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Network Data Envelopment Analysis (NDEA) models assess the processes of the underlying system at a certain moment and
disregard the dynamic efects in the production process. Hence, distorted efciency evaluation is gained that might give
misleading information to decision-making units (DMUs). Malmquist–Luenberger Productivity Index (MPI) assesses efciency
changes over time, which are measured as the product of recovery and frontier-shift terms, both coming from the DEA
framework. In this study, a form of MPI involving network structure for evaluating DMUs in the presence of uncertainty and
undesirable outputs in two periods of time is presented. To cope with uncertainty, we use the stochastic p-robust approach and the
weak disposability of Kuosmanen (American Journal Agricultural Economics 87 (4):1077–1082, 2005) proposed to take care of
undesirable outputs. Te proposed fractional models for stages and overall system are linearized by applying the Charnes and
Cooper transformation. Finally, the proposed models are applied to evaluate the efciency of 11 petroleum wells to identify the
main factors determining their productivity, utilizing the data from the 2020 to 2021 period. Te results show that the man-
agement of resource consumption, especially equipment and capital, is not appropriate and investment is inadequate. Although
the depreciation rate of capital facilities in this industry is high, the purpose of the investment is not to upgrade the level of
technology.

1. Introduction

Since its beginning (see [1]), data envelopment analysis
(DEA) has been applied to evaluate the efciencies of
a collection of decision-making units (DMUs) in which
estimating the efciency frontier does not require the rec-
ognition of the production function. Classical DEA models
consider each DMU as a black box ignoring the internal
relations of processes. However, in real world, DMUs may
contain several linked processes. Network DEA (NDEA)
models, an extension of classical DEAmodels, are developed
for the efciency evaluation of DMUs taking into consid-
eration their internal relations via intermediate products in
assessing efciency. However, NDEA models disregard the
dynamic efects within the production processes which is the

case various real world applications Cook and Zhu [2].
Malmquist–Luenberger Productivity Index (MPI) presented
by Malmquist [3] is a quality index for analyzing the con-
sumption of production resources in diferent time periods.
Te MPI not only defnes patterns of productivity change
and renders a new interpretation along with the managerial
implication of each Malmquist component but also iden-
tifes strategic directions of an organization in the past time
periods for proper choice in future periods. Also, it appears
as a shape of time series one which includes a particular
construction in each period. Table 1 summarizes some of the
MPI- DEA developments and applications.

However, in production processes besides desirable
outputs, there might be undesirable outputs whose decrease
results in improved performance. For example, Pittman et al.
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[12] frst studied the application of undesirable outputs to do
an efcient assessment under the expanded model of Caves
et al. [13] so that the efciency of DMUs could be evaluated
in the presence of desirable and undesirable outputs. Ten,
Tone [14] studied the efciency of 12 Chinese commercial
banks from 2005 to 2013 based on undesirable outputs and
investigated the truth that considering undesirable outputs
can make research results more reliable by comparing with
the result gained without considering undesirable output.
Generally, treating undesirable outputs has proven to be
a complete challenge for scholars working on DEA (see
a critical review of Halkos and Petrou [15]). Table 2 sum-
marizes some recent advances of undesirable output de-
velopments in MPI-DEA models.

In all the abovementioned research studies, input and
output parameters are considered to be exact and the efect
of uncertainty is ignored. Research detected that a small
perturbation in the problem data may lead to critical var-
iation in ranking. To treat uncertainty in the DEA models,
various approaches such as fuzzy programming, stochastic
programming, and robust optimization are used in the
literature. Table 3 summarizes recent progress of the DEA
models under uncertainty.

Although the present literature has progressed signif-
cantly, all of the available DEA models consider either the
pure undesirable outputs or uncertainties in problem data. So,
in this paper, we present a combined model to measure the
performance of DMUs with uncertain perspectives in the
presence of undesirable outputs in dynamic settings. In the
MPI framework, we apply the stochastic p-robust approach to
attain robustness against the existing uncertainty for the
CCR-DEA model. Te stochastic approach searches to
minimize the total expected cost among all scenarios. Te
optimal solution gained by applying it is probably very good
for some scenarios but very poor for others. Also, the weak
disposable production technology of Kuosmanen [41] is
employed formodelling undesirable outputs which is a widely
used technology in dealing with undesirable outputs.TeMPI
not only reveals patterns of productivity change and presents
a new interpretation along with the managerial implication of
each Malmquist component but also recognizes the strategy
shifts of exclusive companies under isoquant changes. We
applied the proposed approach to the dataset of 11 petroleum
wells from the 2020 to 2021 period. Te contribution of the
paper can be summarized as follows:

(i) Assessing the efciencies of an NDEA system and its
internal processes over time by dynamic models,
simultaneously in the presence of undesirable
outputs and uncertainty

(ii) Applying Kuosmanen’s weakly disposable tech-
nology that is convex and more fexible with regard
to the choice of nonuniform pollution abatement
factors and preserving the linear structure

(iii) Describing the uncertainty in two worst-case and
the best-case scenarios, defning a robustness level
for two-stage DEA-based MPI that refects the
DMU’s regress or progress

(iv) Adjusting the conservatism degree in the proposed
approach and providing a deterministic solution
approach

(v) ComputingMPI to evaluate the total efciency of 11
petroleum wells in two time periods

Te remainder of this paper unfolds as follows: in the next
section, a summary of a two-stage DEA model is given and
a brief review of weakly disposable technology and stochastic
p-robust approach is as follows. In Section 3, by considering
undesirable outputs and p-robust approach, a model is
proposed that calculatesMPI under theNDEAmodel. Section
4 presents the efciency measurement of the overall NDEA
and substages. Ultimately, to show the applicability of the
proposed approach, it is applied to a real dataset in Section 5,
which is followed by conclusions, and some directions for
future research are given in the last section.

2. Preliminaries

A petroleum well system is commonly considered to be
a multistage process with substages each of which includes
several initial inputs, intermediate inputs and outputs, feed-
backs, and fnal outputs. Since the complexity index of each
petroleum well is diferent, the operating units dealing with the
corresponding refning and purifcation processes face diferent
requirements across petroleum wells. Here, in order to have
a homogenous structure in all petroleum wells, all conversion
and purifcation processes have been considered as a sub-DMU.
Figure 1 shows such a structure where the production process of
a petroleum well system like a DMU under evaluation has two
main stages: the oil production and the wastewater treatment
system as the frst and second stages, respectively.

Table 1: Recent advances and applications in MPI-DEA/NDEA.

Authors DEA model Type factor Applications scope
Yu and Chen [4] CCR Output Airline companies
Li et al. [5] SFA Output Forestry company
Liang et al. [6] CCR Input Banking sector
Wanke et al. [7] CCR Output Banking sector
Yang and Zhang [8] CCR Output Regional eco-efciency
Nedaei et al. [9] CCR Output Oil and gas wells
Mahmoudi and Emrouznejad [10] SBM Output/input Airline companies
Tone et al. [11] CCR Output Insurance companies
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Suppose there are n DMUs each of which consists of two
sub-DMUs sequentially. In the frst stage, each DMUj (j �

1, . . . , n) uses m inputs x
1(t)s
ij (i � 1, . . . , m) and produces H

fnal outputs y
1(t)s
hj (h � 1, . . . , H) and D intermediate out-

puts z
(t)s
dj (d � 1, . . . , D) based on the scenario s ϵ S that assist

as the inputs to the second stage. Each DMU consists of two

Table 2: Recent advances of environmental factors in MPI- DEA/NDEA.

Authors DEA model Environmental factor Applications scope
Wang and Feng [16] CCR Output Industrial
Zhu and Lin [17] CCR Output Iron and steel industry
Li et al. [18] SBM Output/input Industrial systems
Li et al. [19] BCC Output Forestry
Aghayi et al. [20] CCR Output Banking industry
Shirazi and Mohammadi [21] CCR Output Airline
Toloo and Hanclova [22] CCR Output Countries
An et al. [23] SBM Output/input Trunk streams
Asanimoghadam et al. [24] ASBM Output Industrial airline
Salahi et al. [25] ASBM Output Provinces in China
Shakouri and Salahi [26] CCR Output Oil generation
Zhang et al. [27] CCR Output Industrial system
Chen et al. [28] SBM Output/input Public health center
Arabi et al. [29] SBM Output/input Power plants

Table 3: Recent progress in stochastic, fuzzy, and robust optimization with MPI in the NDEA and DEA.

