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Let G� (V, E) be a connected, basic, and fnite graph. A subset T � u1, u2, . . . , uk􏼈 􏼉 of V(G) is said to be a resolving set if for any
y ∈V(G), the code of y with regards to T, represented by CT(y), which is defned as CT(y) � d(u1, y), d(u2, y), . . . , d(uk, y), is
diferent for various y. Te dimension ofG is the smallest cardinality of a resolving set and is denoted by dim(G). If, for any t ∈ V –
S, there exists r ∈ S such that (S– r{ })∪ t{ } is a resolving set, then the resolving set S is secure.Te secure metric dimension of ? is the
cardinal number of the minimum secure resolving set. Determining the secure metric dimension of any given graph is an NP-
complete problem. In addition, there are several uses for the metric dimension in a variety of felds, including image processing,
pattern recognition, network discovery and verifcation, geographic routing protocols, and combinatorial optimization. In this
paper, we determine the secure metric dimension of special graphs such as a globe graph Gln, fag graph Fln, H- graph of path Pn,
a bistar graph B2

n,n, and tadpole graph T3,m. Finally, we derive the explicit formulas for the secure metric dimension of tadpole
graph Tn,m, subdivision of tadpole graph S(T3,m), and subdivision of tadpole graph S(Tn,m).

1. Introduction

Let G � (V, E) be a connected, basic, fnite graph. Let T �

u1, u2, . . . , uk􏼈 􏼉 on which the ordering (u1, u2, . . . , uk) is
imposed. Te ordered k-tuples r(w | T) � (d(u (1), w),

d(u (2), w), . . . , d(u (k), w)) are referred to as the metric
description of w with regards to T for every w ∈ V(G). Te
set T is said to be a resolving set if r (u|T) is not equal to
r(w | T) for any u, w in V(G). A minimum resolving set or
basis is a resolving set of G with minimum cardinality, and

the cardinality of a minimum resolving set is referred to as
the dimension of G, which is indicated by dim(G) [1].

In the literature, the concept of fnding sets in a con-
nected network has already been discussed [2, 3]. Nearly
forty years ago, Slater introduced the ideas of locating sets
(also known as resolving sets) and a reference set (metric
dimension). Later, the aforementioned theory was in-
dependently discovered by Harary and Melter [4]. Sebo and
Tannier [5], Mohamed et al. [6], Amin et al. [7], and
Borchert et al. [8] have all conducted diferent research on
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the idea of the metric dimension of graphs. Meanwhile,
Imran et al. [9] studied the metric dimension of the gen-
eralized Petersen multigraphs P(2n, n), which are the bar-
ycentric subdivision of Möbius ladders and established that
they have metric dimensions of 3 and when n is even and 4
when n is odd. Jäger et al. [10] showed that the metric di-
mension of Zn × Zn × Zn, n≥ 2 is ⌊3n/2⌋. Te complement
metric dimension and specifcs of particular graphs were
studied by Susilowati et al. [11]. Te dominant metric di-
mension of the joint product graphs was investigated by
Purwati et al. [12]. Te metric dimension of corona product
graphs was discovered by Iswadi et al. [13]. In certain
networks, including the trapezoid network, the Z − (Pn)

network, the open ladder network, the tortoise network, and
the P2nVPn network, Mohamed et al. [14] studied the exact
value of the secure resolving set. Te exact values of the local
metric basis and local metric dimension of the cyclic split
graph were examined by Cynthia et al. [15]. Grigorious et al.
[16] identifed the metric dimension for all n-values of the
circulant graphs C(n, ±{1, 2, 3, 4}). Te metric dimension of
the family of generalized wheels was established by Soor-
yanarayana et al. [17]. Several diferent kinds of sets in
a graph are related to the concept of security. For instance,
a secure set is a dominating setD ofG if for all v ∈ V-D, there
exists u ∈D such that (D – u{ }) ∪ v{ } is a dominating set
[4, 18]. Te secure resolving set for various classes of graphs
was identifed by Subramanian et al. [19]. Numerous graph
operations, such as corona product graphs [13], comb
product graphs [20], and joint product graphs [21], have
been found to have a metric dimension. Metric dimension
has been used in many diferent applications, including
robot navigation in networks [22–25], pharmaceutical
chemistry Chartrand et al. [1], pattern recognition Melter
et al. [26], and localization of wireless sensor networks [27].

