
argument to give the following closed form expression for
the mean delay in the system.

0 1

(1- α) β

1-α

α (1-β)

(1- α) β

2 3

(1- α) β

α (1-β)

αβ+ (1-α) (1-β) αβ+ (1-α) (1-β)

α

Figure 1: State diagram for a birth-death model with β(0) � 0.
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Theorem 5. Te mean waiting time in the queue (excluding
service times) is given by

Wq �
α E S

2
􏽨 􏽩 − E[S]􏼐 􏼑

2(1 − ρ)
. (33)

Proof. We show that (33) holds using an intuitive argument
similar to the M/G/1 case. First, note that the log-run
fraction of time the server is busy (i.e., probability that
the server is busy) is equal to ρ � αES. Moreover, the
remaining limiting time-average service time for the cus-
tomer in service at arrival instants is given by
E[Sr] � (E[S2] − E[S])/2ES. Let V be the (virtual) waiting
time for a randomly arriving customer. On average, this
customer fnds Lq customers ahead of him/her in addition to
the one in service. Terefore, V � LqE[S] + R, where R �

ρ × E[Sr] � α(E[S2] − E[S])/2 is the residual time of the
customer in service. Now, BASTA (Bernoulli arrivals see
time averages), El-Taha and Stidham ([28], Chapter 3), and
FIFO imply that V � Wq, and Little’s law implies that
Lq � αWq. Terefore,

Wq � αWqE[S] + α
E S

2
􏽨 􏽩 − E[S]

2
. (34)

Simplify to obtain (33).
Other performance measures can now be obtained

immediately. For instance, W � Wq + ES, and using Little’s
law, L � αW, and Lq � αWq. A more rigorous proof of (33)
can be obtained using a discrete version of H � λG (see El-
Taha and Stidham [28] and El-Taha [29]). Now, let the
service times be geometric with parameter β so that
E[S] � 1/β, E[S2] � 2/β2 − 1/β, and E[S2] − E[S] �

2/β2 − 2/β. Using (33) and noting that ρ � α/β; we obtain

Wq �
α 2/β2 − 2/β􏼐 􏼑

2(1 − α/β)
�
α
β

×
(1/β − 1)

1 − α/β
�
α
β

1 − β
β − α

,

W � Wq +
1
β

�
β − αβ
β(β − α)

�
1 − α
β − α

.

(35)

We treated the B/Geo/1 model as a special case of the
B/G/1 model. Te results here are consistent with the birth-
death model as can be verifed using Little’s law. □

3.2. Te Birth-Death Process with β(0) � β. Here, we con-
sider the same model as in Subsection 3.1 except that in this
case β(0) � β. Referring to the generalized birth-death
model, we have

a(j) � α(1 − β); j≥ 0,

b(j) � β(1 − α); j≥ 1.
(36)

A state diagram for this model is given in Figure 2.
Substitute in (21) and (22) to obtain

π(n)) �
α(1 − β))

β(1 − α)
􏼢 􏼣

n

π(0), n≥ 1, (37)

where

π(0) � 1 −
α(1 − β))

β(1 − α)
�

1
1 − α

1 −
α
β

􏼠 􏼡. (38)

We see from (38) that π(0)> 0 if ρ � α/β< 1. Ten,

Theorem 6. Consider the state-independent birth-death
model with β(0) � β. Ten, the stationary distribution
function is given by

π(n) � c
n
(1 − c), n≥ 0. (39)

Note that the mean of the distribution given by (39) is
given by

L �
c

1 − c
�
α(1 − β)

β − α
, (40)

which is not the same as L given by the distribution function
corresponding to the case β(0) � 0. Using Little’s law will
result in the wrong expression for the mean waiting time W

as pointed out by Desert and Daduna [6]. We believe the
reason for this is the fact that when β(0) � β> 0, there will be
customers that will enter and leave the system in state 0 so
that these customers are not counted when the system is
observed at the corresponding observation epochs.

4. Applications of Birth-Death Processes to
Discrete-Time Queues

In this section, we consider various scheduling rules at
various observation epochs. We start by identifying fve
scheduling rules and various observation epochs of interest.

4.1. Scheduling Rules for Discrete-Time Queues. In this
subsection, we discuss fve scheduling rules. Tese rules are
the early arrival system (EAS), the late arrival system with
immediate access (LAS-IA), the late arrival system with
delayed access (LAS-DA), the late arrivals with arrivals frst
system (LA-AF), and the late arrivals with departures frst
rule (LA-DF).

In discrete-time queues, time is divided into slots of
equal length of one unit. Slot edges are numbered by τ,
where τ � 1, · · ·. It is assumed that arrivals and departures
occur only on slot boundaries. Contrary to continuous time
queues, here, we need to keep track of the order of arrivals
and departures in each slot. Depending on the behavior of
the actual system, the order of potential arrivals and de-
partures at any given slot varies signifcantly. In the liter-
ature, one fnds the early arrival system (EAS) where an

0 1 2 3

1–α + αβ αβ+ (1–α) (1–β) αβ+ (1–α) (1–β)

α (1–β) α (1–β) α (1–β)

(1– α) β (1– α) β (1– α) β

Figure 2: State diagram for a birth-death model with β(0) � β.
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arrival occurs at the beginning (before a potential de-
parture), and the late arrival system (LAS) where an arrival
occurs at the end (after a potential departure) of a time slot.
Late arrival systems are further refned into two subsystems.
For the late arrival system with immediate access (LAS-IA),
an arrival can start service immediately and possibly leave at
the start of the next time slot if the arrival fnds an idle server.
For the late arrival systemwith delayed access (LAS-DA), the
arrival waits until the next time slot to start service. For
details about diferent scheduling regimes, one may consult
Hunter [2] and Chaudhry [20]. Others schedule potential
arrivals and departures at the end of a time slot. In one such
rule, at the end of any time slot, potential departures occur
frst, then potential arrivals, and then the system state is
observed. Tis is the convention used by El-Taha et al. [4]
and Daduna [5] and Desert and Daduna [6].

Te convention where an arriving customer can enter
and leave an empty queue in the same time slot (immediate
access) is considered in Chapter 6 of Robertazzi [3] for
discrete models that use “virtual cut-through” routing where
a packet starts transmission before it is completely received
at its current node. In this article, we follow the notation
setup as in Hunter [2], Chaudhry et al. [21], El-Taha et al. [4],
and Desert and Daduna [6]. We assume work conserving
queueing discipline, i.e., the server is not idle when there is
work in the system (note that in LAS-DA if an arrival fnds
an idle server, the delayed access is not counted because the
server becomes available to serve only at slot boundaries).
Next, we describe each of the scheduling rules.

4.1.1. EAS Scheduling Rule. In the early arrival system (EAS),
potential arrivals are scheduled to occur before potential
departures. More specifcally, a potential arrival in slot
(τ, τ + 1] occurs in (τ, τ+), and a potential departure in slot
(τ − 1, τ] occurs in (τ− , τ). Moreover, if an arrival fnds an
idle server, it goes into service immediately and can po-
tentially depart in the same time slot.

Te EAS is also referred to as the departure frst (DA)
system by other authors. In this situation, if one focuses on
the time instance, say, τ, then we have τ− <D< τ <A< τ+,
where D and A refer to potential departures and arrivals,
respectively. See Gravey and Hebuterne [12] for a reference
on this.

4.1.2. LAS-IA and LAS-DA Scheduling Rules. In this late
arrival system (LAS), the order of potential arrivals and
departures is reversed so that a potential departure occurs
early in a time slot and potential arrivals occur at the end of
the slot so that τ − <A< τ <D< τ+. More specifcally,
a potential departure in slot (τ, τ + 1] occurs in (τ, τ+), and
a potential arrival in slot (τ − 1, τ] occurs in (τ− , τ).
Moreover, if an arrival fnds an idle server and goes into
service immediately and can potentially depart at the start of
the following time slot, the system is called immediate access
(IA), if the arrival waits until the start of the next slot to start
service, then the system is called delayed access (DA).

4.1.3. LA-DF (Late Arrivals with Arrivals First). In this late
arrivals with departures frst system, both potential arrivals
and departures occur late in the slot so that
τ− − <D< τ− <A< τ. An arrival that fnds an idle server
starts service at τ.