Authors DEA/uncertainty parameters Robust approach Applications scope
Peykani et al. [30] CCR Fuzzy Investment frms
Dar et al. [31] CCR/BCC/input SFA Banking sector
Salahi et al. [32] CCR/CSW/in-output Interval Energy/forest district
Salahi et al. [33] Russell/in-output Interval Banking sector
Salahi et al. [34] CCR-CSW/output Bertsimas Banking sector
Soltanzadeh and Omrani [35] CCR/in-output Fuzzy Airline companies
Akbarian [36] BCC Interval Numerical example
Shakouri et al. [37] CCR/input Stochastic p-robust Banking sector
Shakouri et al. [38] CCR Stochastic p-robust Banking sector
Mehdizadeh et al. [39] CCR Stochastic Commercial banks
Tavana et al. [40] CCR Fuzzy Refnary
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Figure 1: A dynamic petroleumwell system for NDEA proposedmodel. OW: oil extraction unit; ET: equalization tanks; AT: aeration tanks;
SD: sludge dewatering; TF: tertiary flters; CAF: coagulation air fotation; JB: JBILAFB; ST: sludge thickener; ABFB: aerobic biological
fuidize bed; FT: flter tank; CW: clean water tank; WC: wastewater clarifers; DU: disinfection units; SH: sludge holding tanks.
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sub-DMUs sequentially, and undesirable outputs from Stage
2 are feedbacks that are sent back as inputs to Stage 1. Also,
there are B inputs x

2(t)s
bj (b � 1, . . . , B) to the second stage

under scenario s ϵ S. Outputs from the second stage take
three forms; desirable outputs y

2(t)s
rj (r � 1, . . . , R), un-

desirable outputs z
2(t)s
qj (q � 1, . . . , Q), and a feedback vari-

able f
(t)s
gj (g � 1, . . . , G) in time t based on the scenario s ϵ S.

It is noteworthy that the bold lines in Figure 1 show the used
variables in this paper. Further, for each DMUj, the ef-
ciency scores of the frst and the second stages are denoted by
e

(t)s
1 (t) and e

(t)s
2 (t), respectively, under the sth scenario when

all DMUs under evaluation are in time t. Also, the efciency
score of the overall process when all DMUs under the as-
sessment for the sth scenario in period t is shown by e(t)∗

o (t).

2.1. Undesirable Outputs. A production process may consist
of both desirable and undesirable outputs. To take care of
undesirable outputs in DEA models, diferent approaches are
developed in the DEA literature (Chavas and Cox [42]; Hailu
and Veeman [43]).Weak disposability is an alternative method
that models undesirable emissions as outputs, imposing an
assumption that these undesirable outputs are weakly dis-
posable. In general, weak disposability means that it is possible
to abate emissions by decreasing the level of production ac-
tivity. Kuosmanen [41] defned a production technology using
weakly disposable axiom of outputs to model undesirable
outputs in the DEA framework. Based on this technology,
inputs and desirable outputs are presented to be freely dis-
posable. Weak disposability hypothesis is used to propose
a modern DEA approach for evaluating efciency of DMUs by
taking undesirable outputs into account. Tis approach is
a signifcant development in computing the efciency ofDMUs
with undesirable outputs. Te linear programming model of
this technology to evaluate the performance of a DMU in time
intervals of t is as follows [44]:

max 􏽘
A

r�1
ury

2(t)s
rjo

− 􏽘
D

q�1
ϑqz

2(t)s
qjo

− 􏽘
m

i�1
vix

1(t)s
ij ,

s.t. 􏽘
A

r�1
ury

2(t)s
rj − 􏽘

D

q�1
ϑqz

2(t)s
qj − 􏽘

m

i�1
vix

1(t)s
ij ≤ 0, ∀j, s ϵ S,

􏽘

m

i�1
vix

1(t)s
ij � 1,

ur, vi ≥ 0, ∀r, i, ϑq free∀q.

(1)

In model (1), vi, ur,, and ϑq are decision variables of
inputs, desirable outputs, and undesirable outputs, re-
spectively. Constraints (2) guarantee that the efciency value
is less than or equal to one for each DMU.

2.2. Stochastic p-Robust Concept. Let S be a collection of
scenarios, and P(t)s be a deterministic maximization prob-
lem for each scenario s in time t (there is a diferent problem
P(t)s for each scenario ϵ S). For each s, let Μ(t)s∗

0 > 0 be the
optimal efciency score for P(t)s in time t. So, suppose that Χ
is a feasible solution to P(t)s for all s ϵ S, and letΜ(t)s

0 (X) be
the efciency score of P(t)s under solution Χ in time t. Ten,
Χ is called p-robust, if for all s ϵ S, the following inequality
holds:

p≥
Μ(t)s∗

0 −Μ(t)s
0 (X)

Μ(t)s∗
0

. (2)

In (2), the right hand side is the relative regret for scenarios
in time t, and p≥ 0 is a constant that limits the relative regret
for each scenario. It is obvious that inequality (2) can be
written as follows:

(1 − p)Μ(t)s∗
0 ≤Μ

(t)s
0 (X). (3)

Terefore, for controlling the relative regret relative to all
scenarios, the p-robust constraints (3) are added to the
models.

Defnition 1. DMUj is stochastic p-robust efcient in dif-
ferent scenarios if and only if its optimal objective function
is one.

3. Two-Stage NDEA Model under Undesirable
Outputs and Uncertainty

In this section, frst, we present a two-stage model in the
presence of undesirable outputs, and then it is combined
with the p-robust approach to handle the uncertainty. To
evaluate the overall efciency of the whole NDEA model in
Figure 1 in time period t, we compound the weighted av-
erage of the two stages as follows:

e
(t)∗
o (t) � maxξ(t)s

1 e
(t)s
1 (t) + ξ(t)s

2 e
(t)s
2 (t)􏼐 􏼑,

s.t. e
(t)s
1 (t) �

􏽐
H
h�1ηhy

1(t)s
hj + 􏽐

D
d�1wdz

(t)s
dj

􏽐
m
i�1vix

1(t)s
ij + 􏽐

G
g�1zgf

(t)s
gj

≤ 1, ∀j, s ϵ S,

e
(t)s
2 (t) �

􏽐
s
r�1ury

2(t)s
rj + 􏽐

G
g�1zgf

(t)s
gj − 􏽐

Q
q�1ϑqz

2(t)s
qj

􏽐
D
d�1wdz

(t)s
dj + 􏽐

T
t�1δbx

2(t)s
bj

≤ 1, ∀j, s ϵ S,

ur, wd, zg, δb, ηh, vi, ϑq ≥ 0, ∀ r, d, g, b, h, i, q,

(4)

4 Advances in Operations Research



where on the basis of the radial CRS-DEA model of Charnes
et al. [1], e(t)s

1 and e
(t)s
2 are the efciency values of the frst and

the second stages in time t and ξ(t)s
1 and ξ(t)s

2 show the
corresponding weights of stages, respectively, refecting the
importance of the two stages in the overall system (ξ(t)s

1 +

ξ(t)s
2 � 1). We let ξ(t)s

1 � (􏽐
m
i�1vix

1(t)s
ijo

+􏽐
G
g�1zgf

(t)s
gjo

)/(􏽐
m
i�1vi

x
1(t)s
ijo

+ 􏽐
G
g�1zgf

(t)s
gjo

+ 􏽐
D
d�1wdz

(t)s
djo

+ 􏽐
T
t�1δbx

2(t)s
bjo

) and ξ(t)s
2 �

(􏽐
D
d�1wdz

(t)s
djo

+ 􏽐
T
t�1δbx

2(t)s
bjo

)/(􏽐
m
i�1vix

1(t)s
ijo

+ 􏽐
G
g�1zgf

(t)s
gjo

+

􏽐
D
d�1wdz

(t)s
djo

+ 􏽐
T
t�1δbx

2(t)s
bjo

) in order to linearize the model.
Terefore, model (4) becomes

e
(t)s
o (t) � max

􏽐
H
h�1ηhy

1(t)s
hjo

+ 􏽐
D
d�1wdz

(t)s
djo

+ 􏽐
s
r�1ury

2(t)s
rjo

+ 􏽐
G
g�1zgf

(t)s
gjo

− 􏽐
Q
q�1ϑqz

2(t)s
qjo

􏽐
m
i�1vix

1(t)s
ijo

+ 􏽐
G
g�1zgf

(t)s
gjo

+ 􏽐
D
d�1wdz

(t)s
djo

+ 􏽐
T
t�1δbx

2(t)s
bjo

,

s.t. e
(t)s
1 (t) �

􏽐
H
h�1ηhy

1(t)s
hj + 􏽐

D
d�1wdz

(t)s
dj

􏽐
m
i�1vix

1(t)s
ij + 􏽐

G
g�1zgf

(t)s
gj

≤ 1, ∀j, s ϵ S,

e
(t)s
2 (t) �

􏽐
s
r�1ury

2(t)s
rj + 􏽐

G
g�1zgf

(t)s
gj − 􏽐

Q
q�1ϑqz

2(t)s
qj

􏽐
D
d�1wdz

(t)s
dj + 􏽐

T
t�1δbx

2(t)s
bj

≤ 1, ∀j, s ϵ S,

ur, wd, zg, δb, ηh, vi, ϑq ≥ 0, ∀ r, d, g, b, h.

