Research Article
The Secure Metric Dimension of the Globe Graph and the Flag Graph

Sultan Almotairi,1 Olayan Alharbi,2 Zaid Alzaid,3 Badr Almutairi,4 and Basma Mohamed5

1Department of Computer Science, Faculty of Computer and Information Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
2Department of Information Systems, College of Computer and Information Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
3Department of Computer Science, Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah 42351, Saudi Arabia
4Department of Information Technology, College of Computer Sciences and Information Technology College, Majmaah University, Al Majmaah 11952, Saudi Arabia
5Mathematics and Computer Science Department, Faculty of Science, Menoufa University, Shibin El Kom 32511, Egypt

Correspondence should be addressed to Basma Mohamed; bosbos25jan@yahoo.com

Received 1 December 2023; Revised 22 February 2024; Accepted 22 March 2024; Published 18 April 2024

Academic Editor: Bikash Koli Dey

Copyright © 2024 Sultan Almotairi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let \(G = (V, E) \) be a connected, basic, and finite graph. A subset \(T = \{u_1, u_2, \ldots, u_k\} \) of \(V(G) \) is said to be a resolving set if for any \(y \in V(G) \), the code of \(y \) with regards to \(T \), represented by \(C_T(y) = d(u_1, y), d(u_2, y), \ldots, d(u_k, y) \), is different for various \(y \). The dimension of \(G \) is the smallest cardinality of a resolving set and is denoted by \(\dim(G) \). If, for any \(t \in V - S \), there exists \(r \in S \) such that \(\{S(r)\} \cup \{t\} \) is a resolving set, then the resolving set \(S \) is secure. The secure metric dimension of \(G \) is the cardinal number of the minimum secure resolving set. Determining the secure metric dimension of any given graph is an NP-complete problem. In addition, there are several uses for the metric dimension in a variety of fields, including image processing, pattern recognition, network discovery and verification, geographic routing protocols, and combinatorial optimization. In this paper, we determine the secure metric dimension of special graphs such as a globe graph \(G_{1,n} \), flag graph \(F_{1,n} \), \(H \)-graph of path \(P_n \), a bistar graph \(B_{n}^{2} \), and tadpole graph \(T_{3,n} \). Finally, we derive the explicit formulas for the secure metric dimension of tadpole graph \(T_{n,m} \), subdivision of tadpole graph \(S(T_{3,n}) \), and subdivision of tadpole graph \(S(T_{n,m}) \).

1. Introduction

Let \(G = (V, E) \) be a connected, basic, finite graph. Let \(T = \{u_1, u_2, \ldots, u_k\} \) on which the ordering \((u_1, u_2, \ldots, u_k) \) is imposed. The ordered \(k \)-tuples \(r(w | T) = (d(u_1, w), d(u_2, w), \ldots, d(u_k, w)) \) are referred to as the metric description of \(w \) with regards to \(T \) for every \(w \in V(G) \). The set \(T \) is said to be a resolving set if \(r(u | T) \) is not equal to \(r(w | T) \) for any \(u, w \in V(G) \). A minimum resolving set or basis is a resolving set of \(G \) with minimum cardinality, and the cardinality of a minimum resolving set is referred to as the dimension of \(G \), which is indicated by \(\dim(G) \) [1].

In the literature, the concept of finding sets in a connected network has already been discussed [2, 3]. Nearly forty years ago, Slater introduced the ideas of locating sets (also known as resolving sets) and a reference set (metric dimension). Later, the aforementioned theory was independently discovered by Harary and Melter [4]. Sebo and Tannier [5], Mohamed et al. [6], Amin et al. [7], and Borchert et al. [8] have all conducted different research on
the idea of the metric dimension of graphs. Meanwhile, Imran et al. [9] studied the metric dimension of the generalized Petersen multigraphs \(P(2n, n)\), which are the barycentric subdivision of Möbius ladders and established that they have metric dimensions of 3 and when \(n\) is even and 4 when \(n\) is odd. Jäger et al. [10] showed that the metric dimension of \(Z_n \times Z_n \times Z_n\), \(n \geq 2\) is \([3n/2]\). The complement metric dimension and specifics of particular graphs were studied by Susilowati et al. [11]. The dominant metric dimension of the joint product graphs was investigated by Purwati et al. [12]. The metric dimension of corona product graphs was discovered by Iswadi et al. [13]. In certain networks, including the trapezoid network, the open ladder network, the tortoise network, and the \(P_{2n} \setminus P_n\) network, Mohamed et al. [14] studied the exact value of the secure resolving set. The exact values of the local metric basis and local metric dimension of the cyclic split graph were examined by Cynthia et al. [15]. Grigoriou et al. [16] identified the metric dimension for all \(n\)-values of the circulant graphs \(C(n, \pm(1, 2, 3, 4))\). The metric dimension of the family of generalized wheels was established by Sooryanarayana et al. [17]. Several different kinds of sets in a graph are related to the concept of security. For instance, a secure set is a dominating set \(D\) of \(G\) if for all \(v \in V - D\), there exists \(u \in D\) such that \((D - \{u\}) \cup \{v\}\) is a dominating set [4, 18]. The secure resolving set for various classes of graphs was identified by Subramanian et al. [19]. Numerous graph operations, such as corona product graphs [13], comb product graphs [20], and joint product graphs [21], have been found to have a metric dimension. Metric dimension has been used in many different applications, including robot navigation in networks [22–25], pharmaceutical chemistry Chartrand et al. [1], pattern recognition Melter et al. [26], and localization of wireless sensor networks [27].