Te secure metric dimension for various graphs, in-
cluding the globe graph Gln, the fag graph Fln, the H-graph
of the path Pn, the bistar graph B2

n,n, and tadpole graph T3,m

is determined in this paper. Te secure metric dimension of
the tadpole graphs Tn,m, the subdivision of the tadpole graph
S(T3,m), and the subdivision of the tadpole graph S(Tn,m) are
fnally derived explicitly.

2. Preliminary Notes

Defnition 1 (see [28]). Tadpole graph Tn,m is a special type
of graph that consists of a bridge connecting a cycle graph
with n (at least 3) vertices and a path graph with m vertices.

Defnition 2 (see [29]). A globe graph Gln is a graph obtained
from two isolated vertex connected by n paths of length two.

Defnition 3 (see [29, 30]). A bistar graph also known as Bn,n,
is the graph created by connecting the centre (apex) vertices of
two copies of K1,n by an edge and it is denoted by Bn,n. Te
vertex set of Bn,n is given by V(Bn,n) � v1, v2, . . . , vn, v, u,􏼈

u1, u2, . . . un}, where v and u are apex vertices and
v1, v2, . . . , vn, u1, u2, . . . un are pendent vertices. Te edge set
of Bn,n is E(Bn,n) � vv1, vv2, . . . , vvn, vu, uu1, uu2, . . .􏼈 uun}.

3. Secure Metric Dimension

Defnition 4. If a subset T of G is resolving and there is
a y ∈T such that (T − y􏼈 􏼉) ∪ x{ } is a resolving set of G for
any x ∈ V− T, then the subset T is an SR set of G. Te secure
resolving dimension of G, denoted by sdim(G), is the least
cardinality of an SR set of G.

Te notion of metric dimension, which was frst pre-
sented separately by Subramanian [19] and Mohamed [14].
Robot navigation in a network represented by a graph is one
of the main motivating factors behind its study (see [31]).

Te robot uses “landmarks,” or transmitters, set at sites
(the graph’s vertices) to establish its location inside the
network; so, the metric dimension and the secure metric
dimension are the bare minimum of transmitters needed for
the robot to always be aware of its position inside the
network that the graph represents. Te metric dimension of
a graph is an NP-hard problem, as was mentioned in [32].
Furthermore, business networks, chemical structures,
wireless communication networks, and electrical networks
[33–44] all make use of secure metric dimension theory.

Remark 5. Tere is a guarantee that an SR set exists. Because
the vertex set V(G) in any graph is both a resolving set and
a secure set.

Remark 6. dim(G)≤ sdim(G).

3.1. Secure Metric Dimension for Several Certain Graphs [19]

(1) sdim (Kn) � n − 1 � dim(Kn)

(2) sdim (K1,n) � n> dim(K1,n)

(3) sdim (Km,n) � m + n − 2 � dim(Km,n) (m, n≥ 2)

(4) sdim (Pn) � 2> dim(Pn) � 1 (n≥ 3)

(5) s dim(Cn) � 2 dim(Cn)

4. Main Results

Here, we demonstrate that the secure metric dimension of
the globe graph Gln, fag graph Fln,H- graph of path Pn, and
the bistar graph B2

n,n. We also derive the explicit formulas for
the secure metric dimension of tadpole graph T3,m, tadpole
graph Tn,m, subdivision of tadpole graph T3,m, and sub-
division of tadpole graph Tn,m.

Theorem 7. Let G is a globe graph Gln with k blocks and n
vertices, then sdim(Gln) � n-2.