(5)

Now, let t1 � (􏽐
m
i�1vix

1(t)s
ijo

+ 􏽐
G
g�1zgf

(t)s
gjo

+ 􏽐
D
d�1wdz

(t)s
djo

+ 􏽐
T
t�1δbx

2(t)s
bjo

)− 1, vi� t1vi, zg � t1zg, ηh � t1ηh, ur � t1ur, δb

� t1δb, wd � t1wd, and ϑq � t1ϑq, then model (5) is trans-
formed into the following linear model:

e
(t)s∗
o (t) � max 􏽘

H

h�1
ηhy

1(t)s
hjo

+ 􏽘
D

d�1
wdz

(t)s
dj + 􏽘

s

r�1
ury

2(t)s
rjo

+ 􏽘
G

g�1
zgf

(t)s
gjo

− 􏽘

Q

q�1
ϑqz

2(t)s
qjo

⎛⎝ ⎞⎠,

s.t. 􏽘

H

h�1
ηhy

1(t)s
hj + 􏽘

D

d�1
wdz

(t)s
dj − 􏽘

m

i�1
vix

1(t)s
ij − 􏽘

G

g�1
zgf

(t)s
gj ≤ 0, ∀j, s ϵ S,

􏽘

s

r�1
ur y

2(t)s
rj + 􏽘

G

g�1
zgf

(t)s
gj − 􏽘

Q

q�1
ϑqz

2(t)s
qj − 􏽘

D

d�1
wd z

(t)s
dj − 􏽘

T

t�1
δbx

2(t)s
bj ≤ 0, ∀j, s ϵ S,

􏽘

m

i�1
vix

1(t)s
ijo

+ 􏽘
G

g�1zgf
(t)s
gjo

+ 􏽘
D

d�1
wd z

(t)s
djo

+ 􏽘
T

t�1
δbx

2(t)s
bjo

� 1, s ϵ S,

ur, wd, zg, δb, ηh, vi, ϑq ≥ 0, ∀r, d, g, b, h.

(6)

As before, using Charnes and Cooper [45] trans-
formation, both stages are linearized as follows:

Advances in Operations Research 5



e
(t)s
1 (t) � max 􏽘

H

h�1
ηhy

1(t)s
hjo

+ 􏽘

D

d�1
wdz
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H
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ηhy

1(t)s
hjo
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D

d�1
wdz

(t)s
djo
≥ (1 − p)e
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10 , s ϵ S,

􏽘
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ηhy

1(t)s
hj + 􏽘

D

d�1
wdz
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(7)
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􏽘
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􏽘
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ij − 􏽘
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gj ≤ 0, ∀j, s ϵ S,

􏽘

H

h�1
ηhy

1(t)s
hjo

+ 􏽘
D

d�1
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(t)s
djo

− e
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1(t)s
ijo

+ 􏽘
G

g�1
zgf

(t)s
gjo

⎛⎝ ⎞⎠ � 0, s ϵ S,

ur, wd, zg, δb, ηh, vi, ϑq > 0, ∀ r, d, g, b, h, i, q.

(8)

Defnition 2. Te two-stage process is efcient if and only if
e

(t)s
1 (t) � e

(t)s
2 (t) � 1.

Now, to take care of uncertainty, formula (3) can be
merged with the expected objective function of the model

(6), and in order to control the relative regret related to the
scenarios, the p-robust restrictions are added to model (6).
Tus, the efciency value for the stochastic p-robust version
of model (6) is as follows:

Μ(t)s∗
0 (t) � max􏽘

S

s�1
q

s
􏽘

H

h�1
ηhy

1(t)s
hjo

+ 􏽘
D

d�1
wdz

(t)s
dj + 􏽘

s

r�1
ury

2(t)s
rjo

+ 􏽘
G

g�1
zgf

(t)s
gjo

− 􏽘

Q

q�1
ϑqz

2(t)s
qjo

⎡⎢⎢⎣ ⎤⎥⎥⎦, (9.a)

s.t. 􏽘
H

h�1
ηhy

1(t)s
hjo

+ 􏽘
D

d�1
wdz

(t)s
dj + 􏽘

s

r�1
ur y

2(t)s
rjo

+ 􏽘
G

g�1
zgf

(t)s
gjo

− 􏽘

Q

q�1
ϑqz

2(t)s
qjo
≥ (1 − p)e

(t)s∗
0 , ∀s ϵ S, (9.b)

􏽘

H

h�1
ηhy

1(t)s
hj + 􏽘

D

d�1
wd z

(t)s
dj − 􏽘

m

i�1
vix

1(t)s
ij − 􏽘

G

g�1
zgf

(t)s
gj ≤ 0, ∀j,∀s ϵ S, (9.c)

􏽘

s

r�1
ur y

2(t)s
rj + 􏽘

G

g�1zgf
(t)s
gj − 􏽘

Q

q�1
ϑqz

2(t)s
qj − 􏽘

D

d�1
wd z

(t)s
dj − 􏽘

T

t�1
δbx

2(t)s
bj ≤ 0, ∀j,∀s ϵ S, (9.d)
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􏽘

m

i�1
vix

1(t)s
ijo

+ 􏽘

G

g�1
zgf

(t)s
gjo

+ 􏽘

D

d�1
wd z

(t)s
djo

+ 􏽘

B

b�1
δbx

2(t)s
bjo

� 1, ∀s ϵ S, (9.e)

ur, wd, zg, δb, ηh, vi, ϑq ≥ 0, ∀ r, d, g, b, h. (9.f)

Remark 3. By considering f
(t)s
ko � max f

(t)s
gjo

| 1≤g≤G􏽮 􏽯> 0,
x

(t)s
ko � max x

1(t)s
io | 1≤ i≤m􏽮 􏽯> 0, max z

(t)s
djo

| 1≤ d≤D􏼚 􏼛> 0,

and max x
2(t)s
bjo

| 1≤ b≤B􏼚 􏼛> 0, then setting (η1, . . . , w1,

. . . , v1, . . . , z1, . . . , u1, . . . , ϑ1, . . . , δ1, . . .) � (0, . . . , 1 /z(t)s
djo

,

1/x1(t)s
ko , 1/f(t)s

ko , 0, . . . , 0, . . . , 1/x2(t)s
bjo

), restrictions 􏽐
m
i�1vi

x
1(t)s
ijo

+􏽐
G
g�1zgf

(t)s
gjo

+ 􏽐
D
d�1wdz

(t)s
djo

+ 􏽐
B
b�1δbx

2(t)s
bjo

� 1, and

􏽐
s
r�1ur y

2(t)s
rj + 􏽐

G
g�1zg f

(t)s
gj − 􏽐

Q
q�1ϑqz

2(t)s
qj −􏽐

D
d�1wdz

(t)s
dj

−􏽐
T
t�1δbx

2(t)s
bj ≤ 0, 􏽐

H
h�1ηhy

1(t)s
hj + 􏽐

D
d�1wdz

(t)s
dj − 􏽐

m
i�1vi x

1(t)s
ij

−􏽐
G
g�1zgf

(t)s
gj ≤ 0, imply 􏽐

H
h�1ηhy

1(t)s
hjo

+ 􏽐
D
d�1wdz

(t)s
dj +􏽐

s
r�1ur

y
2(t)s
rjo

+ 􏽐
G
g�1zgf

(t)s
gjo

− 􏽐
Q
q�1ϑqz

2(t)s
qjo
≤ 1. Tus, we achieve

e
(t)s∗
0 ≤ 1/1 − p. So, for very small ps, there may not be

p-robust solutions for model (9a)–(9f) in periods t and t + 1
based on scenario s; therefore, it may be infeasible.

It is noteworthy that models for the frst and the second
stages can be linearized similar to the overall efciency.
Models (9a)–(9f) evaluate the relative efciency of the whole
system, and the data for all DMUs are retrieved from period
t. Te objective function of model (9a)–(9f) is to maximize
the expected efciency value of all DMUs. Further, qs in the
objective function is the probability that scenario s happens.

Te frst constraint in all models is called the p-robust
constraint that may not allow the scenario’s efciency to take
value more than 100(1 − p)% of the ideal efciency scores
gained by each scenario. Te relative regret between all
scenarios is controlled by the parameter p. Te p-robust
constraints in this model become inefective if p �∞. It is
noteworthy that the p values generally are assumed greater
than 0.2 and their upper bound is gained by try and error.
Also, these values can be diferent for any problem and are
usually defned by the decision-maker.