4.1.4. LA-AF (Late Arrivals with Departures First). In this
late arrivals with departures frst system, both potential
arrivals and departures occur late in the slot so that
τ− − <A< τ− <D< τ. An arrival that fnds an idle server
starts service at τ. See Figure 3 for a depiction of the above-
stated scheduling rules.

In the following subsections, for each of the sched-
uling rules, we deal with single server queues with Ber-
noulli arrivals and geometric service times. More
specifcally, let the random variables A and S represent the
interarrival and service times, respectively. Assume that
interarrival times and service times are i.i.d. and in-
dependent of each other. Let the mean interarrival times
E(A) � 1/α, and mean service times ES � 1/β, where
0< α, β< 1, and let the trafc intensity ρ � α/β< 1. We refer
to the observation epochs at slot edges as the random
observer epochs. Tis is consistent with the notion of the
random observer in continuous time queues. We also
follow the literature by referring to the slot centers as the
outside observer epochs.

Whether the system state is observed at slot edges or slot
centers, all these fve models, except for LAS-DA, ft the
birth-death equations covered in Sections 2 and 3. In these
cases, we have

a(j) � α(1 − β), j � 1, · · · ,

b(i) � β(1 − α), j � 1, · · · ,

a(0) � α(1 − β(0)).

(41)

In each case, we need only to determine if β(0) � 0 or
β(0) � β. When the system state is observed at random
observer epochs, we check if an arrival can depart in the
same slot of its arrival. Tis can happen if in an EAS rule, an
arrival with one unit of service arrives to fnd an idle server.
In this case, β(0) � β; otherwise, β(0) � 0. It would be in-
structive if the reader creates a probability fow diagram like
Figure 1. For the outside observer, we have a similar situ-
ation except we think of a modifed slot (τ − 1/2, τ + 1/2].
We note that LAS-DAmodel follows the birth-death process
when observed at slot centers. At slot edges, the model
follows the birth-death process when j≥ 2. So, we need to
pay special attention to this case as we shall see in
Subsection 4.2.

4.2.TeRandomObserver StationaryDistribution. Here, our
interest is in the process Z(τ), τ � 1, 2, · · ·{ }; that is, the state
of the system is observed at slot edges τ, τ � 1, 2, · · ·. Spe-
cifcally, we are interested in the stationary distribution
function of the process given by π(.){ } for various
scheduling rules.
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4.2.1. Queues with EAS Rule. In this model, a potential
arrival occurs before potential departures in a time slot, and
when a customer arrives to fnd a server idle, the customer
will enter service immediately and therefore may leave in the
same time slot.

Here, we are interested in the stationary distribution
function at the slot edges, and then we have a birth-death
model with β(0) � β. Terefore, (16) gives the stationary
distribution function.

4.2.2. Queues with LAS-IA Rule. Here, we are interested in
the distribution function at the slot edges, and then we have
a birth-death model with β(0) � 0. Terefore, (12) gives
stationary distribution function.

4.2.3. Queues with LA-AF and LA-DF Rules. Here, we are
interested in the distribution function at slot edges, and then
we have a birth-death model with β(0) � 0. Terefore, (12)
gives the stationary distribution function.

4.2.4. Queues with LAS-DA Rule. Tismodel observed at the
slot edges does not ft a birth-death process because of the
transition to and from state one. However, for states n≥ 2,
the process of the number of customers in the system be-
haves like a birth-death process. See Figure 4 for details.
Terefore, π(n) � cn− 2π(2), n≥ 2.

A customer that arrives to fnd an idle server cannot
leave in the same time slot and starts service at the beginning
of the next time slot. We call this state 1a. Note that a service
completion cannot occur in state 1a. From state 1a, the
process can transition to state 1b if no arrivals occur in the
next time slot. State 1b behaves like state 1 in the LAS-IA
model. Te following are the balance equations for states
0, 1a, and 1b.

π(0) � β(1 − α)π(1b) +(1 − α)π(0),

π(1a) � απ(0) + αβπ(1b),

π(1b) � (1 − α)π(1a) + β(1 − α)π(2) +(1 − α)(1 − β)π(1b).

(42)

One can replace the balance equation for state 1b with
the balance equation across the cut S � 0, 1a, 1b{ } and its
complement Sc, i.e.,

απ(1a) + α(1 − β)π(1b) � β(1 − α)π(2). (43)

Solve these equations to obtain

π(1a) �
α

1 − α
π(0),

π(1b) �
α

β(1 − α)
π(0),

π(1) �
α(1 + β)

β(1 − α)
π(0),

π(2) �
α2

β2(1 − α)
2 π(0).

(44)

Now, 􏽐
∞
n�2π(n) � 􏽐

∞
n�2 cn− 2π(2) � π(2)/(1 − c) so that

􏽐
∞
n�2π(n) � α2π(0)/(β − α)β(1 − α). Simplify to obtain the

following.

Theorem 7. Te random observer stationary distribution
function of the LAS-DA queue is given by

π(n) �

ρ2(1 − c)c
n− 2

; n � 2, 3, · · ·,

(α + ρ)(1 − ρ) ; n � 1,

(1 − α)(1 − ρ) ; n � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(45)

An alternative approach to obtain this distribution
function is to use the relationship between the stationary

AA

DD

+ττ 1τ+τ–

(a)

τ+τ–

AA

DD

τ+1τ

(b)

τ–τ––

AA

DD
τ+1τ

(c)

τ–τ–– τ+1

AA

DD
τ

(d)

Figure 3: Scheduling rules with A and D represent potential arrivals and departures. (a) EAS rule. (b) LAS rule. (c) LA-DF rule.
(d) LA-AF rule.

0 1b

1a

2 3

1–α
1–α

α α

(1–α) β

αβ

(1–α) β

α (1–β) α (1–β)

(1–α) β

αβ+ (1–α) (1–β)

(1–α) (1–β)

Figure 4: State diagram for the LAS-DA rule.

8 Advances in Operations Research



distribution functions at observation epochs τ and potential
prearrival epochs as given by Hunter [2], page 204. But his
approach requires that we know a priori, the distribution
function at potential prearrival instants. Our approach is
simpler and based on solving birth-death equations for n≥ 2
and global balance equations for n≤ 2.

4.3.Te Outside Observer Stationary Distribution. Here, our
interest is in the process Z(τ − .5), τ � 1, 2, · · ·{ }; that is, the
state of the system is observed at the outside observer
epochs, i.e., at the slot centers τ − .5, τ � 1, 2, · · ·. Specifcally,
for various scheduling rules, we are interested in the sta-
tionary distribution function of the process given by πO(.)􏼈 􏼉,
defned as

πO
(i) ≔ lim

τ→∞

Y(i; τ− .5)

(τ− .5)
. (46)

Here, πO(i) is the stationary probability that the process
Z(τ − .5){ } is in state i, where state i is observed at the slot
centers. Let u � τ − .5, τ � 1, 2, · · · and replicate the analysis
in Sections 2 and 3, using Z(u){ }, we obtain similar results,
where πO(.) replaces π(.) for the results in (29) and (39).
Specifcally, we have the following theorem.

Theorem 8. Consider the birth-death process of Section 3,
but now, the state is observed at slot centers.

(1) Let β(0) � 0, then the stationary distribution function
is given by

πO
(n) �

ρ(1 − c)c
n− 1

, n � 1, 2, · · · ,

1 − ρ , n � 0.

⎧⎨

⎩ (47)

(2) Let β(0) � β, then the stationary distribution function
is given by

πO
(n) � c

n
(1 − c), n≥ 0. (48)

Note how πO,β(0)�0(n) � πβ(0)�β(n) and πO,β(0)�β(n) �

πβ(0)�0(n) for all n � 0, 1. · · ·. Next, we give the stationary
distribution function at the slot centers for each of the fve
scheduling rules.

4.3.1. Queues with EAS Rule. Here, we are interested in the
distribution function at slot centers, then we have a birth-
death model with β(0) � 0. Terefore, the stationary dis-
tribution function, πO(.)􏼈 􏼉, is given by (47). Note that the
stationary distribution at the random observer epochs is
associated with β(0) � β.