Proof. We label the globe graph Gln as shown in Figure 1.
We choose a subset S � v1, v2, . . . , vn-2􏼈 􏼉, and we must
demonstrate that sdim(Gln) � n-2 for n≥ 4 .Te following is
how we obtained the representations of the vertices in the
graph Gln with respect to S.
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r v1 | S( 􏼁 � (0, 1, 1, . . . , 1, 1),

r v2 | S( 􏼁 � (1, 0, 2, . . . , 2, 2),

r v3 | S( 􏼁 � (1, 2, 0, 2, . . . , 2, 2),

⋮

r v((n/2)+1) | S􏼐 􏼑 � (1, 2, 0, 2, . . . , 2, 2).

(1)

Te vertices of graph Gln have distinct representations
when viewed from above. Although it implies that S is a secure

resolving set, this does not imply that it is the lower bound.
s dim(Gln)≤ n − 2 is the upper bound as a result. For the globe
graph Gln, there is no secure resolving set whose cardinality is
1. Sdim(Gln)≥ n − 2 is the lower bound and as a result ob-
tained that sdim(Gln)≤ n − 2 and sdim(Gln)≥ n − 2;
therefore, sdim(Gln) � n − 2. From the aforementioned
proof, we deduce that sdim(Gln) � n − 2. □

Theorem 8. Let G be a fag graph Fln with n vertices, then
sdim(Fln) � 2.

Proof. We label the fag graph Fln as shown in Figure 2. It is
obvious that there are n vertices. In order to have two cases
in the proof, let S � v2, vn-1􏼈 􏼉 if n is odd and S � v1, vn− 2􏼈 􏼉 if n
is even. □

Case 9. n is odd. Let S � v2, vn− 1􏼈 􏼉⊂V(Fln) be a secure
resolving set. Te representations of the vertices of Fln with
regards to S are the following:

r vi, S( 􏼁 �

i + 1
2

,
n − 1
2

􏼒 􏼓, 1≤ i≤ n − 2;  where i � 1, 3, . . . , n − 2;

i − 2
2

,
n − i − 1

2
􏼒 􏼓, 2≤ i≤ n − 1;  where i � 2, 4, . . . , n − 1;

2,
i + 1
2

􏼒 􏼓, where i � n .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Case 10. n is even. Let S � v1, vn− 2􏼈 􏼉⊂V(Fln) be a secure
resolving set. Te representations of the vertices of Fln with
regards to S are the following:

r vi, S( 􏼁 �

0,
n − 2
2

􏼒 􏼓, where i � 1;

i − 1
2

,
n − i + 1

2
􏼒 􏼓, 3≤ i≤ n − 1;  where  i � 3, . . . , n − 1;

i

2
,
n − i − 2

2
􏼒 􏼓, 2≤ i≤ n − 2; where i � 2, 4, . . . , n − 2;

1,
i

2
􏼒 􏼓, where i � n .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

1

2 3 4 5
n-1

n

Figure 1: Globe graph Gln.
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Tis completes the proof.
Since it is obvious that no two vertices have the same

labeling, we obtain a secure resolving set S with |S|, and as
a result, we obtain sdim(Fln) � 2.

Theorem 11. Let G be a H- graph of path Pn with n vertices,
then sdim(G)� 2.

Proof. We label theH- graph of path Pn as shown in Figure 3.
Let S� {v1, v(n/2)+1} such that n is the vertices number. We
want to show that d (vi, S)≠ d (vj, S) for all i≠ j to dem-
onstrate that S is a secure resolving set. Observe the following:

Case 1. For n� 4, then sdim(G)� 1.
Case 2. For n� 6, then sdim(G)� 2 and {v1, v3} be
a secure metric basis of G.
Case 3. For n� 8, 10, 12, . . ., n then sdim(G)� 2 and
v1 , vn/2+1􏼈 􏼉 be a secure metric basis of G .
Begin
for (i� 1; i ≤ (n/4) ; i++) do
d(vi, S)� (i − 1, (n/2) − i + 1)

end
for (i� (n/4) + 1; i ≤ (n/2) ; i++) do

d(vi, S) � (i − 1, i + 1)

end
for (i� (n/2) + 1; i ≤ (3n/4) ; i++) do

d(vi, S)� (n − i + 1, i − (n/2) − 1)

end
for (i� (3n/4) + 1; i ≤ n ; i++) do

d(vi, S)� (i − (n/2) − 1, i − (n/2) − 1)

end
end

Tis completes the proof.
Since it is obvious that no two vertices have the same

labeling, we obtain a secure resolving set S with |S|, and as
a result, sdim (G)� 2. Four for-loops are present in the
algorithm used to prove Teorem 11, but they are not inner
loops, hence the complexity of the algorithm is O(n), in-
dicating that it is a polynomial time algorithm. □

Theorem 12. Let G be tadpole graph T3,m with m vertices,
and {v1, v3} be a secure metric basis of G, then sdim (T3,m)� 2.

