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Numerical Tables are given in order to allow a direct comparison of the electrical resistivity model for
polycrystalline films proposed by Mayadas—Shatzkes with experimental data.
The tables have been calculated extending the Gauss method for one variable to many variables.

1 INTRODUCTION

In the past years, it has been a common practice to
analyze electrical resistivity data of polycrystalline
metal films' by means of the Fuchs-Sondheimer
model® (F—S model) for the size effects. However,
the granular structures of evaporated films impose a
restriction about which the F—S model says nothing.
In order to take this into account, Mayadas and
Shatzkes® developed the model (M—S model) given
briefly later on.

The purpose of this communication is to present
numerical tables. Model possibilities and applications
have been discussed elsewhere®.

2 MAYADAS-SHATZKES MODEL

Basically, to the two electron scattering mechanisms
of the well known F—S model, M—S add a third one
due to the presence of crystallite boundaries.

For the evaluation of the overall film resistivity
p¢, M—S assumed that crystallite boundaries can be
represented by a Gaussian distribution of partially
electron reflecting planes randomly spaced with an
average distance ¢ and a standard deviation s.

Based on the available experimental data, which
shows that thin evaporated films have a column-like
structure with crystallites towering from the substrate
to the surface, they assumed that (i) only those
planes perpendicular to the applied electric field
cause the extra electron scattering; (ii) the average
interplanar distance a is equivalent to the average
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crystallite diameter D as obtained by electron micro-
scopy. In order to fit the model to experimental data,
the electron reflecting power of the potential barrier
between crystallites is interpreted by a phenomeno-
logical parameter 7.

The model can be summarized by the two follow-
ing equations, rearranged according to the heading
assumptions to make the mathematical problem and
numerical evaluation more tractable.

2.1 Crystallite Diameter D is a Thickness
Independent Constant.

The ratio between film resistivity ps and the resistivity
of a polycrystalline film infinitely thick, p, is given

by:
Ps AT!
ol KN )
Pg f(a)
in which:
6 72 > Cos?y (1 1
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1 1/2
H(t,ga)=1+a/(1—-t—2) Cos ¢

ko =d/lo; d = film thickness; 1, = mean free path
of the electrons; p = specularity parameter.

with:
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Numerical data according to Eq. (1).p =

TABLE I
specularity parameter; k, = d/l,; d = film thickness;

1, = electron mean free path; & = (I, /D)r/1 — r; D = crystalline diameter; r = reflection coefficient.

p=0

p=0.5

k, a=0 a=0.5

a=2.0 a=0 a=0.5 a=1.0 a=2.0

| .28:1528 | 17.6710
0.133

}. 322718 |

(004 L 2:0703 1 . 61178 | 4.84
7.7033 5.2498 4,1852

_3.1516 3,9489

9.4128 W 11.9282 1  7.9603 |  6,2672 | 4.6383
Loled911 1 4. 2]..3.0523
.. 504583 I . . .2:45867
.. 4e5336 2422371
J...1.9351

L0006 3 87707 ) | A:8465 3.7245
.0:07 6.0821 42010 f .3-3843
L0:08 _F . 5.5512 1 . 3.8567 ) 3.1216
B5:3271 | 3.58314 | | 2.9118 4
s S A.7804 1 . 3.3565 1. 27405 |
20220 ). .03:0962 ) 202682 | 1.9i54 | |
2030 )L 2.4858 1.8649, 1.6131
L0.40 f.._2.1284 | 1.6515 1.4554

aer armran e e e

L0e80 o Ae20e1 | 1.3192 13590

..228302 N 3.5415
205934 N 3.2403 ] 2.4

223797 L 1.8484 )

127248
16916
| 1.6122

| 1.5490

204109 4 3.0073 .

