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The Kerwin-Huelsman Newcomb (KHN) biquad is the natural choice for use as a ’universal’ filter
building block out of the several existing 3-amplifier biquadratic filter sections based on the two
integrator loop or state variable realization of 2nd order systems. A modified version of the KHN
biquad, which is electronically tunable almost linearly over a decade range of center frequency, is
presented. For electronic tunability, instead of the direct use of a FET as a voltage variable resistance
to control the time constants of the integrators, a novel approach of using’voltage-controlled variable-
gain amplifiers at the inputs of both the integrators and one immediately after the input signal has been
suggested. The circuit is suitable for use as a tunable universal filtering module and can be easily
digitally programmed.

Comparative treatment of general tuning methods of active filters, and some methods of electronic
tuning of active filters are discussed. A brief description of tuning algorithms of active filters is also
given.

INTRODUCTION

The general area of electrical engineering involving selective processing of signal
information, commonly referred to as filtering, is a field that has broadened
tremendously in scope in the past few decades. Some of the advances have been
spurred by technological developments such as the tremendous increase in produc-
tion and utilization of integrated circuits. Other advances have been brought about
by the theoretical developments made by researchers in well-established disci-
plines. Taken as a whole, these advances have tremendously broadened the scope
of filter theory, which, not too many years ago, was primarily concerned only with
methods for interconnecting lumped resistors, capacitors, and inductors. Thus, a
modem view of filter theory must necessarily include current results concerning
the effects of active, distributed, and non-linear phenomena, as well as the more
familiar passive, lumped, and linear situations. In addition, modern filter theory
must not only consider the processing of signals by continuous filters, but also by
digital or sampling techniques.
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Filtering is a process by which the frequency spectrum of a signal can be
modified, reshaped, or manipulated according to some desired specifications. It
may entail amplifying or attenuating a range of frequency components, rejecting or
isolating one specified frequency component, etc. The uses of filtering are mani-
fold, e.g., to eliminate signal contamination such as noise, to remove signal
distortion brought about by an imperfect transmission channel or by inaccuracies
in measurement, to separate two or more distinct signals that were purposely
mixed in order to maximize channel utilization, to resolve signals into their
frequency components, to demodulate signals, to convert discrete-time signals into
continuous time signals, and to bandlimit signals.

Filters with single pass bands are typically classified as lowpass, highpass, and
bandpass, depending on the bands of frequencies that are passed. For example,
the pass band of the bandpass filter illustrated in Fig. 1 extends from the frequency
o to o. There are other filter types such as allpass, band-reject, or notch filters.
Another classification of filters is based on the network-theoretical concepts by
which they were designed. It comprises image-parameter filters and insertion-loss
filters.
An image-parameter filter consists of a cascade of two-port sections whose

image impedances are matched at their junctions. If the filter is also matched at
the end terminals, the ’image attenuation’ would be zero in the passband. How-
ever, since the image impedance is frequency dependent and the terminations are
usually resistive, the filter is not matched at its terminals at all frequencies. A
non-zero attenuation in the pass band is the result.

input signal

col

F requency spectrum of the
output signal

FIGURE 1
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An alternative method of filter design is based on the insertion loss. Fig. 2
shows a typical requirement for a bandpass filter. The regions of high attenuation
are called stop bands and the regions of low attenuation, pass bands. The nebulous
region between a pass band and a stop band is termed a transition region. The
insertion loss is required to remain below a certain pass band maximum Amax,
measured in decibels or nepers, in the range of frequencies from o1 to o2, and
to remain above a certain stop band minimum Amin, for frequencies lower than
oSl and above Os2. The width of the intervals o1 Os2 and Os2- on2 is a
measure of the required frequency selectivity. The incidental power dissipation of
the filter components causes the actual loss curve to depart considerably from the
theoretical, especially near the edge of the band and in the vicinity of the infinite
loss points. One feature of insertion-loss theory is that this non-ideal component
behavior is compensated for by a predistortion technique which, however, intro-
duces a flat loss in the pass band. The structure of the resulting insertion-loss filter
is often the same as that of the equivalent image-parameter filter. For the same
number of sections, the insertion-loss filter gives a better filter performance. This
improvement is obtained at the cost of much greater computational effort, which
was a significant deterrent before the present-day proliferation of computers. With
today’s vastly expanded computational capabilities, insertion-loss filter design has
been made readily accessible in the form of filter tables such as those of Zverev.

Filters can be constructed using only passive components, i.e., resistors (R),
capacitors (C), and inductors (L). The passive filters are devices that take an input
signal X(t) and shape it to a desired output waveform Y(t). A passive filter is one
that does not require a power supply. Thus, a gyrator is theoretically passive, yet it
will not be considered as a passive circuit element because it requires the use of a
power supply. In spite of the extensive resources that have gone into the perfection
of LC filter theory technology, and manufacture, there is wide spread tendency to
eliminate LC filters from modern electronic equipment, because integrated circuits
have completely changed conventional systems and the performance criteria previ-
ously accepted in electronic designs. Thus, LC filters, like all other circuit types
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that do not fit into the microminiaturization trend, are rapidly being replaced by
filter types that do. Foremost among these are active filters that combine resistors,
capacitors, and gain devices into active networks achieving filtering performance
that is comparable or superior to that of their LC counterparts. Due to its
excellent performance, reasonable price, and ready availability, the operational
amplifier is invariably used as the active gain device.