4.3.2. Queues with LAS-IA Rule. Here, we are interested in
the distribution function at slot centers, and then we have
a birth-death model with β(0) � β. Terefore, the stationary
distribution function πO(.)􏼈 􏼉 is given by (48). In contrast,
the stationary distribution at the random observer epochs is
associated with β(0) � 0.

4.3.3. Queues with LA-AF and LA-DF Rules. Here, we are
interested in the distribution function at slot centers, then we
have a birth-death model with β(0) � 0. Terefore, the
stationary distribution function, πO(.)􏼈 􏼉, is given by (47).
Tis is the same as the stationary distribution at random
observer epochs.

4.3.4. Queues with LAS-DA Rule. Here, we are interested in
the distribution function at slot centers, and then we have
a birth-death model with β(0) � 0. Terefore, the stationary
distribution function πO(.)􏼈 􏼉 is given by (47).

Hunter [2] gives formulas for the EAS rule at the random
observer epoch, and the LAS-DA and LAS-IA rules at the
outside observer’s epoch using generating functionmethods.
Desert and Daduna [6] give formulas for the EAS, LA-DF,
and LA-AF at the random observer epochs. See also Alfa [7],
Alfa and Kim [8], Woodward [10], and Chaudhry et al. [21],
among others. In this section, we presented a unifed
treatment of all these scheduling rules at slot edges and slot
centers.

5. Bernoulli Arrivals See Time Averages

We investigate when Bernoulli Arrivals See Time Averages
(BASTA), also referred to as GASTA (Geometric Arrivals
See Time Averages). Interestingly, and contrary to the
continuous time case, Bernoulli arrivals do not necessarily
see time averages in the same sense as it happens in the
continuous time case. We assume a single-server discrete-
time queueing model with at most one potential arrival and/
or departure in a time slot. How Bernoulli arrivals see time
averages depends on the scheduling of the order of arrivals
and departures in a time slot.

5.1. Characterization of BASTA. We start by giving a general
characterization of BASTA for a discrete-time process with
an imbedded arrival process without consideration of any
scheduling rules. Let Tn, n � 1, 2, · · ·􏼈 􏼉 be an imbedded point
process associated with process Z(τ), τ � 1, · · ·{ }, such that
Tn is the arrival instant of the nth arrival. Let
N � N(τ), τ � 1, 2, · · ·{ } be an associated counting process
such that N(τ) counts the points of Tn, n � 1, 2, · · ·􏼈 􏼉 in
[0, τ], that is, process N counts the number of arrivals in
[0, τ]. Note that we assume one possible arrival at any given
time instance.

For any state k ∈ S, N(k; τ) ≔ 􏽐
τ
u�11 Z(T−

u) � k􏼈 􏼉 counts
the state k arrivals during (0, τ]. Now, defne the following
limits when they exist.

α ≔ lim
τ⟶∞

N(τ)

τ
,

α(k) ≔ lim
τ⟶∞

N(k; τ)

Y(k; τ)
,

πA
(k) ≔ lim

τ⟶∞

N(k; τ)

N(τ)
.

(49)
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With Tn􏼈 􏼉 a simple imbedded arrival process, we in-
terpret α as the long-run arrival frequency, α(k) as the state-
k long-run arrival frequency, and πA(k) as the long-run
frequency of arrivals that fnd the system in state k. In
a stochastic system, w.p.1, α is the probability of arrival at
any given time instant, α(k) is the state k arrival probability,
and πA(k) is the prearrival probability of fnding k cus-
tomers in the system upon arrival. Te following sample
path result states that prearrival probabilities equal time-
average probabilities if and only arrival probabilities are state
independent.

Theorem 9. For any state k ∈ S, assume that all quantities
are well defned. Ten,

α(k)π(k) � απA
(k); for all k � 0, 1, · · · . (50)

Moreover, if α(k) � α for all k∈ S, then

πA
(k) � π(k); for all k � 0, 1, · · · . (51)

Proof. It follows from the defnitions that

α(k)π(k) � lim
τ→∞

N(k; τ)

Y(k; τ)
􏼠 􏼡 ×

Y(k; τ)

τ
� lim

τ→∞

N(k; τ)

τ
,

απA
(k) � lim

τ→∞

N(τ)

τ
􏼠 􏼡 ×

N(k; τ)

N(τ)
� lim

τ→∞

N(k; τ)

τ
.

(52)

Tis proves the frst part of the theorem.Te second part
is straightforward.

A continuous analog of the above sample-path version is
proved in El-Taha and Stidham [28]. Note that the condition
α(k) � α for all k ∈ S is the equivalent of the Lack-of-Bias
(LBA) condition given by Makowski et al. [30].

Now, assume we are working with a stochastic process
with an imbedded point process. Specifcally, consider
Z(τ, A(τ){ }, where Z(τ); τ ≥ 1{ } is a discrete-time stochastic
process and for each τ, A(τ) � 1{ } if an arrival occurs and
0 otherwise. Typically, one makes the following Lack of
Anticipation assumption (LAA) which is sufcient for
BASTA to hold.

5.1.1. Lack of Anticipation Assumption (LAA). Assume that

P A(τ) � k | Z(m− ) � zm; 1≤m≤ τ−( 􏼁 � p(k),

􏽘

1

k�0
p(k) � 1,

(53)

for all τ, z1, · · ·, zτ ; and p(k)􏼈 􏼉 is Bernoulli p.m.f. with pa-
rameter α.

Te LAA assumption says that future arrivals are
independent of the history of the process Z. It turns out
that this is a too strong condition for ASTA. On the other
hand, the weaker condition LBA says the future arrivals

and the present state of the system are uncorrelated. Tis
weak condition that is not easy to verify in practice. A
stronger condition that says future arrivals are in-
dependent of the current state of the process seems to
avoid these issues and work well for our purposes.
Terefore, we will use the following lack of dependence
assumption (LDA).

5.1.2. Lack of Dependence Assumption (LDA). Assume that
for all n≥ 0

P(A(τ) � k | Z(τ− ) � n) � p(k); 􏽘
1

k�0
p(k) � 1, (54)

for all τ, all n, and p(k)􏼈 􏼉 is Bernoulli p.m.f. with pa-
rameter α.

Remark 10. Te important assumption here is that LDA
holds. Te Bernoulli arrivals assumption by itself is not
sufcient for BASTA to hold. We need the LDA in-
dependence assumption. To see why LDA is important,
consider a system with Bernoulli arrivals that occur at times
2τ with probability α (geometric interarrival times) and let
the service of kth arrival be one-half the next interarrival
time. Ten, all arrivals will see the system in state 0, but the
system will spend half the time in state 0, that is πA(0) � 1,
but π(0) � 0.5 and π(1) � 0.5.

Since A(τ){ } is a Bernoulli process, one can see that
under LDA the conditional state k-arrival probabilities

α(k) � P(A(τ) � 1 | Z(τ− ) � k) w.p.1, (55)

and the prearrival probabilities

πA
(k) � P(Z(τ− ) � k | A(τ) � 1) w.p.1, (56)

for all k≥ 0.
Note that if the LDA holds, then α(k) � α for all k∈ S.

When A(τ){ } is a Bernoulli process, Teorem 9 is referred
to as BASTA and sometimes GASTA for geometric ar-
rivals see time averages. Several authors including Halfn
[11], Makowski et al. [30], El-Taha and Stidham [28], and
El-Taha and Stidham [31] have addressed the discrete-
time BASTA, in the framework of a stochastic discrete-
time process with an imbedded point process, and its
variants. Te BASTA issue in discrete-time queueing
models with specifc scheduling rules will be
addressed next.

5.2. BASTA for Queues with Scheduling Rules. In a queueing
system, one can think of the time instants τ, τ � 1, 2, · · · as
the epochs where the system state is observed. Potential
arrivals (departures) can be scheduled right before (after) or
right after (before) a time instant τ. In such situations τ− can
be taught as a potential prearrival instant if a potential arrival
is scheduled to occur in (τ− , τ). Moreover, if a potential
arrival is scheduled to occur in (τ, τ+), then τ will be
considered a potential prearrival instant.
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BASTA suggests that, similar to the continuous time
case, when arrivals follow a Bernoulli process, the pre-
arrival probabilities will equal the corresponding ran-
dom observer probabilities. Tis is true for a discrete-
time process with an imbedded Bernoulli point process.
However, it turns out that when we invoke scheduling
rules, BASTA in the sense discussed above does not
necessarily hold. For each of the fve scheduling rules, we
will give the expression for the prearrival probabilities
(which may or may not equal the random observer
probabilities). We assume arrivals to be i.i.d. and work
with an equivalent LDA assumption that does not require
the entire history of the process. In each case, we also
refne the LDA assumption to ft the specifed
scheduling rule.

