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This paper investigates the dynamic behavior of a system of two multivibrators. It is shown that the
characteristics of synchronization states of multivibrators are coupled in a particular manner and their
approach to synchronization can be tackled analytically without approximations. This can be regarded
as an advancement, since most of the analytical work on coupled oscillators attain results only by
resorting to an approximate mathematical method.

It has been shown that the results obtained for coupled multivibrators are similar to those of sinusiodai
oscillators.

Such systems are important in the fields of theoretical biology, communication, radar system tech-
nology, and coupled solar cells.

1. BASIC MULTIVIBRATOR INVOLVED IN THE SYSTEM

1) The Basic Triangular Wave Generator

The block diagram in Fig. 1 represents a relatively general class of various trian-
gular-square wave generator that possess in common a hysteretic comparator and
integrator in a closed loop.

ASTABLE MULTIVIBRATOR

Both integration and hysteretic comparisons can be performed by employing merely
one operational amplifier, Fig. 2. The triangular wave here is not linear, as a result
of the simple resistor capacitor integrator used in this circuit.

The sides of triangular waveshape are exponentials. The linearity can be im-
proved by reducing the ratio R/Rb. The frequency of oscillation is given by

1
2RC In(1 + 2K); K Ra/Rb

PRECISE TRIANGULAR WAVE GENERATOR

To linearize the triangles, it is required that C be charged with a constant current
rather than the exponential current supplied through R.
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FIGURE

To get a precise triangular wave, we employ a second operational amplifier to
perform integration so that a constant supply current to C is obtained.
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Dynamic equation.
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FIGURE 2
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FIGURE 3

Where Sign U J + 1
-1

forU >0
forU <0

Sign(U) - 0 for U 0

) Vz Sign() 4fx) (3)

2. TWO MUTUALLY COUPLED MULTIVIBRATORS

It is assumed that the two oscillators possess equal square wave amplitudes and
equal triangular wave amplitudes, namely

Vz Vzz Vz; also K K2 K

The oscillators have been coupled by letting each oscillator’s oscillator integrator
integrate not only its own wave, but also the other oscillator square wave with a
different time constant. This is shown in Fig. 4.

Let Xi and X2 be the comparators output values, then the integrate output Y
and Y2 are given by

Yt X + (4)

(5)

Where Ji RlCl
Ji2 Ri2Cl
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J2 R2C2
J2! R21C2

Although Y and Y2 are no longer triangular waves, they preserve their previous
(uncoupled) amplitude. This is due to the fact that the trip points are unchanged.

Using (3) and (4), the dynamic equations of the coupled configuration can be
written as

=VzSign[)-4(X 2

2 Vz Sign 2 42 X2 -- 21 xl

Where l and ., are the intrinsic (uncoupled) frequencies of oscillators, namely

= 1 ;2= 1

4KT 4KT2

3. DYNAMIC BEHAVIOR OF MUTUALLY COUPLED
OSCILLATORS

The main objective of this section is to evaluate the frequency of oscillations and
the phase shift between the two oscillations. It is assumed that the coupled oscil-
lators oscillate with periods T and Ti2, where subscript denotes the ith half cycle
of oscillation in Fig. 5a. Let the square wave X2 lag X1 by Ji, i.e.,

<J<O2

For the lagging situation J is assumed to possess a negative value while for a
leading situation it possess a positive value.

The output value of the second oscillator comparator will change at the end of
its ith half cycle from +_Vz to -Vz. It is possible to evaluate the half cycle length
by equating this transitional change of 2Vz at the comparator end to the corre-
s.ponding, integrator voltage that causes such transition. It can be shown that, when
X,. lags Xt (Fig. 5a):

1
ta- tA =T- IJi[ (a)
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VZ

tA tB

--
c

OSC

=t OSC 2

IN TEG 2

Vz

T

OSC

=t OSC 2

- [NTEG 2

FIGURE 5 The mutual positions (in time) of the waves generated by the two coupled multivibrators.
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and

tc
1

ts T + IJil
1
DT + IJl (b)

2

where

DT T?- T

Due to the ratio K between the resistors values at the comparator positive input
terminal, a voltage transition of 2Vz at the comparator is equivalent to a voltage
change of 2KVz at the integrator output. As a result,

(ts ta) + + (tc ts)
j_ J2,

Dividing both sides of (6) by V and putting the value of (ts ta) and (tc ts)
from equations (a) and (b) we get,

11
+ ,] + (DTi +,])[-] 2K (7)(T + J,)[j

Multiplying both sides of equation (7) by 2 and rearranging we get

(J + 2J3LJ2 + 1 + (DTi- 2J) L J2
1 4K J2,

DT\j 1 4KJ_,- T \j
+ 1 4 (8)

Similar equations can be written for the case when 2 leads , i.e.,
Jl/2.