The passive filters are mostly used at high frequencies of the order of mHz.
Especially at low frequencies (below 100 kHz), active filters have been offering
competition to the passive filters. Active filters require a power supply. As the
frequency range decreases, the size of the inductors increases. Not only do they
become bulky, they also are of poorer quality--they have more loss. Active filters
offer the possibility of replacing the bulky, poor quality inductor with a small
integrable device. As the frequency range increases, inductors become smaller,
have higher quality, and are less expensive, so that the competition they offer to
active filters becomes greater. Also, most active filters do not perform well at high
frequencies. Thus for economical and technological reasons, in industry active
filters will be limited to frequencies below 100 kHz for some time to come. This is
not meant to indicate that no research is being performed at higher frequencies,
but instead is meant as a realistic appraisal of the competition--the passive filters.

Practical active filters are often realized in hybrid form, i.e., they use thin-film
circuitry to realize resistors and capacitors while they use ICs to realize the active
device. In modern thin-film technology, it is possible to have resistors and capaci-
tors that compensate each other’s temperature coefficient. Also, because the
resistors (and capacitors) can be on the same substrate, they tend to track. That is,
if one resistor increases by 1%, then all resistors tend to increase by 1% because
they have been made by the same manufacturing process.
One of the original ways of realizing active filters is the negative impedance

converter (NIC). This device has attracted much attention in theoretical papers,
but in practice it is a poor solution to filtering problems. Gyrators are more
practical than NIC’s, in fact they are superior in many aspects. However, in any
decision has to the type of the active device to be used in an active filter, the
gyrator has a tough foe, the op-amp.

NEGATIVE IMPEDANCE CONVERTER (NIC) ACTIVE FILTER:

They are of two types

1. Current NIC
2. Voltage NIC

Both circuits are two-ports. The most important property of these two-ports is that
they can be used to produce negative impedances.

In a Current NIC, V Vz, KI Iz (1)

In a Voltage NIC, V -KV2, I -I2 (2)
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FIGURE 3

FIGURE 4

As illustrated in Fig. 3, if the O/P is terminated in an impedance Z2, then the
I/P impedance is Z1 -KZ2 NICs can be used to make RC circuits behave like
RL circuits. An example of this is shown in Fig. 4. The admittances Y1, Y2, Y3, Y4
are assumed to be made up of resistors and capacitors. The transfer function for
the above filter configuration for a current NIC is

12 0
Y2 + Y4- K(Y1 + Y3) (3)

The disadvantages of a NIC active filter are

1. It is sensitive to component variations

2. While cascading, it needs buffer stages.

GYRATOR ACTIVE FILTERS:

A gyrator is any two-port that satisfies the matrix equation

(4)

Where the constants R and R2 are + V real numbers.

Zn Z21 it is non-reciprocal two-port
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The I/P and O/P powers of the above gyrator are

P1 VI, -R,1211, (5)

P2 V212. R21112, (6)

If R R2, the gyrator dissipates no real power and is said to be a passive device.
Practical gyrators comprise many transistors and dissipate power internally. It is
just at the two ports of the gyrator that the sum of the real power is zero. The most
important property of the gyrator is that it can be used to invert impedances.

The fact that gyrator can be used as an impedance inverter implies that if the
O/P is terminated in a capacitor, then the I/P impedance is that of an inductor.
Insertion loss filters are very insensitive to element variation in their pass band. If
inductors are replaced with a gyrator-capacitor combination, the resulting active
filter is insensitive, which is in sharp constrast to the highly sensitive NIC filters.

Active filters can also be constructed with gyrators by using the RC-RL
partitioning method. This is somewhat analogos to the NIC synthesis procedure.
The NIC synthesis procedure was based on writing a transfer function in terms of
the difference of two RC impedances. The NIC was then used to produce the -ve
of an RC impedance. In the RC-RL partitioning method, the transfer function is
written in terms of the sum of an RC and RL impedance. The gyrator is used to
produce the RL impedance from an Reimpedance. Because the RC-RL partition-
ing method is based on producing the sum of two terms, it is less sensitive than the
NIC procedure that produces the difference of two terms.

Gyrators have not yet been mass produced and are still expensive. Besides being
less expensive, op-amp active filters have other advantages: They can readily be
cascaded without buffering, and they can easily provide gain at the same time they
provide filtering. In special applications (such as when one may want a bilateral
filter), the gyrator may prove superior.

The term ’active filters’ comprises a host of different circuit concepts and design
methods, the most important of which can be grouped into the following three
categories.

CASCADE FILTER DESIGN:

This denotes isolated second-order filter sections (often referred to as biquadratic
circuits or ’biquads’)connected in cascade to realize the required higher-order
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transfer functions. The individual building blocks may be of second or third order
and may comprise one or more op-amps.

LC FILTER SIMULATION:

An LC filter structure is the starting point. This is then realized either by
simulating each inductor by a gyrator-capacitor combination or by transforming the
initial filter structure such that it can be realized with general impedance convert-
ers (GICs), e.g., frequency dependent negative resistances (FDNRs). Both gyrators
and GICs are realized with op-amps.

COUPLED FILTERS:

Here, the starting point is generally a cascade of first or second order active filters
(preferably all purpose building blocks), which are then coupled by additional
negative feed back loops. The additional coupling is introduced in order to obtain
the same stability with the resulting active filter cascade as is obtainable with
simulated LC filter structures.

TUNING ACTIVE FILTERS:

As active filters are increasingly being developed for modern communication
systems, so the question of how to tune them to specifications most efficiently, and
at minimum cost, is becoming every more important. One of the practical problems
in manufacturing such filters is that of achieving the desired response in view of
random component variations and parasitic effects. The tuning problem is con-
cemed with devising algorithms to correct for this by adjusting the components
after production. Complicating the issue are the complex non-linear equations
involved; the need for efficient, computer implementable routines; and the restric-
tion that only a subset of the components are adjustable. In particular, it is usually
only possible to trim the resistors and only in an irreversible, increasing manner.