Defnition 4. If Μ(t)s∗
0 (t) � 1 in model (9a)–(9f), then

DMUo is efcient.

4. Malmquist–Luenberger Productivity Index

In this section, frst, we compute the efciency of the overall
and the substages NDEA process in periods t and t + 1, and
fnally, the MPI is calculated. To measure the efciency of
models (9a)–(9f) when the data for the DMU under eval-
uation is retaken from period t + 1 while the data for the
other DMUs are retaken from period t, the following model
applies:

Μ(t+1)s∗
0 (t) � max􏽘

S

s�1
q

s
􏽘

H

h�1
ηhy

1(t+1)s
hjo

+ 􏽘
D

d�1
wdz

(t+1)s
dj + 􏽘

s

r�1
ury

2(t+1)s
rjo

+ 􏽘
G

g�1
zgf

(t+1)s
gjo

− 􏽘

Q

q�1
ϑqz

2(t+1)s
qjo

⎡⎢⎢⎣ ⎤⎥⎥⎦, (10.a)

s.t. 􏽘

H

h�1
ηhy

1(t+1)s
hjo

+ 􏽘

D

d�1
wdz

(t+1)s
djo

+ 􏽘

s

r�1
ur y

2(t+1)s
rjo

+ 􏽘

G

g�1
zgf

(t+1)s
gjo

− 􏽘

Q

q�1
ϑqz

2(t+1)s
qjo
≥ (1 − p)e

(t+1)s∗
0 , ∀s ϵ S, (10.b)

􏽘

H

h�1
ηhy

1(t)s
hj + 􏽘

D

d�1
wdz

(t)s
dj − 􏽘

m

i�1
vix

1(t)s
ij − 􏽘

G

g�1
zgf

(t)s
gj ≤ 0, ∀j,∀s ϵ S, (10.c)

􏽘

H

h�1
ηhy

1(t+1)s
hjo

+ 􏽘

D

d�1
wdz

(t+1)s
djo

− 􏽘

m

i�1
vix

1(t+1)s
ijo

− 􏽘

G

g�1
zgf

(t+1)s
gjo
≤ 0, ∀j,∀s ϵ S, (10.d)

􏽘

s

r�1
ur y

2(t)s
rj + 􏽘

G

g�1
zgf

(t)s
gj − 􏽘

Q

q�1
ϑqz

2(t)s
qj − 􏽘

D

d�1
wdz

(t)s
dj − 􏽘

T

t�1
δbx

2(t)s
bj ≤ 0, ∀j,∀s ϵ S, (10.e)

􏽘

s

r�1
ury

2(t+1)s
rjo

+ 􏽘

G

g�1
zgf

(t+1)s
gjo

− 􏽘

Q

q�1
ϑqz

2(t+1)s
qjo

− 􏽘

D

d�1
wdz

(t+1)s
djo

− 􏽘

T

t�1
δbx

2(t+1)s
bjo
≤ 0, ∀j,∀s ϵ S, (10.f)
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􏽘

m

i�1
vix

1(t+1)s
ijo

+ 􏽘

G

g�1
zgf

(t+1)s
gjo

+ 􏽘

D

d�1
wdz

(t+1)s
djo

+ 􏽘

T

t�1
δbx

2(t+1)s
bjo

� 1, ∀s ϵ S,

ur, wd, zg, δb, ηh, vi, ϑq ≥ 0, ∀r, d, g, b, h.

(10.g)

In a similar way, to scale the efciency of the overall
network when the data for the DMU under the estimate are
recovered from period t while the data for the other DMUs

are recovered from period t + 1, models (11a)–(11g) are
provided:

Μ(t)s∗
0 (t + 1) � max􏽘

S

s�1
q

s
􏽘

H

h�1
ηhy

1(t)s
hjo

+ 􏽘

D

d�1
wdz

(t)s
dj + 􏽘

s

r�1
ury

2(t)s
rjo

+ 􏽘

G

g�1
zgf

(t)s
gjo

− 􏽘

Q

q�1
ϑqz

2(t)s
qjo

⎡⎢⎢⎣ ⎤⎥⎥⎦, (11.a)

s.t. 􏽘
H

h�1
ηhy

1(t)s
hjo

+ 􏽘
D

d�1
wdz

(t)s
djo

+ 􏽘
s

r�1
ury

2(t)s
rjo

+ 􏽘
G

g�1
zgf

(t)s
gjo

− 􏽘

Q

q�1
ϑqz

2(t)s
qjo
≥ (1 − p)e

(t)s∗
0 , ∀s ϵ S,

􏽘

H

h�1
ηhy

1(t+1)s
hj + 􏽘

D

d�1
wdz

(t+1)s
dj − 􏽘

m

i�1
vix

1(t+1)s
ij − 􏽘

G

g�1
zgf

(t+1)s
gj ≤ 0, ∀j,∀s ϵ S,

(11.b)

􏽘

H

h�1
ηhy

1(t)s
hjo

+ 􏽘
D

d�1
wdz

(t)s
djo

− 􏽘
m

i�1
vix

1(t)s
ijo

− 􏽘
G

g�1
zgf

(t)s
gjo
≤ 0, ∀j,∀s ϵ S, (11.c)

􏽘

s

r�1
ur y

2(t+1)s
rj + 􏽘

G

g�1
zgf

(t+1)s
gj − 􏽘

Q

q�1
ϑqz

2(t+1)s
qj − 􏽘

D

d�1
wdz

(t+1)s
dj − 􏽘

T

t�1
δbx

2(t+1)s
bj ≤ 0, ∀j,∀s ϵ S, (11.d)

􏽘

s

r�1
ur y

2(t)s
rjo

+ 􏽘
G

g�1
zgf

(t)s
gjo

− 􏽘

Q

q�1
ϑqz

2(t)s
qjo

− 􏽘
D

d�1
wdz

(t)s
djo

− 􏽘
T

t�1
δbx

2(t)s
bjo
≤ 0, ∀j,∀s ϵ S, (11.e)

􏽘

m

i�1
vix

1(t)s
ijo

+ 􏽘
G

g�1
zgf

(t)s
gjo

+ 􏽘
D

d�1
wdz

(t)s
djo

+ 􏽘
T

t�1
δbx

2(t)s
bjo

� 1, ∀s ϵ S, (11.f)

ur, wd, zg, δb, ηh, vi, ϑq ≥ 0, ∀r, d, g, t, h. (11.g)

Eventually, models (12a)–(12f) are suggested to compute
the relative efciency of the overall NDEA when the data for

all DMUs, including the DMU under evaluation, are retaken
from period t + 1 based on scenario s as below:

Μ(t+1)s∗
0 (t + 1) � max􏽘

S

s�1
q

s
􏽘

H

h�1
ηhy

1(t+1)s
hjo

+ 􏽘
D

d�1
wdz

(t+1)s
dj + 􏽘

s

r�1
ury

2(t+1)s
rjo

+ 􏽘
G

g�1
zgf

(t+1)s
gjo

− 􏽘

Q

q�1
ϑqz

2(t+1)s
qjo

⎡⎢⎢⎣ ⎤⎥⎥⎦, (12.a)

s.t. 􏽘
H

h�1
ηhy

1(t+1)s
hjo

+ 􏽘
D

d�1
wdz

(t+1)s
dj + 􏽘

s

r�1
ury

2(t+1)s
rjo

+ 􏽘
G

g�1
zgf

(t+1)s
gjo

− 􏽘

Q

q�1
ϑqz

2(t+1)s
qjo
≥ (1 − p)e

(t+1)s∗
0 , ∀s ϵ S, (12.b)

􏽘

H

h�1
ηhy

1(t+1)s
hj + 􏽘

D

d�1
wdz

(t+1)s
dj − 􏽘

m

i�1
vix

1(t+1)s
ij − 􏽘

G

g�1
zgf

(t+1)s
gj ≤ 0, ∀j,∀s ϵ S, (12.c)

8 Advances in Operations Research



􏽘

s

r�1
ury

2(t+1)s
rj + 􏽘

G

g�1
zgf

(t+1)s
gj − 􏽘

Q

q�1
ϑqz

2(t+1)s
qj − 􏽘

D

d�1
wdz

(t+1)s
dj − 􏽘

T

t�1
δbx

2(t+1)s
bj ≤ 0, ∀j,∀s ϵ S, (12.d)

􏽘

m

i�1
vix

1(t+1)s
ijo

+ 􏽘
G

g�1
zgf

(t+1)s
gjo

+ 􏽘
D

d�1
wdz

(t+1)s
djo

+ 􏽘
T

t�1
δbx

2(t+1)s
bjo

� 1, ∀s ϵ S, (12.e)

ur, wd, zg, δb, ηh, vi, ϑq ≥ 0, ∀r, d, g, b, h. (12.f)