The secure metric dimension for various graphs, including the globe graph \(G_{ln}\), the flag graph \(F_{ln}\), the \(H\)-graph of the path \(P_n\), the bistar graph \(B_{2n,n}^w\), and tadpole graph \(T_{3,m}\) is determined in this paper. The secure metric dimension of the tadpole graphs \(T_{n,m}\), the subdivision of the tadpole graph \(S(T_{3,m})\), and the subdivision of the tadpole graph \(S(T_{n,m})\) are finally derived explicitly.

2. Preliminary Notes

Definition 1 (see [28]). Tadpole graph \(T_{n,m}\) is a special type of graph that consists of a bridge connecting a cycle graph with \(n\) (at least 3) vertices and a path graph with \(m\) vertices.

Definition 2 (see [29]). A globe graph \(G_{ln}\) is a graph obtained from two isolated vertex connected by \(n\) paths of length two.

Definition 3 (see [29, 30]). A bistar graph also known as \(B_{2n,n}\), is the graph created by connecting the centre (apex) vertices of two copies of \(K_{1,1}\) by an edge and it is denoted by \(B_{2n,n}\). The vertex set of \(B_{2n,n}\) is given by \(V(B_{2n,n}) = \{v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n\}\), where \(v\) and \(u\) are apex vertices and \(v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n\) are pendant vertices. The edge set of \(B_{2n,n}\) is \(E(B_{2n,n}) = \{vuv_1, vuv_2, \ldots, vuv_n, vuu_1, vuu_2, \ldots vuu_n\}\).

3. Secure Metric Dimension

Definition 4. If a subset \(T\) of \(G\) is resolving and there is a \(y \in T\) such that \((T - \{y\}) \cup \{x\}\) is a resolving set of \(G\) for any \(x \in V - T\), then the subset \(T\) is an SR set of \(G\). The secure resolving dimension of \(G\), denoted by \(sdim(G)\), is the least cardinality of an SR set of \(G\).

The notion of metric dimension, which was first presented separately by Subramanian [19] and Mohamed [14]. Robot navigation in a network represented by a graph is one of the main motivating factors behind its study (see [31]). The robot uses “landmarks,” or transmitters, set at sites (the graph’s vertices) to establish its location inside the network; so, the metric dimension and the secure metric dimension are the bare minimum of transmitters needed for the robot to always be aware of its position inside the network that the graph represents. The metric dimension of a graph is an NP-hard problem, as was mentioned in [32]. Furthermore, business networks, chemical structures, wireless communication networks, and electrical networks [33–44] all make use of secure metric dimension theory.

Remark 5. There is a guarantee that an SR set exists. Because the vertex set \(V(G)\) in any graph is both a resolving set and a secure set.

Remark 6. \(\dim(G) \leq sdim(G)\).

3.1. Secure Metric Dimension for Several Certain Graphs [19]

1. \(sdim(K_n) = n - 1 = \dim(K_n)\)
2. \(sdim(K_{1,n}) = n > \dim(K_{1,n})\)
3. \(sdim(K_{m,n}) = m + n - 2 = \dim(K_{m,n})\) \((m, n \geq 2)\)
4. \(sdim(P_n) = 2 > \dim(P_n) = 1 \quad (n \geq 3)\)
5. \(sdim(C_n) = 2 \dim(C_n)\)

4. Main Results

Here, we demonstrate that the secure metric dimension of the globe graph \(G_{2n}\), flag graph \(F_{2n}\), \(H\)-graph of path \(P_n\), and the bistar graph \(B_{2n,n}^w\). We also derive the explicit formulas for the secure metric dimension of tadpole graph \(T_{3,m}\), tadpole graph \(T_{n,m}\), subdivision of tadpole graph \(T_{3,m}\), and subdivision of tadpole graph \(T_{n,m}\).