5.2.1. Te EAS Rule. Here, we give a BASTA related re-
lationship and related results using the generalized birth-
death model. Because the arrivals are i.i.d. and taking into
account that in EAS rule arrivals occur right after slot edges,
the LDA assumption takes the following form.

For all n≥ 0

p(A(τ+) � 1 | Z(τ) � n) � p(A(τ+) � 1). (57)

Theorem 12. Consider a single server queueing system with
EAS Rule. Ten,

πA
(n) �

α(n)π(n)

􏽐
∞
k�0α(k)π(k)

. (58)

In particular, if LDA holds, then

πA
(n) � π(n); n≥ 0. (59)

Proof. Using the law of total probability, we obtain

lim
τ⟶∞

p(A(τ+) � 1) � lim
τ⟶∞

􏽘
k∈S

p(A(τ+) � 1 | Z(τ) � k)

· p(Z(τ) � k),

� 􏽘
k∈S

α(k)π(k).

(60)

Now, it follows that

πA
(n) � lim

τ⟶∞
p(Z(τ) � n | A(τ+) � 1)

� lim
τ⟶∞

p(Z(τ) � n, A(τ+) � 1)

p(A(τ+) � 1)

� lim
τ⟶∞

p(A(τ+) � 1 | Z(τ) � n)p(Z(τ) � n)

p(A(τ) � 1)

�
α(n)π(n)

􏽐
∞
k�0 α(k)π(k)

.

(61)

Tis proves the frst part of the theorem.Te second part
follows by noting that the LDA assumption implies α(n) � α
for all n≥ 0.

Te relation in the frst part of Teorem 12 is the
discrete-time counterpart of a similar one that has been used
in continuous-time stochastic models as the basis for a proof
of PASTA (Cooper [32]). □

5.2.2. Te LAS-DA and LAS-IA Rules. Here, we derive re-
lationships between prearrival probabilities and time aver-
age probabilities using the generalized birth-death model for
both the LAS-IA and LAS-DA rules. We assume late arrival,
that is, a potential arrival occurs at (τ− , τ). We also assume
that the prearrival observed instance falls after the occur-
rence of a potential departure. Because potential departures
occur before potential arrivals in any time slot, the number
of customers an arrival sees depends on whether an actual
departure occurs in (τ − 1, (τ − 1)+).

Lemma 14. For any LAS generalized birth-death model with
state n arrival and service probabilities α(n) and β(n), re-
spectively, we have

πA
(n) �

1
α

[α(n)(1− β(n)π(n) + α(n + 1)β(n + 1)π(n + 1)],

(62)

where α � 􏽐
∞
k�0α(k)π(k).

In particular, if α(n) � α for all n≥ 0 (state independent),
then

πA
(n) � (1 − β(n))π(n) + β(n + 1)π(n + 1). (63)

Proof. Now, if the state at a potential prearrival instant τ− is
n, i.e., an arrival sees n customers in the system, then the state
at τ is n + 1. So,
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πA
(n) � lim

τ⟶∞
p(Z(τ) � n + 1 | A(τ− ) � 1),

� lim
τ⟶∞

p(Z(τ) � n + 1, A(τ− ) � 1)

p(A(τ− ) � 1)
,

� lim
τ⟶∞

􏽘
r∈S

p(Z(τ) � n + 1, Z(τ − 1) � r, A(τ− ) � 1)

p(A(τ− ) � 1)
,

� lim
τ⟶∞

􏽘
r∈ n,n+1{ }

p(Z(τ) � n + 1|Z(τ − 1) � r, A(τ− )� |1)p(A(τ− ) � 1|Z(τ − 1) � r),

×
p(Z(τ − 1) � r)

p(A(τ− ) � 1)
,

�
[α(n)(1− β(n)π(n) + α(n + 1)β(n + 1)π(n + 1)]

􏽐
∞
k�0 α(k)π(k)

.

(64)

Te lemma follows by noting that α � 􏽐
∞
k�0α(k)π(k).

Daduna [5] uses this type of argument. Using (63), we
see that BASTA does not hold here in the sense that pre-
arrival probabilities equal time-average probabilities where
the average is taken with respect to time instants at the slot
edges, τ. We can use this relationship to derive an expression
for the prearrival probabilities. Instead, we will use a dif-
ferent approach where we relate prearrival probabilities to
the outside observer probabilities.

5.2.3. LDA for LAS Rules. For the LAS rules, the lack of
anticipation assumption takes the form.

p(A(τ− ) � 1 | Z(τ − .5) � n) � p(A(τ− ) � 1). (65)

Lemma 15. For any LAS generalized birth-death model with
state n arrival and service probabilities α(n) and β(n), re-
spectively, we have

απA
(n) � α(n)πO

(n) for all n≥ 0. (66)

In particular, if LDA holds, then

πA
(n) � πO

(n); n � 0, 1, · · · , (67)

Proof. For all n≥ 0,

πA
(n) � lim

τ→∞
p(Z(τ− .5) � n | A(τ− )� 1),

� lim
τ→∞

p(Z(τ− .5) � n, A(τ− )� 1)

p(A(τ− )� 1)
,

� lim
τ→∞

p(A(τ− )� 1 | Z(τ− .5) � n)P(Z(τ− .5) � n)

p(A(τ− )� 1)
,

�
α(n)πO

(n)

α
.

(68)

Note that the LDA assumption implies that α(n) � α for all
n≥ 0. Te lemma follows by noting that α � p(A(τ− ) � 1).

Instead of τ − 0.5, one can use any u ∈ ((τ − 1)+, τ− )

which is referred to as the outside observer interval.

5.2.4. Te LA-AF Rule. Here, we consider the LA-AF rule.
In this rule, both potential arrivals and departures occur at
the end of a time slot with arrivals occurring before
departures.

For the LA-AF models, the lack of dependence as-
sumption takes the form.

p(A(τ − − ) � 1 | Z(τ − 1) � n) � p(A(τ − − ) � 1). (69)

Note that Z can be observed for any u in the interval
[τ − 1, τ − − ) since for any such u, the system state does not
change.

Lemma 17. For any LA-AF generalized birth-death model
with state n arrival and service probabilities α(n) and β(n),
respectively, we have

απA
(n) � α(n)π(n) for all n≥ 0. (70)

In particular, if LDA holds, then

πA
(n) � π(n) n � 0, 1, · · · , (71)

Proof. For all n≥ 0

πA
(n) � lim

τ→∞
p(Z(τ− 1) � n | A(τ− − )� 1)

� lim
τ→∞

p(Z(τ− 1) � n, A(τ− − )� 1)

p(A(τ− − )� 1)

� lim
τ→∞

p(A(τ− − )� 1 | Z(τ− 1) � n)P(Z(τ− 1) � n)

p(A(τ− − )� 1)

�
α(n)π(n)

α
.

(72)
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Note that the LDA assumption implies that α(n) � α for
all n≥ 0. Te lemma follows by noting that
α � p(A(τ − − ) � 1).

Remark 18. Note that in LDA, if we selected u � τ − 0.5
instead of τ − 1, then we would have ended up with the
distribution πO(.), instead π(.). So, the choice of τ − 0.5 as
an observation epoch allows another independent pathway
to prove BASTA implies that for the LA-AF rule
πA(n) � πO(n); n � 0, 1 · · ·.

5.2.5. Te LA-DF Rule. We assume LA-DF, that is, a po-
tential arrival occurs at (τ− , τ). In this model, a prearrival
observed instance falls after the occurrence of a potential
departure. Because departures occur before arrivals, the
number of customers an arrival sees depends on whether an
actual departure occurs in (τ − 1, τ− ).

For the LA-DF model, the lack of dependence as-
sumption takes the form.

p(A(τ) � 1 | Z(u) � n) � p(A(τ) � 1); u ∈ (τ − − , τ− ). (73)

Lemma 20. For any LA-DF generalized birth-death model
with state n arrival and service probabilities α(n) and β(n),
respectively, we have

πA
(n) �

1
α

[α(n)(1 − β(n)π(n) + α(n + 1)β(n + 1)π(n + 1)],

(74)
where α � 􏽐

∞
k�0α(k)π(k).