4.1. Efciency Scaling of the First Stage through Both Periods.
In this subsection, the efciency of the frst stage in the
presence of undesirable outputs and uncertainty is calcu-
lated. Models (13a)–(13e) compute the maximum achievable

value for the efciency of the frst stage under the sth scenario
in periods t and t + 1:

Μ(t)s∗
10 (t) � max􏽘

S

s�1
q

s
􏽘

H

h�1
ηhy

1(t)s
hjo

+ 􏽘
D

d�1
wdz

(t)s
djo

⎡⎣ ⎤⎦, (13.a)

s.t. 􏽘
H

h�1
ηhy

1(t)s
hjo

+ 􏽘
D

d�1
wdz

(t)s
djo
≥ (1 − p)e

(t)s∗
10 , ∀s ϵ S, (13.b)

􏽘

H

h�1
ηhy

1(t)s
hj + 􏽘

D

d�1
wdz

(t)s
dj − 􏽘

m

i�1
vix

1(t)s
ij − 􏽘

G

g�1
zgf

(t)s
gj ≤ 0, ∀j,∀s ϵ S, (13.c)

􏽘

m

i�1
vix

1(t)s
ijo

+ 􏽘
G

g�1
zgf

(t)s
gjo

� 1, ∀s ϵ S, (13.d)

zg, wd, ηh, vi≥ 0, ∀g, d, h, i. (13.e)

Te objective function of models (13a)–(13e) maximizes
the expected efciency value of DMU0 when it is under
evaluation according to scenarios’ data in the frst stage. In
the objective function, qs is the probability that scenario s

happens (it is unclear which scenario will happen in the
future, and in other words, there is no information about the
probability of chance of each scenario). In this model, the
uncertainty in the parameters is defned by discrete sce-
narios. Te frst set of constraints imposes the p-robust
measure associated with all scenarios. Tis set of con-
straints may not allow the scenario efciency taking a value

of more than 100(1 − p)% of the ideal efciency score
obtained by each scenario. Te parameter p can fexibly
control the relative regret among all scenarios. Note that if
p �∞ than the p-robust constraints become inactive and
model (13a)–(13e) may become infeasible if the p is very
small. Te rest of the constraints which must be held for all
s ϵ S.

Models (14a)–(14f) are presented to scale the efciency
of Stage 1 when the data for the DMU in evaluation are
recovered from period t + 1 while the data for the other
DMUs are recovered from period t as below:

Μ(t+1)s∗
10 (t) � max􏽘

S

s�1
q

s
􏽘

H

h�1
ηhy

1(t+1)s
hjo

+ 􏽘

D

d�1
wdz

(t+1)s
djo

⎡⎣ ⎤⎦, (14.a)

s.t. 􏽘

H

h�1
ηhy

1(t+1)s
hjo

+ 􏽘

D

d�1
wdz

(t+1)s
djo
≥ (1 − p)e

(t+1)s∗
10 , ∀s ϵ S, (14.b)

􏽘

H

h�1
ηhy

1(t)s
hj + 􏽘

D

d�1
wdz

(t)s
dj − 􏽘

m

i�1
vix

1(t)s
ij − 􏽘

G

g�1
zgf

(t)s
gj ≤ 0, ∀j,∀s ϵ S, (14.c)
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􏽘

H

h�1
ηhy

1(t+1)s
hjo

+ 􏽘

D

d�1
wdz

(t+1)s
djo

− 􏽘

m

i�1
vix

1(t+1)s
ijo

− 􏽘

G

g�1
zgf

(t+1)s
gjo
≤ 0, ∀j,∀s ϵ S, (14.d)

􏽘

m

i�1
vix

1(t+1)s
ijo

+ 􏽘

G

g�1
zgf

(t+1)s
gjo

� 1, ∀s ϵ S, (14.e)

zg, wd, ηh, vi≥ 0, ∀g, d, h, i. (14.f)

Also, models (15a)–(15e) are applied to scale the ef-
ciency of Stage 1 when the data for the DMU in evaluation
are recovered from period t while the data for the other
DMUs are recovered from period t + 1:

Μ(t)s∗
10 (t + 1) � max􏽘

S

s�1
q

s
􏽘

H

h�1
ηhy

1ts
hjo

+ 􏽘
D

d�1
wd z

ts
djo

⎡⎣ ⎤⎦, (15.a)

s.t. 􏽘
H

h�1
ηhy

1ts
hjo

+ 􏽘
D

d�1
wd z

ts
djo
≥ (1 − p)e

ts∗
10 , ∀s ϵ S, (15.b)

􏽘

H

h�1
ηhy

1(t+1)s
hj + 􏽘

D

d�1
wdz

(t+1)s
dj − 􏽘

m

i�1
vix

1(t+1)s
ij − 􏽘

G

g�1
zgf

(t+1)s
gj ≤ 0, ∀j,∀s ϵ S, (15.c)

􏽘

H

h�1
ηhy

1(t)s
hjo

+ 􏽘
D

d�1
wdz

(t)s
djo

− 􏽘
m

i�1
vix

1(t)s
ijo

− 􏽘
G

g�1
zgf

(t)s
gjo
≤ 0, ∀j,∀s ϵ S, (15.d)

􏽘

m

i�1
vix

1ts
ijo

+ 􏽘
G

g�1
zgf

ts
gjo

� 1, ∀s ϵ S,

zg, wd, ηh, vi≥ 0, ∀g, d, h, i.

(15.e)

Finally, models (16a)–(16e) are presented to evaluate the
efciency of Stage 1 when the data for the DMU under
evaluation are retaken from period t while the data for the
other DMUs are retaken from period t + 1:

Μ(t+1)s∗
10 (t + 1) � max􏽘

S

s�1
q

s
􏽘

H

h�1
ηhy

1(t+1)s
hjo

+ 􏽘
D

d�1
wdz

(t+1)s
djo

⎡⎣ ⎤⎦, (16.a)

s.t. 􏽘
H

h�1
ηhy

1(t+1)s
hjo

+ 􏽘
D

d�1
wdz

(t+1)s
djo
≥ (1 − p)e

(t+1)s∗
10 , ∀s ϵ S, (16.b)

􏽘

H

h�1
ηhy

1(t+1)s
hj + 􏽘

D

d�1
wd z

(t+1)s
dj − 􏽘

m

i�1
vix

1(t+1)s
ij − 􏽘

G

g�1
zgf

(t+1)s
gj ≤ 0, ∀j,∀s ϵ S, (16.c)

􏽘

m

i�1
vix

1(t+1)s
ijo

+ 􏽘
G

g�1
zgf

(t+1)s
gjo

� 1, ∀s ϵ S, (16.d)
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zg, wd, ηh, vi≥ 0, ∀g, d, h, i. (16.e)

4.2. Efciency Assessment of the Second Stage through Both
Periods. Te efciency value of the second stage in the
presence of undesirable outputs and uncertainty is defned as
models (17a)–(17g). It evaluates the efciency of Stage 2

when the data for the DMU under valuation are regained
from period t + 1 while the data for the other DMUs are
regained from period t:

Μ(t)s∗
20 (t) � max􏽘

S

s�1
q

s
􏽘

s

r�1
ury

2(t)s
rjo

+ 􏽘
G

g�1
zgf

(t)s
gjo

− 􏽘

Q

q�1
ϑqz

2(t)s
qjo

⎡⎢⎢⎣ ⎤⎥⎥⎦, (17.a)

s.t. 􏽘

s

r�1
ury

2(t)s
rjo

+ 􏽘

G

g�1
zgf

(t)s
gjo

− 􏽘

Q

q�1
ϑqz

2(t)s
qjo
≥ (1 − p)e

2(t)s∗
0 , ∀s ϵ S, (17.b)

􏽘

s

r�1
ury

2(t)s
rj + 􏽘

G

g�1
zgf

(t)s
gj − 􏽘

Q

q�1
ϑqz

2(t)s
qj − 􏽘

D

d�1
wdz

(t)s
dj − 􏽘

B

b�1
δbx

2(t)s
bj ≤ 0, ∀j,∀s ϵ S, (17.c)

􏽘

D

d�1
wdz

(t)s
djo

+ 􏽘
T

t�1δbx
2(t)s
bjo

� 1, ∀s ϵ S, (17.d)

􏽘

H

h�1
ηhy

1(t)s
hj + 􏽘

D

d�1
wdz

(t)s
dj − 􏽘

m

i�1
vix

1(t)s
ij − 􏽘

G

g�1
zgf

(t)s
gj ≤ 0, ∀j,∀s ϵ S, (17.e)