In practice two basically different tuning methods can be distinguished, namely,
functional and deterministic tuning.

Functional tuning implies tuning the critical parameters of a network while it is
functional, i.e., in operation. Because the network is assembled as if for operation
in the final system, any parasitics built into the network are automatically taken
into account and ’tuned out’ during the tuning process. Functional tuning is
generally iterative, particularly if the tuning steps are interactive (see Fig. 6). The
number of iterations increases with the degree of tuning accuracy required. The
larger the number of iterative tuning steps, the more time consuming, and,
therefore, the more costly the tuning process will be. Functional tuning is generally
preferable for laboratory purposes and when production quantities are moderate
or low.

Deterministic tuning implies tuning- or trimming to value-individual compo-
nents of a network as predicted by a combination of comprehensive network
equations (in which parasitic effects are taken into account) and by component
measurements (see Fig. 7). The solutions of the equations (generally obtained by
an on-line computation facility) provide the values of the components to be tuned.
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Tuning is carried out ’to values’. Hence it makes no difference whether the
network is operational or not. Since the components to be tuned are generally
resistors, this method consists of ’resistor trimming’ in contrast to the tuning of
network characteristics (e.g., amplitude, phase, frequency) that occurs in functional
tuning. The method is simple (e.g., ’to-value’ trimming of resistors is essential in
any hybrid integrated circuits manufacturing plant) and rapid in execution (gener-
ally very few, if any, iterations are required). However, powerful computer pro-
grams are required to solve the non-linear network equations that must take first-
and often second-order parasitic effects into account. Deterministic tuning is the
more efficient of the two methods, but the necessary expenditure of an on-line
computation facility, and the initial computational effort required, can generally be
justified only by very high production volumes.

In practice, it will very often be found useful to combine functional with
deterministic tuning. The initial adjustments will be carried out by deterministic
tuning, where the values are obtained from either the idealized network equations
or from those containing at most first-order parasitic effects. To overcome more
subtle second-order parasitics, a fine-tuning step is then undertaken in which the

No

Tuning tolerance

/ AR

Runtuned
Tuning register R

FIGURE 7

R tuned
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circuit is operational (i.e., assembled and powered) and a functional adjustment of
one more of the critical parameters is carried out. In this way, the computational
complexity inherent in deterministic-only tuning can be considerably reduced.

COMPARATIVE TREATMENT OF GENERAL TUNING
METHODS OF ACTIVE FILTERS

Discussed now are the two tuning methods

(1) Functional Tuning
(2) Deterministic Tuning

FUNCTIONAL TUNING:

Functional tuning is based on a set of network equations in which the changes of
the specified network characteristics Fp j 1, 2,..., m, are related to incremental
changes in the components xi, 1, 2,..., n, by the sensitivity matrix:

AFm/Fm

Sxi AXl/Xl

Axi/x

AX./Xn

(7)

where the sensitivities SJ are defined by

S dF x
(8)

Hence, if ai(i 1,... n) are the characteristic tuning parameters of a network
function F(ai), and R,j are the corresponding tuning resistors (Fig. 8), then tuning
the parameters from a + Aa to a will adjust the network function from its initial
form F(a + Aai) to the desired form F(ai). Letting:

dai/a
S’o, dRoj/Ro (9)
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we then obtain the sensitivity relations:

al al al

S. S.

SR,I SR,2 SR,
Sl;, Sl;

-’d

d

Ral/Ral

Ro/R. (lOa)

or-- [S] - (lOb)

where [S] is the sensitivity matrix.
In order to allow for a non-interactive, and hence non-iterative tuning proce-

dure, the sensitivity matrix must be a diagonal matrix, meaning that all off-diagonal
matrix elements must be zero (Fig. 9(a)). In practice, this will rarely be the case.
However, it may be possible to arrange the sensitivity matrix such that it is
triangular with the upper triangular elements being zero (Fig. 9(b)). For each
network characteristic a, there is then a tuning element Ro that leaves all
previously tuned parameters ai(j < k) unaffected. The tuning sequence is now
critical; it results directly from the sensitivity matrix after the latter has been
arranged in triangular form. The obtained sequence provides a single-pass (or ’one
shot’), non-interactive tuning procedure requiring no iterations. If a triangular
matrix in the form of Fig. 9(b) cannot be obtained accurately, it must be approxi-
mated by arranging the matrix elements such that they decrease in value to the
fight of the diagonal (Fig. 9(c)). In this way, the number of tuning iterations can be
minimized.
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DETERMINISTIC TUNING:

For a given network, the deterministic tuning procedure follows the flow chart
presented in Fig. 10. Thus, for the second-order lowpass network shown in Fig. 11,
we proceed as follows:

S2 + (to,o/Qt,)S + t02

(a) Derive the three characteristic network parameters K, to, and Qp as a
function of the circuit components, i.e.,

K fr( fl, R,, R2, C3, C4)

%

Q, f,( fl, R1, RE, R4, C3, C4)

(b) Measure the capacitors Ca, C4 and the closed-loop amplifier gain /3.
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FIGURE 10

(c) Compute the following resistor values as a function of quantities that arc
either specified or measured, i.e.,

R1 fRI(K, tOp, Qp, C3, C4, p )

R2 fs2(K, tOp, Q,,, C3, C4, fl )

R4 f4(K, tOp, Q,, C3 C4 ,/3 )

(d) Trim resistors R1, R2, and R4 to the values computed under step (c).