In particular, if LDA holds, then α(n) � α for all n≥ 0
(state independent), and

πA
(n) � (1 − β(n))π(n) + β(n + 1)π(n + 1). (75)

Te statement and proof of this result are similar to those
of Lemma 17.

Again, using (75), we see that BASTA does not hold here
in the sense that prearrival probabilities equal random
observer probabilities. Te following corollary gives an
expression for the prearrival probabilities.

Corollary 21. Assume LDA holds, and let the service time be
geometric with mean 1/β. Ten,

πA
(n) � (1 − c)c

n
,

n � 0, 1, · · · .
(76)

Proof. Note that LDA implies that α(n) � α for all n≥ 0, so
that (75) holds. For the LA-DF rule, β(0) � 0, so it follows
from (75) that πA(0) � (1 − ρ) + βρ(1 − c � 1 − c. More-
over, πA(n) � (1 − β)π(n) + βcπ(n), n≥ 1. Simplify to ob-
tain the desired result.

Note that in this LA-DF rule, the prearrival stationary
distribution does not equal the stationary distribution at slot
edges (random observer) and not slot centers (outside

observer). However, it is equal to one of the two birth-death
forms discussed in Sections 2 and 3.

Gravey andHebuterne [12] address BASTA related results
for the LAS and EAS scheduling rules. Tey show that, using
the results of Halfn [11], for LAS rules, the distribution
function at arrival instants equals the distribution function at
the outside observer epochs.Tey also conclude that the same
result does not hold for the EAS rule (in the sense that arrivals
see time averages at the outside observer instants). Daduna [5]
studies LA-DF and LA-AF. He shows that BASTA holds for
the LA-AF in the sense that arrivals see the same as random
observers. Referring to LA-DF, he states that BASTA does not
function the same as the continuous time case. Desert and
Daduna [6] obtain formulas for the distribution functions at
prearrival epochs for the three scheduling rules EAS, LA-DF,
and LA-AF. Our results complement their conclusions in the
sense that we give the distribution function at prearrival
instants for all fve scheduling rules. Moreover, instead of
using the LAA assumption, we state a specifc weaker LDA
assumption for each scheduling rule.Tis, we believe, leads to
a better understanding of BASTA in regard with applying it in
discrete-time queues with specifc scheduling rules. □

5.3. Summary. In Table 1, we provide a summary of the
results for stationary distribution functions for fve sched-
uling rules at three observation epochs.

Te results in this summary are not new, for the most
part, neither the use of birth-death processes. However,
the use of one birth-death equation to generate all the
results for the random and outside observers is novel.
Several results appear in Hunter [2] who deals with EAS,
LAS-IA, and LAS-DA scheduling rules. Specifcally, for
the EAS rule, Hunter [2] pages 197 and 199, respectively,
give the outside and random observer’s results. More-
over, for the EAS and LAS-IA rules, the arrival-times
distribution function can be seen to follow from Example
9.4.1 of Hunter [2], page 248. Similarly, the LAS-DA
arrival-times distribution function follows from Example
9.4.2 of Hunter [2], page 252. For LAS-DA outside ob-
server, and LAS-IA outside and random observers, the
distribution functions can be obtained by utilizing re-
lationships between scheduling rules at various em-
bedding epochs, as given by Hunter [2] pages 9 and 253.
Te results obtained by Hunter, however, utilize gen-
erating function techniques. By contrast, results for the
random and outside observer’s epochs in the table follow
from using one birth-death model. For the LAS-DA
random observer, one can manipulate the relationships
given by Hunter [2], page 204, to obtain the distribution
function for this case. Our approach given by (45) is
simpler. Additionally, the LA-DF random observer
distribution function can be obtained from El-Taha et al.
[4] who give the result for the B/G/1-LA-DF round Robin
model. Te results are the same due to the insensitivity of
the round Robin model to service times distribution
function. Te LA-DF and LA-AF outside observer’s
distribution functions are given by Daduna [5], and the
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LA-DF and LA-AF arrival-times distribution functions
are given by Desert and Daduna [6]. We point out that
Daduna [5] and Desert and Daduna [6] use birth-death
models. Furthermore, the prearrival and outside ob-
server probabilities for the EAS and LAS-DA can also be
deduced from the GI/Geom/1 results given by Chaudhry
et al. [21] and Takagi [33]. However, their results are
obtained using generating functions.

We are able to obtain an expression for the prearrival
probability distribution functions for all scheduling rules.
Tis expression is not the same for all the scheduling rules,
which led some in the literature to speculate that BASTA
does not always hold. We see, at least in the cases covered
here, that BASTA holds in its own special way. When one
considers discrete-time queues with varied scheduling rules,
the arrival-time probabilities will equal the time-average
probabilities, but the time-averaging can be at slot bound-
aries (random observer epochs) or slot centers (outside
observer) depending on the applied scheduling rule. Only
for EAS and LA-AF rules, the prearrival probabilities equal
the random observer probabilities, a result that parallels the
continuous time case.

Note that with exception of the random observer
LAS-DA model; all other fourteen expressions have one of
the two birth-death forms. Moreover, the mean number of
customers in the system L � (α (1 − α))/(β − α) is obtained
from the expressions that contain ρ. Applying Little’s law,
we obtain W � (1 − α)/(β − α) as we shall see in the next
subsection.

An important observation here is that no two stationary
distribution functions for any pair of scheduling rules give
identical results for the three observation epochs. Note that
one can also use other epochs to evaluate time average
distribution functions like potential prearrival, potential
postarrival, potential predeparture, and potential post-
departure epochs. Tere is no equivalent for these epochs in
the continuous time case, as all these epochs lead to aver-
aging continuously over time.

6. Waiting Times

Now, using the prearrival stationary distribution functions
and Little’s law, we give the system performance measures
and show that their proofs are discrete counterparts of the

M/M/1 continuous-time case. Now, let Tq be a random
variable that represents the time in the queue and let
Wq(j) � p(Tq ≤ j), j � 0, 1, · · · be the cumulative distribu-
tion function of the time in the queue. Ten, we have the
fowing preliminary result.

Lemma 22. For any of the fve scheduling rules,

Wq(0) � 1 − c. (77)

Proof. Note that for any of the EAS, LAS-IA, or LA-DF
rules, the customer delay in the queue is 0 if upon arrival to
an empty system, the customer starts service immediately.
Terefore, Wq(0) � πA(0). Ten, the lemma follows from
the summary results in Subsection 5.2. Now, assume
LAS-DA or LA-AF rule. For these systems,
Wq(0) � πA(0) + βπA(1), where β is the probability of
departure from state 1. Tis is because in these systems, an
arrival that fnds one customer with one unit of service does
not wait and goes immediately into service. For the LAS-DA,
this happens after its one unit delayed access. In this case,

Wq(0) � (1 − ρ) + βρ(1 − c) � 1 − c. (78)

Tis completes the proof.
In the following theorem, we give an elementary direct

proof for the waiting time distribution. □

Theorem 23. Let wq(j) � p(Tq � j), j � 0, 1, · · · be the
probability mass function of the time in queue. Ten,

wq(j) �
c(1 − δ)δj− 1

, j � 1, 2, · · · ,

1 − c , j � 0.

⎧⎨

⎩ (79)

Moreover, the cumulative distribution function of the
time in the queue is given by

Wq(j) � 1 − cδj
, j � 0, 1, · · · , (80)

where δ � (1 − β)/(1 − α).

Proof. We assume any of EAS, LAS-IA, or LA-DF rules. For
j � 1, 2, · · ·, we have

Table 1: Scheduling rules limiting distributions at diferent epochs.