Theorem 7. Let \(G\) is a globe graph \(G_{2n}\) with \(k\) blocks and \(n\) vertices, then \(sdim(G_{2n}) = n - 2\).

Proof. We label the globe graph \(G_{2n}\) as shown in Figure 1. We choose a subset \(S = \{v_1, v_2, \ldots, v_{n-2}\}\), and we must demonstrate that \(sdim(G_{2n}) = n - 2\) for \(n \geq 4\). The following is how we obtained the representations of the vertices in the graph \(G_{2n}\) with respect to \(S\).
The vertices of graph G_{ln} have distinct representations when viewed from above. Although it implies that S is a secure resolving set, this does not imply that it is the lower bound. $s\dim(G_{ln}) \leq n - 2$ is the upper bound as a result. For the globe graph G_{ln}, there is no secure resolving set whose cardinality is 1. $s\dim(G_{ln}) \geq n - 2$ is the lower bound and as a result obtained that $s\dim(G_{ln}) \leq n - 2$ and $s\dim(G_{ln}) \geq n - 2$; therefore, $s\dim(G_{ln}) = n - 2$. From the aforementioned proof, we deduce that $s\dim(G_{ln}) = n - 2$. \hfill \Box

Theorem 8. Let G be a flag graph F_{ln} with n vertices, then $s\dim(F_{ln}) = 2$.

Proof. We label the flag graph F_{ln} as shown in Figure 2. It is obvious that there are n vertices. In order to have two cases in the proof, let $S = \{v_2, v_{n-1}\}$ if n is odd and $S = \{v_1, v_{n-2}\}$ if n is even. \hfill \Box

Case 9. n is odd. Let $S = \{v_2, v_{n-1}\} \subset V(F_{ln})$ be a secure resolving set. The representations of the vertices of F_{ln} with regards to S are the following:

$$
r(v_i, S) = \begin{cases}
\left(\frac{i + 1}{2}, \frac{n - 1}{2}\right), & 1 \leq i \leq n - 2; \text{ where } i = 1, 3, \ldots, n - 2; \\
\left(\frac{i - 2}{2}, \frac{n - i - 1}{2}\right), & 2 \leq i \leq n - 1; \text{ where } i = 2, 4, \ldots, n - 1; \\
\left(2, \frac{i + 1}{2}\right), & \text{where } i = n.
\end{cases}
$$

Case 10. n is even. Let $S = \{v_1, v_{n-2}\} \subset V(F_{ln})$ be a secure resolving set. The representations of the vertices of F_{ln} with regards to S are the following:

$$
r(v_i, S) = \begin{cases}
\left(0, \frac{n - 2}{2}\right), & \text{where } i = 1; \\
\left(\frac{i - 1}{2}, \frac{n - i + 1}{2}\right), & 3 \leq i \leq n - 1; \text{ where } i = 3, \ldots, n - 1; \\
\left(\frac{i n - i - 2}{2}, \frac{i}{2}\right), & 2 \leq i \leq n - 2; \text{ where } i = 2, 4, \ldots, n - 2; \\
\left(1, \frac{i}{2}\right), & \text{where } i = n.
\end{cases}
$$

Figure 1: Globe graph G_{ln}.
This completes the proof.
Since it is obvious that no two vertices have the same labeling, we obtain a secure resolving set S with $|S|$, and as a result, we obtain $sdim(F_{ln}) = 2$.

Theorem 11. Let G be a H- graph of path P_n with n vertices, then $sdim(G) = 2$.

Proof. We label the H-graph of path P_n as shown in Figure 3. Let $S = \{v_1, v_{(n/2)+1}\}$ such that n is the vertices number. We want to show that $d(v_i, S) \neq d(v_j, S)$ for all $i \neq j$ to demonstrate that S is a secure resolving set. Observe the following:

Case 1. For $n = 4$, then $sdim(G) = 1$.
Case 2. For $n = 6$, then $sdim(G) = 2$ and $\{v_1, v_3\}$ be a secure metric basis of G.
Case 3. For $n = 8, 10, 12, \ldots, n$ then $sdim(G) = 2$ and $\{v_1, v_{n/2+1}\}$ be a secure metric basis of G.