In applying these four tuning steps, which arc typical for the deterministic
tuning procedure, the following points should be kept in mind.

(a) The equations derived in step (a) are the design equations. The derivation of
the design equations precedes the tuning process and determines the nomi-
nal value of each component including the gain /3. Thus, the design or



TUNABLE ACTIVE FILTERS 85

([dS]

dB

COg

HGUIE 11

Log

(b)

(c)

(d)

nominal value of each component is known before the tuning process is
begun.
The equations derived in step (c) are tuning equations and not design
equations. Besides containing specified quantities (e.g., K, %,, Q,), they also
contain measured quantities (e.g., C3, C4, and /3). Thus, in the example of
Fig. 11, although the nominal value of /3 is known, the actual value of /
obtained in manufacture is measured in step (b) by measuring the resistors
R8 and RT. Note that at this point the amplifier is assumed to be ideal.

The circuit shown in Fig. 11 is assumed to be medium Q(Qt, < 20), rather
than low Q(Qt, < 2), implying that tight tolerances are specified for Q.
Thus, the closed-loop gain /3 is not equal to unity, but is somewhat larger
(e.g., between one and two), in order to permit a final functional correction
without affecting the pole frequency %. The inclusion of the additional
resistor (i.e., R7 in Fig. 11) is a small price to pay for the increase in yield
afforded by the possibility of a final touch-up tuning step. The resistor
between the op amp output and inverting input terminal (e.g., R6 in Fig. 11)
is required in any case, in order to balance d.c. effects. The deterioration of
gain stability incurred by the slightly larger than unity gain is negligible,
particularly in the case of hybrid-integrated filters, thanks to the very dose
resistor tracking obtainable with either thick or thin film resistors. The
combination of deterministic and functional tuning implied here will be
discussed shortly.
The measurement of capacitors (i.e., C3 and C4 in step (b) above) should
preferably be carried out after the (chip) capacitors have been assembled on
the substrate. In the case of thin film capacitors there is, of course, no other
choice. This permits parasitic capacitances and component drift due to
circuit assembly to be taken into account during the measurement. Although
methods exist for the accurate measurement of individual capacitors when
they are connected to additional circuitry, the preferred way of overcoming
this problem is to provide provisional capacitor contacts to the substrate
edges. These permit the accurate measurement of either single capacitors, or
combinations of parallel or series pairs, as required for the subsequent
computations.
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To obtain a one-pass tuning procedure, parasitic effects due to non-ideal circuit
components must generally be taken into account in the tuning equations derived
under step (c) above. This complicates the required computations considerably.
The main parasitic effects that must be contended with are:

(a) Non-ideal characteristics of the active devices (e.g., frequency dependent
gain of op-amps). Referring to Fig. 12, this means that instead of using the
constant gain /3o in our equations, wc must use/3(s); thus:

ag
(11)/o --’/(s) s + ,o

(b) Losses and frequency dependence of capacitors. Thin film capacitors for
example, are both lossy and frequency dependent. If the loss of a capacitor
C is tan 8, then instead of Ci, we must approximate C as follows

Ci Ci
C1 1 /jtan 8i

=
1 +JSi

Ci(1 -Ji- i2) (12)

(c)

Instead of frequency-independent capacitors, thin-film capacitors are fre-
quency dependent.
Parasitic capacitances on the circuit substrate and resistive losses along
conductance paths. These parasitics must be taken into account, to the
extent that the response of the final assembled circuit is to be as accurate as
it would be if it had been tuned functionally. In doing so, the computations
required under step (c) above become rapidly more complex, the equations
highly non-linear and of third, or even higher, order. With increasing
complexity, only numerical solutions by computer can be expected, whereas,
when assuming ideal components, analytical solutions are generally obtain-
able.

Vin

RT: R

RI R

R. C4

R6 (- I)R

FIGURE 12

Vout
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COMBINING DETERMINISTIC WITH FUNCHONAL TUNING:

The main characteristics of functional and deterministic tuning:

Functional Deterministic

1. Network is in operation

2. Conceptually simple, directly
applicable

3. Trim resistors to specified
function values (e.g., amplitude,
phase, frequency)

4. Requires accurate phase and
frequency measurement

5. Tuning steps generally inter-
active

6. Parasitic effects tuned out

7. Interactive (time consuming)

8. Tuning sequence derivable
from sensitivity matrix.

9. Suitable for lab. purposes and
low-production quantities

1. Network is not in opera-
tion

2. Computationally complex, re-
quires considerable preliminary
analysis.

3. Measure components and
compute resistor values, trim re-
sistors to computed values.

4. Requires accurate resistor and
capacitor measurements.

5. Resistor trimming noninterac-
tive

6. Parasitics included in network
equations.

7. One to two trimming steps

8. Requires on-line computation
and routines for the solution of
non-linear equations.

10. Suitable for high-production
quantities.

Very often, the initial computational effort can be significantly reduced by
deriving the equations of the idealized network and, after initial deterministic
tuning, correcting the resulting error by a small number of functional tuning steps.
This procedure, outlined in Fig. 13, eliminates the numerous and time-consuming
iterative tuning steps generally required by the purely functional tuning procedure.
It accomplishes this by reserving a small number (typically one or two) appropriate
resistors for a final touch-up or vernier, functional adjustment after the circuit has
previously been coarse adjusted deterministically using simple, i.e., idealized
design equations.

