SHORT COMMUNICATION

Variations of Thin Metallic Zinc Film Resistances with Sputtering Rate

C. TELLIER and A. TOSSER

Laboratoire d'Electronique et d'Automatique, U.E.R. des Sciences et Techniques, Place Robert Schuman, B.P. 4006 – 76077 LE HAVRE Cedex – FRANCE

(Received May 25, 1975; in final form June 26, 1975)

Variations of resistance of evaporated or sputtered films during deposition have been studied for deposition times lower than five minutes and for resistances higher than $100~\Omega$ sq⁻¹. As our main objective is to study the conduction mechanisms in sputtered films over the thickness range from 200 to 1500 Å (i.e. in the 10 to $100~\Omega$ sq⁻¹ sheet resistance range), we report in this note our investigations about the electrical resistance R(T) of zinc films for deposition time, T greater than two minutes and for four average deposition rates.

Preparation of films has been described in a previous paper;4 they are deposited by d.c. diode sputtering of a zinc target (99.9% purity) in an atmosphere of U grade argon. As broken sputtering is equivalent to continuous deposition⁴, sputtering was stopped every minute to measure the resistance R with a multimeter. The average sputtering rate was determined from the deposition time and the film thickness measured by an optical method;⁵ this method is adequate for we have observed very slight anisotropic effects,6 which seem more important for higher sputtering rates; 7 it varied with the intensity I_e of the glow discharge current, the voltage U_e remaining constant (curves 1, 2, 3 on Figure 2). Variations of the deposition rate as a function of the intensity I_e of glow discharge current for a voltage equal to 1500 V are shown in Figure 1. This curve is in good agreement with the results of Laville Saint-Martin⁸ who established that sputtering rate ν is given by

$$v = I_e U_e \exp\{-A U_e^{-1} - B U_e\}$$
 (1)

where A, B are constants.

For high voltage values in the range 1000 to 1750 V, eq. (1) may be expressed as

$$v \propto I_{\mathbf{e}}$$
 (2)

Variations of zinc film resistance R(T) versus

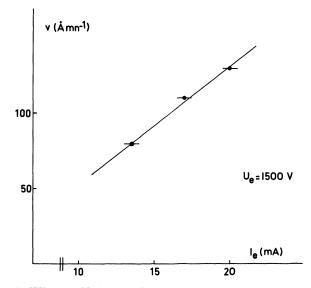


FIGURE 1 Variations of the average sputtering rate ν with the intensity I_e of the glow discharge.

deposition time T are plotted in Figure 2. Attempts have been made^{1,2} to fit these experimental variations to an empirical equation in the form

$$R(T) = R_{\infty} \exp \frac{1}{K_1 + K_2 T}$$
 (3)

where R_{∞} is the limiting value of R(T) when T is large and K_1 and K_2 are constants.

As we have established that films thicker than 5000 Å exhibit bulk properties,⁴ their resistance $R_b \approx 2.5 \,\Omega$ sq⁻¹ is assumed equal to R_∞ . Substituting for R_∞ in Eq. 3, this yields

$$R(T) = R_b \exp \frac{1}{K_1 + K_2 T}$$
 (4)

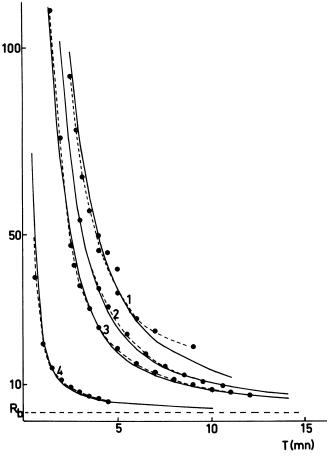


FIGURE 2 Experimental (dotted lines) and theoretical (full lines) variations of zinc film resistance R, with sputtering rate ν , equal to: (1) 80 Å mm⁻¹, (2) 110 Å mm⁻¹, (3) 130 Å mm⁻¹, (4) 550 Å mm⁻¹.

 K_1 and K_2 are determined by plotting $1/Ln[R(T)/R_b]$ versus deposition time T (Figure 3). The slopes of the best fit straight lines determine the values of K_2 , while K_1 is calculated from the intercept with the vertical axis.