􏽘

H

h�1
ηhy

1(t)s
hjo

+ 􏽘
D

d�1
wdz

(t)s
djo

− e
1(t)s∗
0 􏽘

m

i�1
vix

1(t)s
ijo

+ 􏽘
G

g�1
zgf

(t)s
gjo

⎛⎝ ⎞⎠ � 0, ∀s ϵ S, (17.f)

ur, wd, zg, δb, ηh, vi, ϑq > 0, ∀r, d, g, b, h, i, q. (17.g)

Models (18a)–(18i) are expanded to measure the ef-
ciency value of Stage 2 as follows, where DMU at period t + 1
and the frontier at period t:

Μ(t+1)s∗
20 (t) � max􏽘

S

s�1
q

s
􏽘

s

r�1
ur y

2(t+1)s
rjo

+ 􏽘
G

g�1
zgf

(t+1)s
gjo

− 􏽘

Q

q�1
ϑqz

2(t+1)s
qjo

⎡⎢⎢⎣ ⎤⎥⎥⎦, (18.a)

s.t. 􏽘
s

r�1
ur y

2(t+1)s
rjo

+ 􏽘
G

g�1
zgf

(t+1)s
gjo

− 􏽘

Q

q�1
ϑqz

2(t+1)s
qjo
≥ (1 − p)e

2(t+1)s∗
0 , ∀s ϵ S, (18.b)

􏽘

s

r�1
ur y

2(t)s
rj + 􏽘

G

g�1
zgf

(t)s
gj − 􏽘

Q

q�1
ϑqz

2(t)s
qj − 􏽘

D

d�1
wdz

(t)s
dj − 􏽘

T

t�1
δbx

2(t)s
bj ≤ 0, ∀j,∀s ϵ S, (18.c)

􏽘

s

r�1
ur y

2(t+1)s
rjo

+ 􏽘
G

g�1
zgf

(t+1)s
gjo

− 􏽘

Q

q�1
ϑqz

2(t+1)s
qjo

− 􏽘
D

d�1
wdz

(t+1)s
djo

− 􏽘
T

t�1
δbx

2(t+1)s
bjo
≤ 0, ∀j,∀s ϵ S, (18.d)

􏽘

D

d�1
wd z

(t+1)s
djo

+ 􏽘
T

t�1
δbx

2(t+1)s
bjo

� 1, ∀s ϵ S, (18.e)
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􏽘

H

h�1
ηhy

1(t)s
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D

d�1
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(t)s
dj − 􏽘

m

i�1
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G

g�1
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(t)s
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􏽘

H

h�1
ηhy

1(t+1)s
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+ 􏽘

D

d�1
wdz
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− 􏽘

m

i�1
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− 􏽘

G
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gjo
≤ 0, ∀j,∀s ϵ S, (18.g)

􏽘
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h�1
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1(t+1)s
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D

d�1
wdz

(t+1)s
djo

− e
1(t+1)s∗
0 􏽘

m

i�1
vix

1(t+1)s
ijo

+ 􏽘
G

g�1
zgf

(t+1)s
gjo

⎛⎝ ⎞⎠ � 0, ∀s ϵ S, (18.h)

ur, wd, zg, δb, ηh, vi, ϑq > 0, ∀r, d, g, b, h, i, q. (18.i)

Likewise, models (19a)–(19i) are introduced to compute
the efciency value of Stage 2 when the data for the DMU
under evaluation are retaken from period t while the data for
the other DMUs are retaken from period t + 1 as follows:

Μ(t)s∗
20 (t + 1) � max􏽘

S

s�1
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􏽘
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⎡⎢⎢⎣ ⎤⎥⎥⎦, (19.a)
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T
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� 1, ∀s ϵ S, (19.e)
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􏽘
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− 􏽘
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⎛⎝ ⎞⎠ � 0, ∀s ϵ S, (19.h)

ur, wd, δb, ηh, vi, ϑq > 0, ∀r, d, g, b, h, i, q. (19.i)

Finally, models (20a)–(20g) compute the efciency value
of Stage 2 when the data for all DMUs, containing the DMU
under evaluation, are retaken from period t + 1 as follows:
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Μ(t+1)s∗
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⎛⎝ ⎞⎠ � 0, ∀s ϵ S, (20.f)

ur, wd, zg, δb, ηh, vi, ϑq > 0, ∀ r, d, g, b, h, i, q. (20.g)

Finally, to assess the progress or regress of a DMU, the
MPI is calculated using (21) as technological references to
scale the variation in productivity taking place across periods
t and t+ 1:

MPIj(t) �
M

(t)s∗
j (t + 1)M

(t+1)s∗
j (t + 1)

M
(t)s∗
j (t)M

(t+1)s∗
j (t)

⎡⎢⎢⎣ ⎤⎥⎥⎦

1/2

, ∀j. (21)

In (21), the whole system is considered as a DMU and it
explains that productivity decreases if the value of the index
is lower than one, stays unchanged if it equals one, and
amends if it is larger than one. Based on the value ofMPI, the
trend of productivity is as follows:

(i) MPIj(t)> 1 shows increase or progress in the
productivity of the DMU0

(ii) MPIj(t) � 1 refects no changes in the productivity
during the two periods of the DMU0

(iii) MPIj(t)< 1 reveals regress in the productivity
of DMU0

Given the efciency scores gained frommodels (9a)–(9f)
to (12a)–(12f), theMPI for the whole process of the jth DMU
can be computed utilizing (21). In a similar way, the ef-
ciency scores deduced from models (13a)–(13e) to
(16a)–(16e) can be applied to compute the MPI for the frst
stage of the jth DMU utilizing

MPI1j(t) �
M

(t)s∗
1j (t + 1)M

(t+1)s∗
1j (t + 1)

M
(t)s∗
1j (t)M

(t+1)s∗
1j (t)

⎡⎢⎢⎣ ⎤⎥⎥⎦

1/2

, ∀j. (22)

Ultimately, the efciency scores resumed from models
(17a)–(17g) to (20a)–(20g) can be applied to compute the
MPI for the second stage of the jth DMU utilizing

MPI2j(t) �
M

(t)s∗
2j (t + 1)M

(t+1)s∗
2j (t + 1)

M
(t)s∗
2j (t)M

(t+1)s∗
2j (t)

⎡⎢⎢⎣ ⎤⎥⎥⎦

1/2

, ∀j. (23)

5. Case Study

More than a century ago, the growth of the Iranian pe-
troleum well industry began. Te intricate processes and
structures of manufacturing refneries, which include fl-
tration units, catalytic conversion, and the refnement of
liquid gas and oil, aim to decrease the energy usage. Also, the
intricacy index of each Iranian petroleum well is diferent as
the operating units dealing with the corresponding refning
and fltration activities face diferent necessities than the
other units in the other petroleum wells. On the other hand,
in the oil generation process, freshwater is required,
resulting into a large amount of wastewater as undesirable
output in the production process. Tus, in petroleum wells,
any decrease in water consumption means a reduction in oil
generation. In the situation of restricted resources, it is
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essential to improve the efciency of oil generation and
wastewater treatment. Moreover, it is required to reuse
wastewater to warrant the water reserve in the water-
defcient regions [46]. Terefore, in the wastewater treat-
ment stage, some of the undesirable wastewater is treated by
using the inputs. It is notable that, due to the existence of
some variables, data gained are not precise and they are
estimated with a specifc error level (e.g., [47]). Here, real
and accurate data about key performance criteria of all
petroleum wells do not always exist. Tat is, some of the
variable amounts for a petroleum well system are not exactly
available. For instance, the number of petroleum wells and
price of hydrocarbons are not often reported precisely. Also,
it may be benefcial to conceal real information and reveal
deceptive input and output data for the petroleum systems.
Terefore, it is important to analyze the efciency of pe-
troleum systems under uncertainty, and managing un-
certainty in petroleum well development is an important
issue and every decision needs to take into account all the
uncertainties in all stages of the feld development. Here, we
evaluate the ofered models under discrete scenarios, pro-
vided by the petroleumwell system analyzers (i.e., s1 �worst-
case, s2 �best-case). According to Snyder and Daskin [48],
we assume that all scenarios are equiprobable that is qs �0.5.
Tis paper separates the whole network system into two
stages. Te characteristics of the oil production and the
wastewater treatment system should be considered together,
merging with the characteristics of the expanded two-stage
NDEA structure. We consider fve inputs in Stage 1, the
number of generating wells, cost of oil, cost of water, water
increase rate, and reusable water, and desirable outputs and
undesirable output are actual oil generation and incremental
oil generation, respectively. In Stage 2, undesirable waste-
water is refned by applying the inputs as operating costs,
consumption cost, construction expenditure, and hydro-
carbons; therefore, hydrocarbons removal rates and the
quantity of reusable refned wastewater are desirable outputs
and unrefned wastewater is undesirable output. All data
have been gathered over a period of two years (2020-2021)
through consultations with experts that are listed in Tables 4
and 5, respectively. Te results gained are displayed in two
main sections. In the frst section, the whole efciencies,
including those of the frst and second stages, are prepared.
In the second section, the MPI is computed both for the
entire process and each one of the stages.