TUNING SECOND-ORDER FILTER SECTIONS:

Normally, we would assume the kind of combined deterministic and functional
tuning outlined in the previous section and presented in the flow chart of Fig. 13.
The initial deterministic tuning step. would comprise the solution of the idealized
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design equations while, at the same time, taking certain other constraints (e.g.,
minimum sensitivity, minimum gain-sensitivity product, maximum dynamic range,
convenient component values) into account. The parasitic effects would not be
included since they are taken into account by the subsequent functional tuning
step. The component values result from a solution of the idealized design equa-
tions and the simultaneous minimization of the gain-sensitivity product. This
additional constraint can be satisfied in most cases since there exist more circuit
components than design equations. For the same reasons, the values of certain
components (generally capacitors) can be selected from the view point of practical
feasibility and minimum cost (i.e., larger values cost more). For the 2nd order filter
sections, the initial computations necessary for the first deterministic tuning step
are presumed to have been carried out directly in that all nominal component
values are obtained from the given computer programs. The tuning resistors
permit the functional step that complete the tuning procedure.

A SIMPLE PHASE NETWORK FOR THE TUNING OF ACTIVE FILTERS:

For best accuracy, second-order filter sections should be tuned ’by phase’ rather
than ’by amplitude’. This means that the desired pole frequency and Q are tuned
by adjusting appropriate ’tuning components’ such that a specified phase value is
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measured at a prescribed frequency. Phase measurements and the necessity of
acquiring a phase meter--typically with an accuracy ofwell below one degree--may
sometimes be considered a drawback. In this section, we suggest a method of
circumventing the need for a phase meter by providing simple, readily built
auxiliary circuits with which active filters can be phase-tuned accurately enough for
most applications.

Phase measurements are required primarily for the adjustment of the pole
frequencies. (The notch frequencies of a band-rejection network and th right-half
plane zeros of an all pass network can generally be adjusted for by using an
amplitude measurement). Fortunately the phase values required for pole fre-
quency and Q adjustments are well defined and occur in multiples of 45, namely
0, +45, + 90, + 135. Thus, by designing phase splitting networks that provide
multiples of 45 accurately and over a sufficiently wide frequency band, the pole
frequencies can be adjusted without the need for a phase meter. The pole tuning is
carried out with the help of the Lissajous figures on an oscilloscope.

Consider an active filter network whose phase difference between input and
output is a degrees, as shown in Fig. 14(a). We now add a phase-splitting network
with the same phase shift to the measuring set up, as shown in Fig. 14(b).
Connecting the output of the filter and the phase splitting network to the x and y
inputs, respectively, of an oscilloscope, the resulting Lissajous figure will be a
straight line with a slope of 45 or 135, depending on whether the phase shift
between x and y is zero or 180. Thus, to tune the active filter pole frequency and
Q, the corresponding phase d (which is a multiple of 45) is obtained by tuning the
corresponding tuning components until the initial ellipse degenerates to a straight
line.

Activ filter

Phase meterd

(a)

Phose-splitting
network

(b)

GU 14
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ELECrRONIC TUNING:

An interest in electronically tunable active filters stems from the fact that there is a
significant number of applications in which a small number of tunable filters may
bc used to replace a much larger number of non-tunable (fixed transfer function)
filters. Electronic tuning has the obvious advantage, compared with mechanical
tuning, that remote, automatic, and rapid adjustment of the filter transfer function
is feasible. In some applications, such as automatic control, music synthesis, small
range spectrum analysis, and speech synthesis, the nccd arises for filters with
electronically controllable parameters.

Some methods of electronics tuning of active filters arc presented in the next
section.

THEORETICAL ANALYSIS AND DESIGN PROCEDURE
SECOND-ORDER TRANSFER FUNCHONS:

Active-filter designers usually prefer to use the output/input transfer function
T(S) instead of the input/output transfer function H(S) used by passive-filters
designers. Because active filters are usually comprised of various second-order
sections, it will be helpful to study some of the possibilities.

LOWPASS:

The lowpass second-order transfer function is defined to be of the form

C
T(S) S + (ooe/Qv)S + ov (13)

The constant C determines the level (gain or loss) of the second-order section, to
is called the un-damped natural frequency of the pole, and Qv is the quality of the
pole. To see how these effect the transfer function T(S), we can examine its
magnitude.

T(jw)
C

)
_

(141
(,.’- + (,..,../o.)

The un-damped natural frequency to helps to determine where the maximum of
T(jto)2 occurs. The magnitude of this maximum is determined by the quality of the
pole Q. This is best illustrated by considering the normalized function:

T(jw) o
o ) )z (151r(o) ( "- + (oooo,/O,
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which is plotted for % 1 in Fig. 15. From the figure, it is obvious why we call it a
lowpass function: it passes low frequencies (the normalized de attenuation is 0 dB)
and attenuates high frequencies (at an asymptotic slope of 40 dB/decade).

BANDPASS:

The bandpass second-order transfer function is defined to be of the form:

CS
T(S) $2 + ( %,/Qt,)S + oa (16)

The magnitude of T(jw) has a maximum value at %. If we normalize with respect
to this maximum value, we can write

r(j ) (
T(jlDp) (0)2_ 1Dp2)2 .t_ (DgOp/p)2 (17)

This normalized function is plotted (for %, 1) in Fig. 16. From the figure, it is
obvious why it is called bandpass function; it passes a band of frequencies centered
about %, and attenuates the low and high frequencies (with an asymptotic slope of
20 dB/decade)

HIGHPASS:

The highpass second-order transfer function is defined to be

CS2

(18)T( S) S2 + ( %,/Qt,)S +

This is very similar to the lowpass second-order transfer function; the low-frequency
and high frequency behavior have been interchanged. Thus, for the highpass
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section, we normalize the magnitude response with respect to the infinite fre-
quency response:

T(jo) to4

The behavior of this function (for top 1) can be obtained from Fig. 15 by
relabeling the abscissa to be 1/to. This indicates that the highpass function does
not attenuate high frequencies but does attenuate low frequencies with an asymp-
totic slope of 40 dB/decade.