Referring to Fig. (Sb),

1
ts t DT + I] 1 (a)

tc- ts T/2 Ji (b)

from the logic given before, we get in this case,

(ts ta)
J2 T2,

+ (tc ts) T2 + 2 2KVz (6a)
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Using equations (a) and (b) and multiplying by Vz

(DTi + IJil)I2 j12,] + (DTi + Ji)Ij12
Multiplying (7a) by 2 and rearranging we get,

DTi\ + 1 4K J21 T + 1 +

1JEi] (7a)

The two equations (8) and (9), (one for the lagging case and the other for the
leading case) can now be lumped together, using the ’Sign’ function. This yields

] [4K (J2 1)][Jm Sign(J) + 1 J- T\j + Sign(J) + 4J (10)DTi L J2

where IJil < T/2

Those equations represent the integrator output of second multivibrator.
Similar analysis for the second multivibrator (considering both lagging and lead-

ing cases) will lead to a corresponding relationship, namely,

[ Sign(J) 1 4K J + 1 Sign0)DTi L J 2 (11)

Now we add equations (10) and (11) and, hence, eliminate Ji. This yields

( ) ( 2 (12)DTi j2
1 4K(J2t J,2) T j2 J]

The above equation is for the ith half cycle.
One can write an equation similar to (10) for the (i + 1)th half cycle. If (10) is

then subtracted from the similar equation, one would obtain

[ Sign(J) + 1 T[ + 1 Sign(j)DTi [ J2
(13)

where ADTi DTi+- DTi
and T) T+, T

Equation (12) assists in substituting for DTi in equation (9) by

4K(J2, J2) JJ2 J1 ]
DTi J2 1

J2

(14)

2K

(9)
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Now substituting values in equation (13)

1 +
J21
J2

Ji2 J21
J?J; f4K(J2t- Jl2)l2 Sign(Ji) AT + T L’ J2
J J2 "i

(15a)

The following difference equation is obtained

A AT + TI T (15)

where

1
JiJ2 /A 1 +

J2t / Sign(Ji) (16)
/

J2 JI J

and

T 4K(J2,- J,2) (17)
J2/J2 J2/Jt

To find the solution of the difference equation (15), we proceed in the following
manner. Let the value of 0

(Jl J)A + T T

:=:::T, + ATI- T,A T

This gives an expression for T in terms of T and A

T + T,(A 1)
A

T T(A 1)=X+X
Similarly we find an expression for T

TI(A- 1)T T/A + T/A +A (A-A 1)[T/A+T(A-A 1)]
To(A- 1)2 + T/A + T/A(A- 1)

A A

(18)
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Expression for the ith cycle

T To(A- I)
A

( (A-l) (A-l) (A-l)i-2 (A-l)i-l)+ T + A + A + + A -1 + A (C)

as -- o, the 2nd term reduces to unity, since the sum of such a series S is

ES- 1-r
1/A

1 _(A- 1)
A

=1 where a first term
and r common factor

So the equation (C) becomes

( )"T To A- 1
A + T (19)

Now for synchronization steady state we need that ith and (i + 1)th half period
be of the same duration, i.e.,

AT 0DT 0 Ti2- TT T?
so that in equation (19) T... becomes independent of i. This requires that the
first term in the equation (19) should reduce to zero and T should be greater than
zero.

Depending on whether A is larger or less than 1/2, the absolute value of the
transient response Tto(A l/A): will approach zero or will increase respectively
when the number of steps increases. A condition for A being larger than 1/2 is
(16)

Jl2J21q1
J2Jl /

J2l J_..12 /
J2 Jl .J

Sign(Ji) > 1/2 (20)

Let

JpJ21
Q= (1 [-i )/(J--21 _I_2

\J2 J/

then equation (20) reduces to

Q Sign j: > -1/2

Now there are two possibilities of Sign Js -+ 1.
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when s;gn J; :-1

V2 o

Region

Rgon 2

FIGURE A

CASE ]mwhen sign Ji + 1, i.e., 2 leads X then Q > -1/2.
CASE llmwhen sign Ji -1, i.e., X2 lags XI Q when Sign J + 1 then Q <
-1/2.