Begin
for $(i = 1; i \leq (n/4); i++)$ do
\[d(v_i, S) = (i - 1, (n/2) - i + 1)\]
end
for $(i = (n/4) + 1; i \leq (n/2); i++)$ do
\[d(v_i, S) = (i - 1, i + 1)\]
end
for $(i = (n/2) + 1; i \leq (3n/4); i++)$ do
\[d(v_i, S) = (n - i + 1, i - (n/2) - 1)\]
end
for $(i = (3n/4) + 1; i \leq n; i++)$ do
\[d(v_i, S) = (i - (n/2) - 1, i - (n/2) - 1)\]
end

This completes the proof.
Since it is obvious that no two vertices have the same labeling, we obtain a secure resolving set S with $|S|$, and as a result, $sdim(G) = 2$. Four for-loops are present in the algorithm used to prove Theorem 11, but they are not inner loops, hence the complexity of the algorithm is $O(n)$, indicating that it is a polynomial time algorithm. □

Theorem 12. Let G be the tadpole graph $T_{n,m}$ with m vertices, and $\{v_1, v_j\}$ be a secure metric basis of G, then $sdim(T_{3,m}) = 2$.

Proof. We label the tadpole graph $T_{3,m}$ as shown in Figure 4. We choose a subset $S = \{v_1, v_j\}$, and we must show that $sdim(T_{3,m}) = 2$ for $n \geq 4$. The following is how we obtained the representations of the vertices in the graph $T_{3,m}$ with respect to S.

\[
\begin{align*}
 r(v_1 | S) &= (0, 1), \\
 r(v_2 | S) &= (1, 1), \\
 r(v_3 | S) &= (1, 0), \\
 \vdots \\
 r(v_n | S) &= (i - 2, i - 3).
\end{align*}
\]

Obviously, there are no two vertices with the same labeling; we then get a secure resolving set S with $|S|$, so we have $sdim(T_{3,m}) = 2$.

Corollary 13. Let G be the tadpole graph $T_{n,m}$ with n and m vertices and $\{v_1, v_j\}$ be a secure metric basis of G, then $sdim(T_{n,m}) = 2$.

Corollary 14. Let G be subdivision of tadpole graph $S(T_{3,m})$ with m vertices and $\{v_1, v_j\}$ be a secure metric basis of G, then $sdim(S(T_{3,m})) = 2$.

Corollary 15. Let G be subdivision of tadpole graph $S(T_{n,m})$ with n, m vertices and $\{v_1, v_j\}$ be a secure metric basis of G, then $sdim(S(T_{n,m})) = 2$.

Theorem 16. Let G be the bistar graph $B^2_{n,n}$ with n vertices and $\{v_1, v_2, \ldots, v_{n-3}, v_{n}\}$ be a secure metric basis of G, then $sdim(B^2_{n,n}) = n-2$.

Proof. We label the bistar graph $T_{3,m}$ as shown in Figure 5. We choose a subset $S = \{v_1, v_2, \ldots, v_{n-3}, v_{n}\}$, and we must show that $sdim(B^2_{n,n}) = n-2$ for $n \geq 6$. The following is how we obtained the representations of the vertices in the graph $B^2_{n,n}$ with respect to S.

![Figure 2: Flag graph F_{ln}](image2)

![Figure 3: H-graph of path P_n.](image3)
From above, the representations of vertices in graph \(B_{n,n}^2 \) are distinct. This implies that \(S \) is a secure resolving set, but it is not necessarily the lower bound. Thus, the upper bound is \(\text{sdim}(B_{n,n}^2) \leq n - 2 \). For \(B_{n,n}^2 \), there is no secure resolving set that the cardinality is one. Thus, the lower bound is \(\text{sdim}(B_{n,n}^2) \geq n - 2 \) and we obtained that \(\text{sdim}(B_{n,n}^2) \leq n - 2 \) and \(\text{sdim}(B_{n,n}^2) \geq n - 2 \); therefore, \(\text{sdim}(B_{n,n}^2) = n - 2 \). From the above proving, we conclude that \(\text{sdim}(B_{n,n}^2) = n - 2 \).

5. Conclusion

The secure metric dimensions of the globe graph and the bistar graph have the same secure metric dimension \(n - 2 \). The flag graph \(H \)-graph of path \(P_n \), bistar graph, tadpole graph \(T_{3,m} \), \(T_{n,m} \), and subdivision of tadpole graph \(T_{3,m} \), \(T_{n,m} \) have the same constant secure metric dimension 2.

6. Future Work

In the future, we plan to determine the secure metric dimension of many graphs, such as subdivisions of crown graphs, cocktail party graphs, triangular pyramid graph \(P_3 \), and square pyramid graph \(P_4 \).

Data Availability

No data were used to support the findings of this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The author would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under project number: R-2024-1050.

References

Advances in Operations Research