STATE-VARIABLE BIQUAD:

The representation of state-variable biquad is shown in Fig. 17. It is called biquad
because it realizes an arbitrary biquadratic transfer function. A biquad active filter
can be obtained by using a single-amplifier. Generally, biquad approach employs 3
op-amps per second order section. Why is the use of three op-amps in a biquad
active filter when it is possible with just one? The reason is that the additional
amplifiers offer us quite a few things: a very versatile network, an insensitive
network, and an easily adjusted network.

The state variable biquad is shown in Fig. 17. It contains summer and two
integrators as shown in Fig. 17. a0 and a] shown in Fig. 17 are multipliers. It

Vin

summer 1st integrator 2nd integrator

/ / /
-’/ST [-’/S’Iv-., [v,,

FIGURE 17
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provides the basic functions, high pass, bandpass, and lowpass simultaneously at
the respective O/Ps of the summer, the first integrator and the second integrator.

The analysis of the biquad shown in Fig. 17 is as follows:
The high pass O/P response is given by

Vne ( S) Vm(S) a
v,, ( s)
ST a S2T2

v,,( s)
i.e.

V,, ( S)
1 S2

a ao $2 a ao
1 + -ff-f + SET---- + -S + -Therefore, the high pass transfer function is given by

VHp( S) S2

al a_.LoTHp(S) l/IN(S) 8 2 + TS .-]
T2

Compare (19)with standard transfer function equation (18): Then

a0

)p al

ao T ao
Therefore_Q -- x

al al

The band pass transfer function is given by

v (s) v,, ( s ) 1
’.(s) v,,, ( s ) z,,, ( s )

x s- s-’’(s)

i.e., Toe(S
S

S- + -S
ao

(19)

(20)

(20)

(21)

(22)

The low pass transfer function is given by

TLp(S)
VIN(S)

X
S2T2 S2

a

+Ts
ao

(1)i.e. Toe(S) - 1

S2 + TS a0 (23)
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THE KERWIN-HUELSMAN-NEWCOMB (KHN) BIQUAD:

The KHN biquad is the natural choice for use as a ’Universal’ filter building block
out of the several existing three amplifier biquadratic filter sections based on the
two-integrator loop or state variable realization of 2nd order systems. Its salient
feature is that it provides the three basic functions; high pass, bandpass, and
lowpass simultaneously at the respective O/Ps of the three amplifiers. Also, the
circuit exhibits very low sensitivity with respect to the passive components and a
high value of and gain are achievable. The circuit module in this form is, in fact,
available from a number of manufacturers.
The analysis of the KHN biqual is as follows:
The high pass output response is given by

Vm’(S) R+Ra
1+ "2 Vm(S) +

(RI+Ra)

R, ]x v,.,(s)S) -2

R ) 1 RR3
1 + Vm(S) X

R + R3 SRC (R + R3)

R4 ) 1 R4 x1 + -2 Vn(S) S2R2C2
X

R2

Therefore,

v.,(s) [1+ 1 R4 1 R (S2R2C2 X"2 +
SRC

x
(R + Ra)

X

(R1 + R3) R4)1 + 2 Vm($)

R4

Therefore,

s) 1 + R4/R2

1 + RI/R3

x 1 R4 1 1 1
1 + S- R’- X -- 4-- R---

14

R3
14----
R
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The high pass transfer function is given by

Vltp( S) 1 + R4/R2
Tne( S) X

VtN(S) 1 + R/R3

S2

.1 + R’4/R2

1 + R3/R
14 1

R2C2

The bandpass transfer function is given by

Vnp( S) 1 Vnp( S)
Tn"(S) Vm(S) SRC

x
Vm(S)

1 + R4/R2
i.e., Tsp(S)

1 + R1/R3 1 + R4/R2

1 + R4/R 1) 1

(RC)

The low pass transfer function is given by

V.p(S) 1 Vap(S)
+VN( s) SRC VN(s)

1 Vm,(S)
S2R2C2 VIN ( s)

1 + R4/R2
i.e., Tar(S)

1 + R1/R3

X

1

R2C2

1 1 -I- R4/R2 R4 1
S2 "- S- X

1 + R3/R
+ "- x

R2C2

(26)

Thus, the design equations for the basic KHN biquad are as follows:

S2

The(S) Kne S + (%/Q.)S + to2 (27)

where KHp
1 + R4/R2

R1/R3 + 1 (27a)

(%/O.)STse(S) -Kse S2 "" (top/Qp)S d.- to (28)

g
3

where Knl,----- RI (28a)
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s’- + ( +

where KI.,e
R2/R4 -I- 1

RI/R3 + 1

where

14
R2 .R.R.C.C.

(29)

(29a)

R4 1
x t% R--" R’-- (30)

1 + R3/R R4
(31)Qt, 1 + R4/R2 RE

THE MODIFIED KHN BIQUAD:

For electronic tunability, instead of the direct use of a FET as a voltage variable
resistance to control the time constants of the integrators, the voltage-controlled
variable gain amplifiers are used at the I/Ps of both the integrators. This
exaggerates the effect of FET resistance variation, and a considerably larger and
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linear variation of the center frequency is achievable. The modified KHN is shown
in Fig. 20.