From Fig. (A), it is clear that there are two modes of dynamic behavior that could
be implied by the condition of equation (20). In one of the modes, (that is the
Region -1 in Fig. (A))

Ji2J2l1
JJ2 < 1/2 (21)

J2 Jn
J2 J!

A fulfilment of condition (21) implies that condition (20) is satisfied. Condition
(20), however, is satisfied in this region for both values of Sign(.) positive or
negative. Hence, the present theory does not determine for this region whether
one of the waves is leading or whether it is lagging the second. Furthermore, the
present analysis even permits Sign(J) to change in time, and as a result according
to (16), A is not necessarily a constant when the coupled oscillators approach
synchronization and (19) is not strictly correct. Therefore, the range of values of
parameters determined by (21) should be excluded from the present treatment as
they do not satisfy initial assumptions. An experimental check of the system be-
havior in this range has shown that the dynamic behavior is different from the one
implied by Fig. 3. The waves in this region sometimes appeared to be synchronized,
when several periods of one oscillator lasted the same time as one period of the
other.

The second mode implied by the condition (20) occurs when (i.e., in the region
-2 shown in Fig. (A)), the system satisfies the following condition:

JiEJ2!1
JiJ2 > 1/2 (22)

J21 Jl2
J2 J!
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It can be shown that a sufficient condition to satisfy (22) is that

Jl2J21 > 1 (23)
JIJ2

Hence, in this range of dynamic behavior, Sign0) is relatively simply determined
by the system parameters, namely

2 Sign(Ji) < 0 (24)
J2 J/

If Sign(J) is such that condition (24) would be satisfied then the coupled oscil-
lators approach synchronization, and Sign(Ji) does not change from one half cycle
to another. If Sign(J0 is initially such that condition (24) is not satisfied, then
according to equations (14) and (19), the absolute value of the difference between
the two periods, IDTI, will increase. Each successive half cycle causes a greater
difference between the two periods until J changes its sign. Now the inequality
(20) is satisfied. Hence, the transient response Jo(A 1/A) approaches zero (when-- ) and the periods, of both of the oscillators approach the same steady-state
period T, which can be evaluated by (17). The mutual position of the two waves
(leading or lagging) also possess a steady-state value J which is calculated by the
approach of Ji to final when . This is done by substituting T in equation (10)
or equation (11), and, with the aid of (24), one obtains an expression for the steady-
state value of phase difference.

1 1 1 1

Jl Jl J JlIJl K J2J21 (25)
JE/J2- JE/J

where the sign negative or positive is determined by inequality (24). A positive J
would mean that the second oscillator leads the first while a negative J would mean
that the second oscillator lags the first. Another implication of (24) is that the
present theory is valid only if the evaluation of (25) yields a nonnegative number.

The present analysis has assumed that < T/2. If this condition is not satisfied,
synchronization would not be obtained. The borders of stable and unstable
regions 0, and -T/2 are singular points.

Hence, the main objective of this section, which was to evaluate the final time
period, the entrained frequency of oscillations, and the final phase shift between
the two waves has been calculated with a very simple analytical treatment without
resorting to approximations. The equations (17) and (25) give the exact expressions
for the final time period and the final phase shift respectively.

4. EXPERIMENTAL RESULTS OF COUPLED MULTIVIBRATORS

The coupled system in Fig. 4 has been operated with different coupling resistors.
The results are in agreement with the presented theory. The experimental results
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here are due to the main mode of dynamic behavior that occurs when the values
of the parameters satisfy (22).

Fig. (A) shows the system waveforms when R2 20KfZ and R2 30KfZ. The
intrinsic frequencies of the oscillators were evaluated and they possess the values
of 142 and 135 Hz, respectively. The measured entrained frequency and phase shift
are 124 Hz and 103 respectively. The theoretical entrained frequency and phase
shift, evaluated from (17) and (25) are 128 Hz -109 respectively.

Similar results for an opposite phase shift are demonstrated in Fig. (B) R2
40KfZ and R21 10KfZ in this experiment. The results for several such experiments
are summarized in Table I.
A dynamic behavior of a special interest is expected when both oscillators possess

the same intrinsic frequency. Then, T T2 and (17) results.

|

2

FIGURE A The output signals of the coupled multivibrators system when Ri2 20K[I and R21
30K/! (R, 88KII, R2 71KII, C 10/E C 1.3/E K 0.2).
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FIGURE B Output signals of coupled multivibrators system when Rl2 40Kf and R21 10KI)

(R 8.8k1, R, 7.1KI! C 1.0/E C2 1.3/zE K 0.2). The upper waveform represents the
square wave outputs (the upper trace represents and the lower trace represents 2). The lower
waveform represents the Y outputs.