First, using models (6)–(8), we get the ideal efciency
scores of each DMU based on each scenario in both stages
and overall.Te results of solving these models with diferent
p values and equal probabilities of 0.5 for each scenario in
2020 and 2021 years are reported in the columns of Table 6.
Based on these results, models (9a)–(9f), (13a)–(13e), and
(17a)–(17g) give infeasible results for some scenarios when
small values are determined for p such as
p � 0.45, 0.46, 0.47, 0.48 that we did not report those here.
As we increase the p values, we observe feasible results. For
example, by increasing the p value from 0.49 to 0.52, the
efciency score of DMU9 has improved. Tis improvement
can be seen in other DMUs such as 5, 10, and 11. Models
(9a)–(9f), (13a)–(13e), and (17a)–(17g) maximize the

weighted efciency score of each scenario, whereas p-robust
constraints control the relative diference between their
efciency score generated by the model and ideal efciency
from diferent scenarios. Accordingly, we can gain each
scenario ranking based on the p values in mind.

As can be seen from Table 6, the efciency scores in
models (6) and (7) for most DMUs are equal to one that is
63.3% and 90.9% in two scenarios from 2020 year to 72.7%
and 90.9% in two scenarios from 2021 year, respectively.
Also, in model (8), 54.54%, 90.9% in two scenarios from
2020 year to 54.54% in two scenarios from 2021 year, re-
spectively. Subsequently, we solved models (9a)–(9f) and
(12a)–(12f) to gain the overall efciency scores for diferent
p values in the years 2020 and 2021. Ten, we solved models
(13a)–(13e) and (16a)–(16e) for the frst stage and models
(17a)–(17g) and (20a)–(20g) to get the efciency scores of the
second stages, respectively, in the years 2020 and 2021 which
are presented in Tables 7 and 8. It should be noted that the
abovementioned models give infeasible results for some
DMUs when p≤ 0.49 that we do not report those here.

As mentioned before, for small values of p, the proposed
models give infeasible results in some scenarios. In this
study, on the one hand, when p≤ 0.49 with respect to the
results, our models give infeasible results for some DMUs.
As the p value enhances, the efciency scores get better and
the number of infeasible DMUs gradually reduces and we see
feasible results. On the other hand, for p≥ 0.50, the efciency
scores remain constant. So, we do not carry on and stop it for
the other p values. Tus, here, we only consider p≥ 0.50 and
do not report the results of p< 0.49. For example, in Table 7,
by increasing the p value from 0.49 to 0.50, the efciency
scores of DMU5 and DMU9 shift. Tis shift also can be seen
in some DMUs of the frst and the second stages. It is noted
that models (9a)–(9f) to (19a)–(19i) maximize the expected
efciency scores of DMUs in each scenario, while p-robust
constraints control the respective variation between their
efciency scores produced by the model and ideal efciency
under each scenario. Further, Tables 9–11 show the results of
efciency scores of DMUs for each scenario in the years 2020
and 2021 with models (10a)–(10g), (11a)–(11g), (14a)–(14f),
(15a)–(15e), (18a)–(18i), and (19a)–(19i) for p � 0.50.

As can be seen in Table 9 and Figure 2, the overall ef-
fciency score of DMU2 is the highest among all DMUs in
both years, while DMU4 displays the lowest overall ef-
ciency score in both years. Even though DMU2 is efcient in
2020 and 2021 and its efciency ratio is constant over the two
consecutive periods, however, its performance is not ef-
cient in 2020 compared to 2021. Also, DMU9 is not efcient
in 2020 and 2021, but this ratio is constant over the two
consecutive periods; however, its performance is not ef-
cient in 2020 in comparison to 2021. Unlike DMU6 and
DMU8, the efciency values of DMU1, DMU3, DMU4,
DMU5, DMU7, DMU10, and DMU11 are greater in 2020
proportionate to 2021, compared to 2021 proportionate to
2020. As DMU3 is efcient in 2020 and inefcient in 2021,
the ratio of its efciency values is less than 1 in the two
consecutive periods 2020 and 2021, indicating that their
annual efciency is smaller in 2021 proportionate to 2020
than vice versa.
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In the sequel, MPIs are computed according to Equa-
tions (21)–(23) all together with the relative models ac-
counting for the efciency of the overall process and the
frst and the second stages. Te MPI includes two major
elements, the variation in technology and technical ef-
ciency change taking place during the two periods of 2020
and 2021. Table 12 shows the MPI together with the ef-
ciency and technology changes for the overall procedure

and its frst and second stages. Also, the efciency values of
the frst set of columns (for two scenarios) display that
DMU2, DMU3, DMU4, DMU6, DMU8, DMU9, and
DMU10 have improved the MPI of their total processes
from 2020 to 2021, while all the other DMUs have
experimented with a worsening. It should be noted that the
meanMPI for the total process presents progress from 2020
to 2021.

Table 6: Ideal efciency scores in two scenarios.

DMUs
Model (6) Model (6′) Model (6″)

s1
(2020)

s2
(2020)

s1
(2021)

s2
(2021)

s1
(2020)

s2
(2020)

s1
(2021)

s2
(2021)

s1
(2020)

s2
(2020)

s1
(2021)

s2
(2021)

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.770 1.000 1.000 1.000 0.257 1.000 1.000 1.000 0.128 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.258
4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.111 1.000
5 0.728 0.945 1.000 1.000 0.243 0.315 1.000 1.000 0.121 0.158 1.000 1.000
6 1.000 1.000 0.977 0.893 1.000 1.000 0.326 0.298 1.000 1.000 0.163 0.149
7 1.000 1.000 0.832 1.000 1.000 1.000 0.277 1.000 1.000 1.000 0.139 1.000
8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.119
9 0.955 1.000 1.000 1.000 0.318 1.000 1.000 1.000 0.159 1.000 0.128 1.000
10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.261 1.000 1.000 1.000
11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.321

Table 7: Te results of the overall and the stages efciency scores in 2020.

Efciency Overall First stage Second stage
p

value 0.49 0.50 0.51 0.52 0.49 0.50 0.51 0.52 0.49 0.50 0.51 0.52

DMUs
1 0.718 0.887 0.888 0.889 0.976 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.854 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.855 1.000 1.000 1.000
3 0.832 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 0.649 0.671 0.671 0.672 0.722 0.735 0.734 0.735 0.707 0.660 0.657 0.659
5 INF 0.832 0.832 0.835 INF 0.967 0.967 0.969 0.838 0.748 0.707 0.707
6 0.604 0.681 0.681 0.681 0.714 0.716 0.717 0.719 0.763 0.739 0.763 0.764
7 0.639 0.821 0.821 0.822 0.693 0.727 0.727 0.729 0.958 0.830 0.794 0.794
8 0.743 0.757 0.757 0.758 0.693 0.733 0.733 0.733 0.599 0.559 0.545 0.547
9 INF 0.852 0.852 0.853 0.653 0.897 0.898 0.898 0.789 0.735 0.719 0.719
10 0.745 0.999 0.999 0.999 0.749 1.000 1.000 1.000 INF 0.674 0.709 0.711
11 0.887 0.997 0.997 0.997 INF 0.831 0.831 0.832 1.000 1.000 1.000 1.000

Table 8: Te results of the overall and the stages efciency scores in 2021.

Overall efciency First stage Second stage
p value 0.49 0.50 0.51 0.52 0.49 0.50 0.51 0.52 0.49 0.50 0.51 0.52
DMUs
1 0.594 0.619 0.619 0.619 0.732 0.724 1.000 1.000 0.238 0.238 0.238 0.239
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 0.748 0.858 0.858 0.859 0.515 0.594 0.831 0.831 INF 0.845 0.846 0.845
4 0.468 0.518 0.519 0.519 0.587 0.662 0.663 0.664 0.300 0.301 0.302 0.302
5 INF 0.617 0.617 0.617 INF 0.774 0.721 0.722 0.448 0.466 0.466 0.466
6 0.758 0.857 0.859 0.859 0.577 0.627 0.531 0.532 1.000 1.000 1.000 1.000
7 0.600 0.789 0.790 0.791 0.577 0.588 0.793 0.793 0.830 0.851 0.851 0.851
8 0.736 0.769 0.769 0.769 0.532 0.512 0.535 0.536 0.746 0.804 0.805 0.805
9 INF 0.852 0.853 0.854 0.942 0.929 0.723 0.723 0.733 0.896 0.897 0.897
10 0.687 0.714 0.716 0.716 0.725 0.738 0.713 0.717 0.670 0.528 0.529 0.529
11 0.604 0.851 0.853 0.853 0.535 0.529 0.682 0.683 0.763 0.871 0.872 0.871
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Table 9: Overall efciency scores in both time periods for p � 0.50.