Conventional tuning of this circuit involves the use of ganged resistors with
manual operation. The underlying idea behind it is a variation of the time
constants of the two integrators. This can however be achieved effectively through
electronically varying the voltage level at the I/Os to the two integrators.

(s)vne( S) SRC S(RC/K) (32)

where K is the multiplier and R, C are the passive components of the integrator.
Clearly if the second multiplier ’K’ were not there, we would have had

( s)
Vae(S)=- SRC (33)

and the only means available for varying the center frequency of the filter would
be varying R or C.

But in the present case, the time constants RC has been effectively made equal
to RC/K by multiplying the voltage level 1//e by a factor K. The action of third
multiplier ’K’ is similar. Theoretically, the time constant T RC of each of the
two integrators has been made equal to T/K. Therefore, the center frequency of
the filter, which is given by

f0 (2r(time constant of integrators) )

varies in the ratio 1" K.
The use of first multiplier ’K’ is to provide high pass gain as a multiple of K.
The voltage multiplication or gain variation for the multipliers ’K’ can be simply

achieved. The use of FETs as voltage controlled resistances is well known, and this
can be applied to achieve voltage-controlled gain of an op-amp stage as depicted in
Fig. 21. Variation of the gate voltage changes the drain-source resistance of the
FET almost linearly for values of drain voltage below pinch off according to the
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out

expression

IVel
rd r IVel IVGI (34)

where r0 is the channel resistance at zero gate voltage and V is the pinch off
voltage of the FET.

As a result, the gain of the op-amp stage changes correspondingly. The feed-
back resistance R between drain and gate serves to improve and extend the
linearity of operation. Analysis of Fig. 20 gives

R4 1
to= RE RC

XK (35)

R4 1 + R3/R
Q R2 1 + R4/R2

(36)

R 1 + R4/R2 K
%’/Q’ R- 1 + R1/R3 R- (37)

The transfer function is given by:

1 + R4/R2 S2

K 1 + R4/R2 R4 1 (38)THp(S) --K1 + RI/R3 S2 d- S--. X
1 + R3/R

+ R-’- R2C2 X K2

1 + R4/R2Kne K" (39)1 + R1/R3

The bandpass transfer function is given by

Vsp(S) 1 Vn.(S)
Tnp(S) X K"

Vm (S ) SRC VIN ( S )

K.R3/R X

R3KBe K.
R

s +(,o,/o,,).s + q (40)

(41)
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The lowpass transfer function is given by

SRC

1
.K2.

VH,
$2R2C2 [/’IN

S2R2C2/K2

(1 + R4/R2)
(1 + R1/R3

S2

1 + R4/R2

1 + R3/R
R4 1

xK2

R2C2

K.R4 1 + R2/R4

R2.R2C2/K 2 1 -I- R1/R3

1

( 11+R4/R2).S- + $
RC/K 1 + R3/N

R 1 )R2 R2C2
X K2

i.e. Tt.e(S) K.
(1 + R2/R4)
(1 + R,/R3) S2 -I- (t%/Q)S + to2 (42)

(1 + R2/R4)
K.e K. (43)

( + g/g3)

TUNING ALGORITHMS FOR ACTIVE FILTERS

The basic problem associated with the design of active filters is the sensitivity of
filter characteristic to variations in filter component values. Utilization of a digital
computer and the pole sensitivity concept provides a technique for filter design
that incorporates sensitivity and filter tuning as an integral step in the design
procedure.

Three automatic tuning methods are discussed. The discussion is broadened by
a section on the computational complexity of the algorithms. Another method is
discussed for the selection and ordering of tuning resistors and frequencies. This
selection problem is relevant to each tuning method, although manifested differ-
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ently in each method. Lastly the tuning method used for modified KHN biquad is
discussed.

COMPUTERIZED DESIGN AND TUNING OF ACTIVE FILTERS:

One of the problems associated with the design of active filters is the incorpora-
tion, as a design parameter, of the sensitivity of the filter characteristics to
variations in filter components from their design values. Whenever the filter is to
be manufactured on an assembly line in large quantities, components, testing, and
tuning costs constitute important factors insofar as the final design configuration is
concerned. In view of the number of problem variables involved, the utilization of
a digital computer in the design, testing, and tuning of the filter can reduce costs,
thereby increasing the probability of marketing success of the final product.

MATHEMATICAL MODEL:

Filter response characteristics are frequently specified in terms of a gain at one or
more critical frequencies and perhaps a bandwidth. These design specifications are
related to the values of the coefficients of the polynomials of the transfer function.

amSm + am_l Sin-1 + +al$ + ao
H(S) S / b._S_ / /blS / bo

(44)

of the filter. Proper adjustment of the coefficients produces the desired response.
Variations in the values of the filter components from their design values

produce corresponding variations in the coefficients of H(S). These coefficient
changes can be utilized to predict variations in the magnitude and phase of the
filter response as a function of frequency. The classical concept of sensitivity
involves the relationship between the variations in H(S) and the variations in
individual filter components.

The sensitivity function defined by Mason (which is the reciprocal of the
original function defined by Bode)is

Sms) (45)Xlr dXk/Xk

Magnitude and phase sensitivities can be determined from Sxn as

dl n(jw) l/I n(jw)
SH() (46)XI(’ d.Xk/Xk

H(S) S=Re[Sx =jw] (47)

and Sxm n(jw)]
d Arg[ H(jw)

dXk/X.
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Variations in the component values also produce variations in the poles and zeros
of H(S), as well as the gain constant. Expressing H(S) in factored form yields

m

[I(s z,)
i- (48)H(S) n

FI(s-e)
j-1

where Z are the zeros, and P are the poles, and G is the gain constant. The zero,
pole, and gain constant sensitivities are defined respectively, as

s, dZl(aX,lX, ) (49)

s, dp/(d::/X, ) (50)

and

Sc (dG/G)/(dX./X,) (51)

These root sensitivities are related to classical sensitivity by

m m

i-1 1=1
(52)

It is thus apparent that a knowledge of the pole, zero, and gain sensitivities
provides the necessary information concerning composite filter sensitivity.