Random observer Arrival times Outside observer

EAS π(n) � (1 − c)cn πA(n) � (1 − c)cn πO(n) � ρ(1 − c)cn− 1

π(0) � 1 − c πA(0) � 1 − c πO(0) � 1 − ρ

LAS-IA π(n) � ρ(1 − c)cn− 1 πA(n) � (1 − c)cn πO(n) � (1 − c)cn

π(0) � 1 − ρ πA(0) � 1 − c πO(0) � 1 − c

LAS-DA π(n) given by (45) πA(n) � ρ(1 − c)cn− 1 πO(n) � ρ(1 − c)cn− 1

π(0) � (1 − α)(1 − ρ) πA(0) � 1 − ρ πO(0) � 1 − ρ

LA-AF π(n) � ρ(1 − c)cn− 1 πA(n) � ρ(1 − c)cn− 1 πO(n) � ρ(1 − c)cn− 1

π(0) � 1 − ρ πA(0) � 1 − ρ πO(0) � 1 − ρ

LA-DF π(n) � ρ(1 − c)cn− 1 πA(n) � (1 − c)cn πO(n) � ρ(1 − c)cn− 1

π(0) � 1 − ρ πA(0) � 1 − c πO(0) � 1 − ρ
Note that for all models n≥ 1.
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wq(j) � p Tq � j􏼐 􏼑

� 􏽘

j

n�1
p(n service completions inj time units arrival finds n in system) · πA

(n)

� 􏽘

j

n�1

j − 1

n − 1
􏼠 􏼡βn− 1

(1 − β)
j− n

· β · πA
(n)

� 􏽘

j

n�1

j − 1

n − 1
􏼠 􏼡βn

(1 − β)
j− n

×(1 − c)c
n
.

(81)

Note that in the third line, n − 1 of the departures occur
in j − 1 time units and the last departure occurs at time j.
Now, simplify to get

wq(j) � (1 − c)(1 − β)
j

􏽘

j

n�1

j − 1

n − 1
⎛⎝ ⎞⎠

α
1 − α

􏼒 􏼓
n

,

� (1 − c)
α

1 − α
(1 − β)

j 1 +
α

1 − α
􏼒 􏼓

j− 1
,

� (1 − c) ×
α

1 − α
(1 − β)

j 1
1 − α

􏼒 􏼓
j− 1

,

�
β − α

β(1 − β)
× α

1 − β
1 − α

􏼠 􏼡
1 − β
1 − α

􏼠 􏼡

j− 1

,

� c(1 − δ)δj− 1
,

(82)

where we use the fact that (1 − c) � (β − α)/(β(1 − α)) and
(1 − δ) � (β − α)/(1 − α).

Now, we assume LAS-DA or LA-AF rules. For these
systems, for a customer to be delayed j units, there has to be
j + 1 service units and one departure at time j + 1. Note that
because the frst service position does not cause any delay, an
arrival must see j + 1 units of work in the system for a j−

unit delay. Additionally, when n � 1, work in the system (i.e.,
the remaining service of the customer in service) j≥ 2.
Terefore,

wq(j) � 􏽘

j+1

n�1
p(n service completions in j + 1 time units ∣ arrival finds n in system) · πA

(n)

� 􏽘

j+1

n�1

j

n − 1
􏼠 􏼡βn− 1

(1 − β)
j− n+1

· β · πA
(n)

� 􏽘

j+1

n�1

j

n − 1
􏼠 􏼡βn

(1 − β)
j− n+1

× ρ(1 − c)c
n− 1

.

(83)

Simplify to obtain

wq(j) � ρ(1 − c)(1 − β)
j+1 β

1 − β
􏽘

j+1

n�1

j

n − 1
⎛⎝ ⎞⎠

α
1 − α

􏼒 􏼓
n− 1

� ρ(1 − c)
β

1 − β
(1 − β)

j+1 1 +
α

1 − α
􏼒 􏼓

j

� ρ(1 − c) × β
1 − β
1 − α

􏼠 􏼡

j

�
β − α

β(1 − α)
× α

1 − β
1 − α

􏼠 􏼡
1 − β
1 − α

􏼠 􏼡

j− 1

� c(1 − δ)δj− 1
.

(84)
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Te second part follows by letting Wq(j) � 􏽐
j
i�0wq(i)

and simplifying.
Performance measures are obtained using Teorem 23

and Little’s law. □

Theorem 24. Te mean waiting time and the number of
customers in the queue and in the system are given by

Wq �
α(1 − β)

β(β − α)
,

W �
1 − α
β − α

,

L �
α(1 − α)

β − α
,

Lq �
α2(1 − β)

β(β − α)
.

(85)

Proof. Te mean waiting time in the queue is obtained as

Wq � E Tq􏽨 􏽩 � 􏽘
∞

j�1
(1 − Wq(j)),

�
α(1 − β)

β(β − α)
,

(86)

Now, W is obtained using W � Wq + E[S] where E[S] �

1/β is the mean service time. Moreover, L and Lq are now
obtained using Little’s law.

Remark 25. For the EAS and LAS-DA systems, L obtained
here is associated with the outside observer distribution. For
the LAS-IA, L is associated with the random observer
distribution.

Hunter [2] recognizes that the three schedule rules EAS
and LAS-DA and LAS-DA have the same waiting time
distribution. He gives the waiting time distribution function
utilizing generating function techniques. Desert and Daduna
[6] obtain waiting time results for EAS, LA-DF, and LA-AF
and show that the distribution function is the same for the
three scheduling rules using generating function methods.
We extend those results to all fve scheduling rules and
provide a direct unifed proof for all cases and for both the
density and cumulative distribution functions.

7. Applications Using Global Balance

In this section, we consider three examples of Markovian
models, namely, a multiserver, fnite source, and batch-
arrival single server models that do not ft the birth-death
equations, but their stationary distribution functions can still
be computed efciently by recursive methods. It is well
known that the multiserver and fnite source continuous-
time models can be considered as special cases of the
continuous birth-death equations. By contrast, the corre-
sponding discrete-time models do not ft the birth-death

equations. Here, we use global balance equations to obtain
the stationary distribution functions using recursive
methods.

7.1. Finite Bufer Multiserver Model. Consider a fnite bufer
multiserver model denoted by B/Geo/c/N, where B indicates
Bernoulli arrivals with parameter α, geometric service times
with parameter β, c≥ 1 servers, and a fnite bufer N≥ c,
where N represents the number of servers and the waiting
space. Te loss model B/Geo/c/c is a special case with N � c.
Te state is the number of customers in the system in steady
state. Transitions occur because of arrivals to the system and/
or service completions. We assume that in any time slot,
departures occur before arrivals. Tis is consistent with the
LAS-IA and LA-DF systems. For i, k � 0, · · ·N, the transition
probabilities are given as follows. Te probability of arrival
that takes the system from state i to i + 1 is given by

p(i, i + 1) � α(1 − β)
min(i,c)

, (87)

the probability that the system moves from state i to i − k is
given by

p(i, i − k) � (1 − α)
i

k
􏼠 􏼡βk

(1 − β)
i− k

+ α
i

k + 1
􏼠 􏼡βk+1

(1 − β)
i− k− 1

,

i � 0, 1, · · · , c − 1; k � 0, 1, · · · , i,

p(i, i − k) � (1 − α)
c

k
􏼠 􏼡βk

(1 − β)
c− k

+ α
c

k + 1
􏼠 􏼡βk+1

(1 − β)
c− k− 1

,

i � c, 1, · · ·, N − 1; k � 0, 1, · · · , c,

p(N, N) � (1 − β)
c

+ cαβ(1 − β)
c− 1

,

(88)

and 0, otherwise. Here, n

k
􏼠 􏼡 � 0; if k< 0, or k> n. We point

out that when time is slotted as in communication networks,
these transition probabilities do not allow a job to enter and
leave state 0, i.e., an empty queue. When that is permitted,
then slightly modifed transition probabilities can be de-
rived. For details, see Robertazzi ([34], Chapter 6). Now, the
global balance equations are given by (j � 0, · · ·, N)

π(j) � 􏽘

min(N,j+c)

i�max(0,j− 1)

π(i)p(i, j), 􏽘
N

j�0
π(j) � 1. (89)

Now, we solve the global balance equations in (89) re-
cursively starting with π(N) and working backward. Note
that there is no known closed form expression for this
multiserver model.

Theorem 26. Let C(N) � 1. Ten, for m � N, · · · , 0,

π(m) �
C(m)

􏽐
N
i�0C(i)

; m � 0, 1, · · · , N, (90)
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where C(m), m � N − 1, · · · , 0 are obtained recursively such
that

C(m) �
C(m + 1)(1 − p(m + 1, m + 1)) − 􏽐

min(N,m+c+1)
i�m+2 C(i)p(i, m + 1)􏽨 􏽩

α(1 − β)
m′

, (91)

where m′ � min(m, c).