2.2655 ). 2-8208 |
2.1465 ). .2-8682 ] .2:0295 }. 1 414276
1.5813 | 1.9251 | 1.5 of..1e3984 | 102545
S} o.le2684, ) 11688
22775 | .1.4975 [ 1.2855 1. 1.2012 {  1.1252
1.2167 f.. 324041 1 _1.2288 ) 1.1601 1 1.0991

1,7696 | 1.4292 1,2945

121769 1.3399. 1,1903  |..21.1326 |  1.0818

1.6621 1,3643 1,2485

1.2489 || 1.29 1.1626 1.1129 1.0696

}mo.S;?:D.?.T._,._ 13154 | 12143

L0920 L Le5248 f ) 1.2773 | 1.3880 4 .
L2000 L 1e4623 11,2470 ) 202671 L.
LEeDO 202208 f 101146 ) 1.0780
L3:00 p L. te2434 | 1,0737 11,0507} .
JA00 L fl. 22032 f 21,0543 ] 1.0376
200 1. 1.0810 1 | 1.0430
S0200 Y. 20666 (

7.00 1.0566 1.0303 1.0211

1.0116 |

2.0186 I
1.0155 __H

l.1284 . 1.2572 .. 21,3417 | . 1.0981 | 1.0604
1.2127 W 12282 1 1.1254 1.0867 1.0534
21.2004 N 1,201 1 1.1%23 | 1.0776 |  1-.0478
21.0479 ). 1.2014 ) 1.0542 |  1.0376 |  1.0234
10314 |}l 1.0863 |  1.0356 ] _1.0247 ] 1.0155
1.0234 ). 10451 | 1.0204 ]  1.0184 | 1.0116
120389 1 1.0210 1.0147 1.0022

..de0322 | 1.0077
1.0104 | 1.0066
) ]...1.0091 1.0057

L1.0116  1...1.0081 ) 1.0051

1.0132

21,0102 )l 1.0213

10,00 1.0390 1.0210 1.0147

1.0092 1.0104 1,0073 1.0046

a=(1o/DY/1 ¢
and
flay=1—(3/2)a+30* — 3% In(1 + 1/a) (1b)

When a =0, Eq. (1) reduces to the F—S equation.
Neverthelss the curve shapes are identical within the
experimental error.

2.2 Crystallite Diameter D is Equal to Film
Thickness d.

Then, the ratio between film resistivity pf and the
resistivity of asingle crystal film infinitely thick, po, is:

Pt _ A1l
e [f(a) — Al @)

in which A, f(,) and a have the same meaning as in
eq. (1). When k, > 10 or r = 0, eq. (2) reduces to the
F—S equation.

3 NUMERICAL TABLES
Unfortunately Eq. (1) and (2) cannot be evaluated

analytically. Hence, in order to interpret quantita-
tively the experimental results it was necessary to
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elaborate numerical tables. These have not been given
in the literature yet and were obtained with a
IBM—360/50 computer with a program written in
PLI. Excessively high computer time is necessary to
solve the integrals by conventional methods®. This
problem was overcome by generalizing Gauss’ equa-
tion® to any number of variables. This can be done
changing the variables in such a way as to transform
the original interval for each variable into another
one, ranging from O to 1, as required by the Gauss’
formula. The integral is then evaluated over n?
points, each one of them given by the roots of the
Legendre polynomials of order n with their respective
weight.”
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The numerical evaluation was carried over n* = 100
points to obtain an acceptable approximation. Never-
theless, 25 points are enough to maintain error below
1% for the integrals, but their place in the function
magnifies the overall error.

In Table I the values of p¢/p, vs. ko calculated
with Eq. (1) are given under the assumption a=a
thickness independent constant. Only two values of
the specularity parameter p are taken into account,
because in general the experimental data fit the
theoretical values better by postulating p = 0.

Table II shows the dependence of pg/p, on kg
calculated with Eq.(2) for the same p-values as in
Table I, but with o = f(d), (i.e. D = d and r = thickness

Numerical data according to Eq. (2). p, k':‘/:r?dL P hI:ve the same significance as in Table I.
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independent constant). There are more curves given
with different 7, than with different a because actually
the available data fit the former more closely.

In Table I the column corresponding to a=0 is
actually the numerical data of the F—S equation. A
column with r=0 in Table II would be identical.
These values are given in order to estimate the error
of the method. For this purpose they should be
compared with the data obtained by Soffer® with
Simpson’s rule using 2'® subdivisions. The error is
less than 0.1% up to ko =0.05. However, the first
value for ko = 0.01 has an error of 6%.

The evaluation method is thus justified because
the computation time was reduced to 30 seconds per
column.
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