DMUs 1 2 3 4 5 6 7 8 9 10 11

Μ(t)s∗
0 (t) 0.887 1.000 1.000 0.671 0.832 0.681 0.821 0.757 0.852 0.999 0.997
Μ(t+1)s∗

0 (t + 1) 0.619 1.000 0.858 0.518 0.617 0.857 0.789 0.769 0.852 0.714 0.851
Μ(t)s∗

0 (t + 1) 0.351 0.249 0.489 0.490 0.322 0.491 0.179 0.395 0.467 0.500 0.242
Μ(t+1)s∗

0 (t) 0.463 0.182 0.306 0.143 0.219 0.084 0.169 0.225 0.233 0.047 0.231

Table 10: Te efciency scores of the frst stage in both time periods for p � 0.50.

DMUs 1 2 3 4 5 6 7 8 9 10 11

Μ(t)s∗
10 (t) 1.000 1.000 1.000 0.735 0.967 0.716 0.727 0.733 0.897 1.000 0.831
Μ(t+1)s∗

10 (t + 1) 0.724 1.000 0.594 0.662 0.617 0.627 0.588 0.512 0.929 0.738 0.529
Μ(t)s∗

10 (t + 1) 1.000 1.000 0.426 1.000 1.000 0.089 0.233 1.000 1.000 0.276 1.000
Μ(t+1)s∗

10 (t) 0.080 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.323 1.000 0.182

Table 11: Te efciency scores of the second stage in both time periods for p � 0.50.

DMUs 1 2 3 4 5 6 7 8 9 10 11

Μ(t)s∗
20 (t) 1.000 1.000 1.000 0.660 0.748 0.739 0.830 0.559 0.735 0.674 1.000
Μ(t+1)s∗

20 (t + 1) 0.238 1.000 0.845 0.301 0.466 1.000 0.851 0.804 0.896 0.528 0.871
Μ(t)s∗

20 (t + 1) 1.489 0.536 0.064 0.503 0.495 1.000 1.000 0.038 1.000 1.000 0.244
Μ(t+1)s∗

20 (t) 0.003 0.135 0.061 0.012 0.367 1.000 1.000 1.000 0.048 0.167 1.000
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Figure 2: Overall efciency changes throughout 2020 to 2021.

Table 12: MPI for the overall process and the frst and the second stages.

DMUs
Overall process 2020-2021 First stage 2020-2021 Second stage 2020-2021

EC TC MPI EC TC MPI EC TC MPI
1 0.619 1.042 0.645 0.724 4.155 3.008 0.238 45.667 10.869
2 1.000 1.170 1.170 1.000 1.000 1.000 1.000 1.993 1.993
3 0.858 1.365 1.171 0.594 0.847 0.503 0.845 1.114 0.941
4 0.518 2.107 1.091 0.901 1.054 0.950 0.456 9.587 4.372
5 0.617 1.408 0.869 0.638 1.252 0.799 0.623 1.471 0.916
6 0.857 2.155 1.847 0.876 0.319 0.279 1.353 0.860 1.164
7 0.789 0.492 0.388 0.809 0.537 0.434 1.025 0.988 1.013
8 0.769 1.315 1.011 0.698 1.197 0.836 1.438 0.163 0.234
9 0.852 1.416 1.206 1.036 1.729 1.791 1.219 4.134 5.039
10 0.714 3.858 2.755 0.738 0.612 0.452 0.783 2.765 2.165
11 0.851 1.108 0.943 0.637 2.938 1.872 0.871 0.529 0.461
Average 0.768 1.585 1.191 0.786 1.422 1.084 0.896 6.297 2.652
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Further, Table 12 displays that the average growth rate of
the total productivity of DMUs for the overall process, the
frst, and the second stages are, respectively, 1.191, 1.084, and
2.652 representing an average increase of total productivity
over the two periods of 2020 and 2021. Such an increase rises
from the increased mean of TC (Technological Change). In
Table 12, four petroleum wells (DMU1, DMU5, DMU7, and
DMU11), out of 11 petroleum wells, sustained a regress in
the total productivity index between 2020 and 2021, and the
other seven petroleum wells have improved productivity. It
is noted that TC values less than one indicate the regress of
the technology, and TC values more than one indicate the
progress of the technology. Also, EC (Efciency Change)
values of more than one indicate an increase in performance,
and EC values of less than one show a decrease in perfor-
mance. Now, we consider EC and TC values gained in both
substages in the last two sets of columns. Te values gained
for the frst stage show that DMU1, DMU 2, DMU 9, and
DMU11 have improved their MPI over the 2020 and 2021
periods, while the other DMUs have experienced a re-
duction. Similar to the overall process, DMUs difer in their
relevant EC and TC values from the frst stage over the two
periods of 2020 and 2021, with DMU6 experiencing the
worst efciency change. Te last set of columns represents
that the MPI of the second stage has improved over the years
2020 and 2021 periods in all DMUs except for DMU3,
DMU5, DMU8, and DMU11. Once again, DMUs difer in
their relevant EC and TC values, with DMU1 and DMU4
performing the opposite behavior in both efciencies and
DMU8 showing the worst technology change. Finally, for
most DMUs, the EC value was less than one, which is why

their efciency decreased from 2020 to 2021, and their total
productivity index for some of them is bigger than one. Te
TC values for all DMUs except for DMU3 were bigger than
one; however, their EC values were less than one.Tis means
that, even though they applied fewer new technologies, they
made the optimal use of the new technologies and there was
no negative impact on their progress. DMU7 had a TC value
of less than one and was inefcient; however, it progressed
compared to the previous year. In other words, DMU7 used
new technologies more optimally and more frequently,
leading to its progress.

In this study, regression analysis has been performed to
assess the relationship between the overall efciency score
and the efciency scores of stages. Some curves examined to
recognize the relationship between the overall efciency
scores and those of the frst stage for the year 2020 are
exhibited in Figure 3. According to Figure 3, we can see that
the polynomial equation of order six shows the highest R-
squared values defning the correlation between the overall
efciency score and that of the frst stage in 2020. Tis shows
a complicated relation within the DMU such as the one
illustrated in Figure 1.Te same process is utilized to analyze
the relation existing between the overall efciency score of
the DMU and that of the second stage in 2021. Te cor-
responding results are exhibited in Figure 4.

Tese regression analyses refect complicated relations
between the stages and their internal transactions.Terefore,
dynamic interactions between periods are excessive since the
structure remains nonlinear through both the frst and
second stages when taking into account either the year 2020
or 2021. Tus, even though Figures 3 and 4 refect the
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Figure 3: Connection between the overall efciency score and the efciency scores of the frst stage.
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network structure of the well in 2020, very similar poly-
nomial results are gained when considering both stages
in 2021.

 . Conclusions

One of the main objectives of management in an organi-
zation is to improve productivity over a long period. Pro-
ductivity is assumed to be a function of efectiveness and
efciency over time. However, measuring productivity
growth under uncertainty is important for identifying the
development patterns followed by diferent economies.
Since its inception, MPI has been widely used as an ac-
ceptable index for analyzing performance changes. We
proposed a model under DEA and MPI to evaluate the
efciency and productivity of a two-stage NDEA system that
minimizes themaximum value of the objective function with
the optimization of the worst-case scenario. By refusing
a conservatism level, the feasibility of optimal solutions is
warranted. Te presented approach not only specifes pat-
terns of productivity change and gives a new interpretation
along with the managerial implication of each Malmquist
ingredient but also identifes strategic orientations of DMUs
in past periods for suitable choices in future periods.
Moreover, by adjusting the conservatism degree in the
proposed model, we get better results. Tis approach han-
dled to evaluate the profciency of 11 wells in the Persian
Gulf over the 2020 and 2021 periods. Te results gained are
attended helpful to better the perception of Iranian wells and

their internal structures. Tese results show the changes in
productivity and efciency production in detail showing that
the management of resource consumption is inefcient, and
the investments are inadequate to raise the growth of the
relative technology levels. It is noted that the rate of deg-
radation of capital facilities in the petroleum land is ex-
tremely high, confrming the necessity to increase
investment to substitute the underestimated assets. Te idea
of uncontrollable inputs also has pervasive applications, so
including it in the presented model would be an absorbing
future study direction. In addition, we can consider the
addition of more criteria, particularly qualitative ones, to
evaluate efciency and productivity in a more precise
process. Also, focusing on various external parameters af-
fecting the profciency of the petroleum wells would form
similar research.
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