Proof. Te proof is by induction. From the global balance
equations (89)

π(N) � π(N − 1)p(N − 1, N) + π(N)p(N, N), (92)

so that

π(N− 1) �
π(N)(1 − p(N, N))

p(N− 1,N)
􏼢 􏼣 � C(N− 1)π(N). (93)

Assume π(k) � C(k)π(N) for k � m + 1, · · ·, N and
show that π(m) � C(m)π(N). Now, for m � 0, · · ·, N − 2,
write the global balance (89) as

π(m + 1) � 􏽘

min(N,m+c+1)

i�max(0,m)

π(i)p(i, m + 1)

� π(m)p(m, m + 1) + π(m + 1)p(m + 1, m + 1)

+ 􏽘

min(N,m+c+1)

i�m+2
π(i)p(i, m + 1),

(94)

which can be written as

π(m) �
π(m + 1)(1 − p(m + 1, m + 1)) − 􏽐

min(N,m+c+1)
i�m+2 π(i)p(i, m + 1)􏼐 􏼑

p(m, m + 1)

� C(m)π(N).

(95)

Noting that p(m, m + 1) � α(1 − β)m′ , and normalizing,
we complete the proof.

Note that

p(m, m + 1) �
α(1 − β)

c
m � N − 1, · · ·, c,

α(1 − β)
m

m � c − 1, · · · , 0.
􏼨 (96)

Te theorem leads to the following Algorithm 1.
Tis recursive procedure is efective for small N. When

N is large, this method can lead to overfow problems. Tere
are several methods in the literature to deal with stability and
overfow issues. Gao et al. [34] analyzed a multiserver model
with geometric service times and general interarrival times
using a generating functions approach.

7.2. Finite Source Discrete-Time Model; B/Geo/1//N.
Consider a discrete-time model with N identical machines.
Individual machine failures follow a Bernoulli process with
parameter α; that is, an upmachine fails with probability α at
any given time instant. Failed machines join a queue for
repair if one is in service; otherwise, a failed machine joins
the service immediately. Service times are geometric with
parameter β. Repaired machines join up machines imme-
diately upon repair. Tis queueing system is also known as
the fnite population model. Te state of the system is the
number of down machines in steady state taking values in

the state space 0, · · · , N{ }. For i, j � 0, · · ·, N, the transition
probabilities are given by

p(0, j) �
N

j
􏼠 􏼡αj

(1 − α)
N− j

; j � 0, · · · , N,

p(i, j) � (1 − β)
N − i

j − i
􏼠 􏼡αj− i

(1 − α)
N− j

+ β
N − i

j − i + 1
􏼠 􏼡αj− i+1

(1 − α)
N− j− 1

,

i � 1, · · · , N; j � i − 1, · · ·, N,

(97)

and 0 otherwise. Note that p(i, i − 1) simplifes to

p(i, i − 1) � β(1 − α)
N− i

; i � 1, · · · , N. (98)

Tis form of transition probabilities indicate that in state
0, no failed machine can be repaired in the same slot. Tis
again is consistent with the models where departures pre-
cede arrivals in a time slot. Tis is the case for LAS-IA and
LA-DF models. Moreover, the global balance equations are
given by

π(j) � 􏽘

j+1

i�0
π(i)p(i, j), 􏽘

N

j�0
π(j) � 1. (99)
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Now, we solve the global balance equations in (99) re-
cursively starting with π(0).

Theorem 27. Te stationary distribution π(n), n �{

0, 1, · · ·, N} is given by

π(n) �
C(n)

􏽐
N
i�0C(i)

, n � 0, 1, · · · , N, (100)

where C(n), n � 0, · · ·, N are obtained recursively such that
C(0) � 1, and

C(n) �
C(n − 1)(1 − p(n − 1, n − 1)) − 􏽐

n− 2
m�0 C(m)p(m, n − 1)􏼐 􏼑

p(n, n − 1)
, n � 1, · · · , N. (101)

Proof. Te proof is by induction. From the global balance
equations (99), we have

π(0)(1 − p(0, 0)) � π(1)p(1, 0), (102)

so that

π(1) �
π(0)(1 − p(0, 0))

p(1, 0)

�
π(0)(1 − (1 − α)

N
􏼑

β(1 − α)
N− 1 � C(1)π(0).

(103)

Assume π(k) � C(k)π(N) for k � 1, · · ·, n − 1 and show
that π(N) � C(N)π(N). Now, rewrite the global balance
(99) as

π(n − 1) � 􏽘
n

m�0
π(m)p(m, n − 1), (104)

which gives

π(n − 1)(1 − p(n − 1, n − 1))

� 􏽘
n− 2

m�0
π(m)p(m, n − 1) + π(n)p(n, n − 1),

(105)

so that

π(n) � 􏼢C(n − 1)(1 − p(n − 1, n − 1))

− 􏽘

n− 2

m�0
C(m)p(m, n − 1)⎞⎠⎤⎥⎥⎦π(0)/p(n, n − 1),

(106)

which proves the theorem.
Tis theorem leads to the following Algorithm 2 to

calculate stationary probabilities. □

7.3. Discrete-Time Batch Arrival Model; BX/Geo/1. Let A be
the number of arrivals at any given time instant. Arrivals at
diferent time instants are i.i.d., and P(A � i) � αi,
i � 0, 1, · · ·, and 0 otherwise; and 􏽐

∞
i�0αi � 1. Service times

are i.i.d. Tey are independent of arrival times. Let the
service time S be geometric with parameter 0< β< 1. For
i, j � 0, · · ·, the transition probabilities are given by

p(0, i) � αi; i � 0, · · · ,

p(i, i − 1) � α0β; i � 1, · · · ,

p(i, j) � αj− i(1 − β) + αj− i+1β; i � 1, · · · ; j � i, i + 1, · · ·,

(107)

and 0 otherwise.Tese transition probabilities are consistent
with the LAS-IA and LA-DF scheduling rules. Moreover, the
global balance equations are given by

π(j) � 􏽘

j+1

i�0
π(i)p(i, j), 􏽘

∞

j�0
π(j) � 1. (108)

Now, we solve the global balance equations in (108)
recursively.

Theorem 28. Te stationary distribution π(n), n � 0, 1, · · ·,{ }

is given by

π(n) �
C(n)

􏽐
N
i�0C(i)

; n � 0, 1, · · · , N, (109)

where C(n), n � 0, · · ·, N are obtained recursively such that
C(0) � 1, C(1) � (1 − p(0, 0))/p(1, 0), and for n≥ 2

(1) Let C(N) � 1.
(2) For m � N − 1, · · ·, c

C(m) � [C(m + 1)(1 − p(m + 1, m + 1)) − 􏽐
min(N,m+c+1)
i�m+2 C(i)p(i, m + 1)]/α(1 − β)c.

(3) For m � c − 1, · · · , 0
C(m) � [C(m + 1)(1 − p(m + 1, m + 1)) − 􏽐

min(N,m+c+1)
i�m+2 C(i)p(i, m + 1)]/α(1 − β)m.

(4) For m � 0, · · ·, N, set
π(m) � C(m)/􏽐N

i�0C(i).

ALGORITHM 1: Stationary probabilities for the multi-server model.
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C(n) �
(1 − p(n − 1, n − 1))C(n − 1) − p(0, n − 1) − 􏽐

n− 2
i�1 p(i, n − 1)C(i)􏼑􏽨 􏽩

p(n, n − 1)
. (110)

Proof. Te proof is by induction. From the global balance
equations (108), we have

π(0) � π(0)p(0, 0) + π(1)p(1, 0) (111)

so that

π(1) �
(1 − p(0, 0))π(0)

p(1, 0)
� C(1)π(0). (112)

For n≥ 2, rewrite the global balance (108) as

π(n − 1) � 􏽘
n

i�0
π(i)p(i, n − 1)

� π(0)p(0, n − 1) + 􏽘
n− 2

i�1
π(i)p(i, n − 1) + π(n − 1)

· p(n − 1, n − 1) + π(n)p(n, n − 1),

(113)

and let π(i) � C(i)π(0) for i � 0, · · ·, n − 1. Ten,

π(n) �
(1 − p(n − 1, n − 1))π(n − 1) − p(0, n − 1)π(0) − 􏽐

n− 2
i�1 p(i, n − 1)π(i)􏼑􏽨 􏽩

p(n, n − 1)
,

� C(n)π(0).