From Figure 3 it can be seen that K_1 is independent of the deposition rate as indicated by Eq. 4. Thus,

$$K_1 \approx 1/Ln[Ro/R] \tag{5}$$

where Ro is the substrate resistance.

However the value of Ro calculated from the experimental value of K_1 is low (about $6\,\mathrm{k}\Omega$). As quasi-linear growth occurs only above the first critical thickness⁹ we assume that this value corresponds to a smaller thickness for which the granular structure consists of a large number of empty channels distributed throughout the film. It has been shown that the value of the resistance of such a film depends essentially on the geometrical arrangement of the sputtering chamber which remained unchanged in our experiments.

Calculations allow one to determine suitable values of K_2 , leading to a good agreement between the experimental and theoretical curves (Figure 2) in the resistance range 10 to 100 Ω sq⁻¹. A discrepancy of less than 10% is observed except for the lower sputtering rate but experimental accuracy is low in this case (15%).

The observed slight departures from the theoretical resistance at low R values occur at low sputtering rates,³ whereas considerable departures have previously been observed by Laville Saint-Martin⁷ for higher sputtering rate.

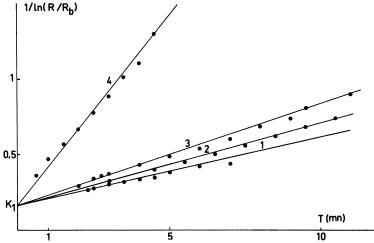


FIGURE 3 1/Ln[R(T)/Rb] versus T (deposition time) with sputtering rate, ν , equal to (1) 80 Å mm⁻¹, (2) 110 Å mm⁻¹, (3) 130 Å mm⁻¹, (4) 550 Å mm⁻¹.

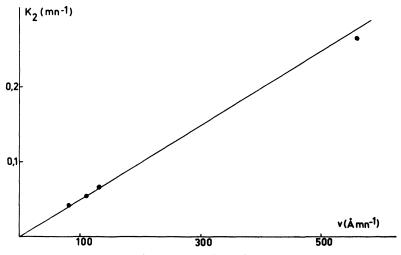
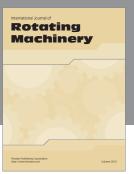


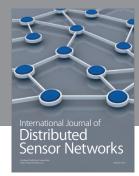
FIGURE 4 K_2 versus deposition rate, ν .

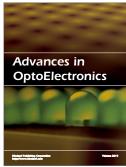
We observe (Figure 4) that the magnitude of constant K_2 differs markedly for different deposition rates. Constant K_2 has been defined as a velocity constant related to the sputtering rate ν and may be given approximately by

$$K_2 \approx \alpha \nu$$
 with $\alpha = 5.10^{-4} \text{ Å}^{-1}$


It may be concluded that in these experimental conditions the measured resistance fits the theoretical formulae obtained with the deposition rate as a parameter in the range 80 Å mn⁻¹ to 600 Å mn⁻¹; a simple way to predetermine thin film resistances is thus available.

REFERENCES


- R. K. Jain and B. R. Marathe, Thin Solid Films, 14, 155-159 (1972).
- 2. T. J. Coutts, Thin Solid Films, 4, 429-443 (1969).
- C. Tellier and A. Tosser, "Nucleation growth of thin sputtered zinc films" Rapports sur les Couches Minces Université de Haute Normandie 1-14 (1975).
- A. Tosser, G. Fleury and H. Murray, Thin Solid Films, 15, 259-273 (1973).
- S. Tolansky, Surface Microtopography, Interscience, New York, 1960.
- B. Laville Saint-Martin and G. Perny, Thin Solid Films, 4, 319-331 (1969).
- 7. B. Laville Saint-Martin, Thèse, Strasbourg (France), 1969.
- G. Perny and B. Laville Saint-Martin, 1er Symposium Européen sur la Pulvérisation, Toulouse (France), Oct. 1969, 119-134.
- B. Laville Saint-Martin, Thin Solid Films, 6, 359-377 (1970).



Submit your manuscripts at http://www.hindawi.com

International Journal of Chemical Engineering