The upper waveform represents the square wave outputs. The lower waveform
represents the Y outputs. 741 OpAmps are used.
T is equal to the common intrinsic period, which is 4KT. Equation (25) results

for T T.
KT Sign(J2 J2)

TABLE
Experimental and evaluated results of entrained frequency and phase for various choice of coupling

resistors in the system of fig.

R_, Kt R,, Kf Evaluated results Experimental results

Frequency (Hz) Phase 0 Frequency (Hz) Phase 0

30 30 111 152 104 165
40 10 145 81 147 79
20 30 128 109 124 103
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from (26)

-T/4 Sign(T2 TI2)

which means that the phase shift between the oscillations is equivalent to 90 and
does not depend on the value of Tl2 and T2. The sign of the phase shift depends
on these values. An experiment was successfully conducted and verified for the
values of R, R2, Ct, such that RtCt R2C2. The parameters chosen are such that
Tm2/T > 1 and T2/T2 > 1. This ensures that (22) is satisfied. K was always chosen
as 0 2 in both oscillators in this series of experiments. It has been observed that
even for large coupling resistors of values of about 3Mfl, the system preserves its
expectedly quadrature mode of operation predicted in (27).

5. CONCLUSION

The characteristics of the main synchronization state of two coupled multivibrators
have been shown to depend on the multivibrators phase shift. The analytical so-
lution of the coupled system dynamics depend on difference equation (15)

A AT + T T (15)

where the independent variable is a running integer number that counts the
sequence, in time, of the system generated half cycle. It has also been observed
that the system may exhibit modes of dynamic behavior that do not lead to syn-
chronization. This is not extraordinary. In the mode that leads to a synchronized
steady state, the expressions for the final entrained frequency and final phase shift
are given below in terms of system parameters,

1 J21/J2- Ji2/JlF
T 4K(J_ J2)

J RC; J2 Rt2C; J2 RC, J2 RC2, K R/Rb. These expressions are
valid if inequality (22) is satisfied.
An important feature of the present work is that the results (i.e., expression for

final frequency and phase shift) have been obtained by completely analytical
method, without resorting to approximations.

The quasi-chaotic behavior observed on the oscilloscope is due to the fact that
in the present system, both multivibrators possess a flexible behavior that allows
both of them to change the frequency by the effect of the other multivibrator.
Hence, chaotic behavior is less likely.

The relationship between the system of sinusoidal coupled oscillators and the
system of coupled multivibrators is due to similarity of structures. The structural
similarity between the two models results in a related dynamic behavior in both
cases. The stability regions, for example, and also the singular points, are closely
related. In the system of two sinusoidal oscillators, one phase shift results in a
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stable steady synchronization state, while the synchronization characterized by the
phase of opposite sign is unstable, although it is still a steady-state of the system,
and similar results have been obtained in the system of the two coupled multivi-
brators.

One of the reasons for the similarity between the two systems of oscillators is
that, in a multivibrator system, the amplitude of the square waves is determined
by the level of saturation of the hysteritic comparator and, hence, the waves are
stabilized in size, which is somewhat similar to the amplitudes of the two waves of
the sinusoidal system.

The integrated signal in each multivibrator merely affects the frequency. Its
effect on the neighbor’s frequency is larger; the larger is its signal compared with
that of the neighbor, since the sum of both signals is integrated in the multivibrator
integrator. The sum is larger and the integration time is shorter because the mul-
tivibrator reaches saturation sooner and then changes to another state. The effect
on phase shift is also similar. Since the larger is the coincidence in time between
the waves the shorter is the integration time before saturation is reached. Hence,
the smaller is the phase shift between multivibrators, the larger is the effect of one
waves on the frequency of the other.

This paper deals with the dynamic behavior and synchronization of a two coupled
multivibrator. Other modes of dynamic behavior have not been analysed. Fur-
thermore, a thorough treatment is given merely to a mode of synchronization that
is regarded as the main mode of synchronization. This mode will govern the system
if inequality (22) is satisfied. The parameters chosen for most of the experimental
work are such that both J l2/Jl 1 and JEl/J2 > 1. This assures that inequality (22)
is satisfied. We also believe that this range of parameters is more likely to represent
natural systems, since it implies relatively small couplings between the multivibra-
tors.
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