(114)

Tis completes the proof of the theorem.
Note that we did not use the actual transition proba-

bilities in the theorem. Tis will be done in the following
corollary. We shall need the stationary distribution function
of the EAS scheduling rule to use in the analysis of waiting
time distribution as follows. Te one-step probability
transitions for the EAS rule are given by

p(0, i) �
αi + αi+1β; i � 0,

αi(1 − β) + αi+1β; i � 1, · · · .
􏼨 (115)

Te remaining transition probabilities are unchanged
from the previous case. Te following corollary gives the
details of the solution procedure using the system
parameters.

Corollary 29. Te stationary distribution π(n), n �{

0, 1, · · ·, } is given by

π(n) �
C(n)

􏽐
N
i�0C(i)

; n � 0, 1, · · · , N, (116)

where C(n), n � 0, · · ·, N are obtained recursively such that
C(0) � 1,

C(1) �

1 − α0( 􏼁

α0β
, for LAS − IA and LA − DF,

1 − α0 − α1β( 􏼁

α0β
, for EAS,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(117)

and for n≥ 2

C(n) �
1 − α0(1 − β) − α1β( 􏼁C(n − 1) − αn− 1 − 􏽐

n− 2
i�1 αn− i− 1( (1 − β)− αn− iβ􏼁C(i)􏼑􏽨 􏽩

α0β
. (118)

Tis theorem and its corollary lead to the following Al-
gorithm 3 to calculate the stationary probabilities.

Other stopping rules can be used in step 3.

7.3.1. Waiting Time Distribution Function. In the following
theorem, we give an elementary direct proof for the waiting
time distribution. Let rj be the probability that a randomly

(1) Let C(0) � 1.
(2) For n � 1, · · ·, N, use (101) to compute C(n) recursively.
(3) For n � 0, · · ·, N, set π(n) � C(n)/􏽐N

i�0C(i).

ALGORITHM 2: Stationary probabilities for the fnite source model.
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selected customer in an arriving batch is in position j,
j � 1, · · ·. Ten, see Cox [35], p. 61.,

rj �
􏽐
∞
i�j αi

􏽐
∞
i�1 iαi

. (119)

See also Burke [36] who uses this result to obtain
a waiting time distribution function for batch arrival con-
tinuous time queues. Since waiting times are independent of
the scheduling rule, we select the EAS rule. For the EAS rule,
it can be shown, usingTeorem 30, that πA(n) � π(n) for all
n � 0, · · ·.

Theorem 30. Let wq(j) � p(Tq � j), j � 0, 1, · · · be the
probability mass function of the time in queue. Ten,

wq(j) �
􏽘

j

n�1
􏽘

n

k�0

j − 1

n − 1
􏼠 􏼡βn

(1 − β)
j− n

· π(k)rn+1− k, j � 1, 2, · · ·

π(0) · r1, j � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(120)

Proof. We assume EAS rule and note that the frst few steps
of proof are similar to the same steps in the proof ofTeorem
23. For j � 1, 2, · · ·, we have

wq(j) � p Tq � j􏼐 􏼑

� 􏽘

j

n�1
p(n service completions in j time units ∣ arrival is in position n + 1 to receive service)

· 􏽘
n

k�0
πA

(k)rn+1− k

� 􏽘

j

n�1

j − 1

n − 1
􏼠 􏼡βn− 1

(1 − β)
j− n

· β · 􏽘
n

k�0
πA

(k)rn+1− k.

(121)

Note that in the last step, n − 1 of the departures occur in
j − 1 time units and the last departure occurs at time j.
Simplify to obtain the desired result.

Te direct nontransform approach in Teorem 30 is
similar to the approach used by Chaudhry et al. [37] to
compute the waiting time distribution in a batch arrival
multiserver system. Tis approach is later utilized in
Chaudhry et al. [38].

7.4.Numerical Results. In this subsection, we give numerical
results for the models discussed earlier. Te three algorithms
described in this section for the multiserver, the fnite
population and the batch arrivals models are programmed
using the Python programming language. Te programs
were verifed carefully to make sure the results are accurate
including running the code for special cases with known

results. Te algorithms and the Python programs provide an
easy-to-follow approach to obtain quick numerical results
for the stationary distribution functions of the three models
discussed in this section.

For the multiserver and fnite population models, we use
N � 10. Moreover, for the multiserver model, we use c � 4,
α � 0.9, and β � 0.3; and for the fnite population model, we
use α � 0.15 and β � 0.90. For the batch arrival models, we use
β � 0.90, α0 � 0.5, α1 � 0.3, α2 � 0.1, α3 � 0.1, and 0 other-
wise. We iterate on N until the stopping criterion is satisfed
with ϵ � 10− 8. For the batch arrival LAS-IA and LA-DF cases,
we iterated until N � 106. For the batch arrival EASmodel, we
needed N � 101. For all models, we report the probabilities
p(n), n � 0, · · · 10􏼈 􏼉. We also give L � 􏽐

N
n�0np(n) and

Lq � 􏽐
N
n�c(n − c)p(n). In batch arrival cases, we, additionally,

report P(X≥ 11). Te results are given in Table 2.

(1) Choose a value for N, and let C(0) � 1 and
(2) Compute C(1) � (1 − α0)/α0β for LAS-IA and LA-DF, or C(1) � (1 − α0 − α1β)/α0β for EAS.
(3) For n � 2, · · ·, N, compute C(n) using (118).
(4) If |􏽐

N
i�0C(i) − 􏽐

N− 1
i�0 C(i)|< ϵ; stop; otherwise increment N and repeat steps 2 and 3.

(5) For n � 0, · · ·, N, set π(n) � C(n)/􏽐N
i�0C(i).

ALGORITHM 3: Stationary probabilities for the batch arrival model.
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In this section, we used a recursive approach to compute
numerically the stationary probabilities for three models.
One can use these probabilities to compute other perfor-
mance measures.

8. Concluding remarks

In this article, we use a unifed approach that combines
direct sample path and stochastic techniques and avoids
generating function methods. We start with a general birth-
death process that covers all single-server, single-arrival
Markovian queueing models covered in this article. We
present in one unifed space results for all the fve most used
scheduling rules in the literature, allowing readers to
compare these models. We address BASTA issues and note
that when considered within the context of a discrete-time
process with an imbedded point (arrival) process, ASTA
holds at a great level of generality. However, we observe, as
others, that BASTA does not hold in the classical sense that
prearrival probabilities are equal to the random observer
probabilities. Nonetheless, we provide formulas for the
prearrival probabilities for all fve scheduling rules.

One interesting observation from our summary in
Subsection 5.2 is that when considering stationary distri-
butions at random observation epochs, outside observation
epochs, and at prearrival epochs, we conclude that no two
scheduling rules lead to identical results. Each of the fve
scheduling rules has merits of its own. One could consider
scheduling rules with potential arrivals and departures oc-
curring at the beginning of a time slot, but these do not make
sense from the point of view of managing arrivals/departures
in a slot, and they have not been considered in the literature
to the best of our knowledge.

We also consider waiting time distribution functions. Our
results match those of Hunter [2] for three of the scheduling
rules covered by Hunter and extend those results to the other
two, namely, the LA-DA and LA-AF rules. Specifcally, all rules
lead to the same waiting time distribution function. Tis is
interesting and worth investigating for systems with general
arrival processes and general service times. Tis also has

implications for Little’s law and its applicability in discrete-time
queues. Finally, we give three Markovian models where the
results of two of them (the multiserver and the fnite source
models) do not ft the birth-death equations contrary to their
continuous time counterparts.

Te article should be accessible to researchers, engineers,
and graduate students interested in learning the basic ele-
ments of discrete-time queues. Te only requirement is
a basic knowledge of probability and stochastic processes.
Tis article should also be useful for people familiar with
continuous-time systems and would like an accessible in-
troduction to discrete time-queues, yet the article addresses
signifcant issues in discrete-time queues.
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