Proof. We label the tadpole graph T3,m as shown in Figure 4.
We choose a subset S� {v1, v3}, and we must show that
sdim(T3,m)� 2 for n≥ 4. Te following is how we obtained
the representations of the vertices in the graph T3,m with
respect to S.

r v1 | S( 􏼁 � (0, 1),

r v2 | S( 􏼁 � (1, 1),

r v3 | S( 􏼁 � (1, 0),

⋮

r vn | S( 􏼁 � (i − 2, i − 3).

(4)

Obviously, there are no two vertices with the same la-
beling; we then get a secure resolving set S with |S|, so we
have sdim (T3,m)� 2. □

Corollary 1 . Let G be tadpole graph Tn,m with n and m
vertices and {v1, v3} be a secure metric basis of G, then sdim
(Tn,m)� 2.

Corollary 14. Let G be subdivision of tadpole graph S(T3,m)

with m vertices and {v1, v3} be a secure metric basis of G, then
sdim (S(T3,m)) � 2.

Corollary 15. Let G be subdivision of tadpole graph S(Tn,m)

with n, m vertices and {v1, v3} be a secure metric basis of G,
then sdim (S(Tn,m)) � 2.

Theorem 16. Let G be the bistar graph B2
n,n with n vertices

and {v1, v2, · · · , vn-3,vn} be a secure metric basis of G, then sdim
(B2

n,n)� n-2.

Proof. We label the bistar graph T3,m as shown in Figure 5.
We choose a subset S� {v1, v2, . . ., vn− 3, vn}, and we must
show that sdim (B2

n,n)� n-2 for n≥ 6.Te following is howwe
obtained the representations of the vertices in the graph B2

n,n

with respect to S.

1
2 4

3 5

n-3

n-2
n-1

n

Figure 2: Flag graph Fln.
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Figure 3: H-graph of path Pn.
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r v1 | S( 􏼁 � (0, 2, 2, · · · , 2, 1),

r v2 | S( 􏼁 � (2, 0, 2, · · · , 2, 1),

r v3 | S( 􏼁 � (2, 2, 0, 2, · · · , 2, 1),

r vn− 3 | S( 􏼁 � (2, 2, . . . , 2, 0, 1),

r vn− 2 | S( 􏼁 � (2, 2, . . . , 2, 1),

r vn− 1 | S( 􏼁 � (1, 1, . . . , 1),

r vn | S( 􏼁 � (1, 1, . . . , 1, 0).

(5)

From above, the representations of vertices in graph B2
n,n

are distinct.Tis implies that S is a secure resolving set, but it
is not necessarily the lower bound. Tus, the upper bound is
sdim(B2

n,n)≤ n − 2. For B2
n,n there is no secue resolving set

that the cardinality is one. Tus, the lower bound is
sdim(B2

n,n)≥ n − 2 and we obtained that sdim(B2
n,n)≤ n − 2

and sdim(B2
n,n)≥ n − 2; therefore, sdim(B2

n,n)� n − 2. From
the above proving, we conclude that sdim(B2

n,n)� n − 2. □

5. Conclusion

Te secure metric dimensions of the globe graph and the
bistar graph have the same secure metric dimensions n − 2.
Te fag graph H- graph of path Pn, bistar graph, tadpole
graph T3,m, Tn,m, and subdivision of tadpole graph T3,m, Tn,m

have the same constant secure metric dimension 2.

6. Future Work

In the future, we plan to determine the secure metric di-
mension of many graphs, such as subdivisions of crown
graphs, cocktail party graphs, triangular pyramid graph P3,
and square pyramid graph P4.
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