Utilization of root sensitivities is one practical way of dealing with simultaneous
variations in a number of filter components. Practical considerations dictate that it
is realistic to assume that component variations about their design values will, in
general, be small enough so that only first-order effects need be considered.

N

aG E ( oa/ox)ax (53)
K-1

N

AZ, -= E (0Z,/0X,)AXk (54)
k-1

N

k-1
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using matrix notation

(56)

The matrix (T) can be used as the basis for determining the root sensitivities, since

[S]= [1/G 1 1][T][X,] (57)

where [S] is a matrix whose elements are the pole, zero, and gain sensitivities.
Since the pole, zero, and gain values for H(S) are determined by the filter

specifications, the design problem requires a means for computing component
values to produce those desired pole, zero, and gain values.

Solving for AX in (56) gives

lAX,,] [r-’] (5S)

These equations can be utilized to compute the approximate changes in the
component values that are necessary to produce corrective changes in the pole,
zero, and gain values.

Inversion of [T] requires that it be a square non-singular matrix. The first
constraint is satisfied by selecting N (m + n + 1) adjustable components and
the second constraint may be satisfied by a particular choice of the set N.

DISCUSSION OF AUTOMATIC TUNING METHODS:

In this section, three methods are presented and discussed in mutual setting. The
active filter circuits of interest can be described by their transfer function f(o, a, b),
where o is a radian frequency, a is the vector of tuning resistors, and b is the
vector of remaining components. The general tuning problem is to find Aa such
that

f(., ao + Aa, bo + Ab) r(., ao, bo) (59)

where a0 and b0 are nominal values and b is the undesired but measurable change
in the untuned components. However, since f is a rational function in o whose
coefficients are algebraic functions of a and b, equality above is guaranteed
if it holds for a particular finite number of frequencies. The methods that follow
can be interpreted as techniques for solving this equation at a finite number of
frequencies.
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LEAST SQUARE METHOD:

The least squares method is due to Antreich. Let the general response function.

F: R’ x R’ -* R (60)

F(a, b) [FI( to, a, b),..., F,( tod, a, b)] r (61)

be composed of n real valued response functions F at q different frequencies with
o,, a, and b the same as before. Logical choices for the functions F are the real
and imaginary parts of the transfer function N, the magnitude and/or phase of
the transfer function. Denote the Jacobian of F as

$ [So; St, ] (62)

which is computed at the nominal values a0 and b0. In the tuning procedure, the
response F(ao, bo + Ab) is computed at the q frequencies and the error vector

e F(ao, bo + Ab) F(ao, bo) (63)

is calculated. It is desired to find a connection a to be made to the tuning resistors,
which will minimize the error e. This is formulated as

min II ’(x, bo + ZXb) F( ao, bo)112 (64)

which can be identified as a non-linear least squares problem. One procedure for
solving this problem is the Gauss-Newton method. The quantity within the norm is
linearized and the resulting linear squares problem is solved. Additiona iterations
may be used in an attempt to further reduce the error. Antreich uses a simplifica-
tion of this method. Only the nominal point derivatives are used so that the
solution or tuning element correction vector can be computed as

Aa -[SrS,,]-Sre, -S+ e, (65)

Here S+ is the pseudo inverse of So and can be precomputed and stored. The
actual tuning procedure is to compute from (63) and then to compute the
necessary adjustment from (65). If F is sufficiently linear with respect to the tuning
resistor vector a, this method should work well. Antreich used one iteration of this
procedure in his example, but suggested using more if necessary. However, one
should proceed cautiously since nominal point derivatives are used and the iterates
may not converge.
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SEQUENTIAL TUNING ALGORITHM:

The second method is called sequential tuning and was proposed by Lopresti. Let
F be as before and define the quantities.

E +
i-1 OG,dG, (66a)

OF
hk G------- (66b)OGk

dGk
u, (66c)

Gk

Here, the C’s are capacitances and the G’s are shunt conductances across the
capacitors, which model dissipation effects of the capacitors. The nominal values
of these conductances are usually assumed to be zero; and G’s are the tuning
conductances. Furthermore, all derivatives above are computed at the nominal
value. Lopresti noted the problem as an optimal control problem, which was to
minimize:

l( ui, u,, xi) x,+1Qx,+
i-1

(67a)

Subject to

Xk+ Xk "" hkUk (67b)

x =xc, k 1,...,r (67c)

where Xr, --dF,the differential of F. The yi’s must be positive and are usually
chosen to be diagonal in such a way to have a normalizing effect. The solution to
this quadratic problem is given as

uk HkXk, k 1,...,r (68)

where the sequence of row vectors Hk are given in enclosed form in terms of the
known parameters and are computed and stored in the preproduction stage.
Hence, the algorithm is to measure the components and compute xc, and then
sequentially compute the Uks. The best results are achieved if the resistor corre-
sponding to u is adjusted, then measured, and then the measured value is used to
compute the actual achieved u, which is then used to compute the new x+1. This
improvement is because there is always trimming error and this procedure uses
that extra feedback beneficially. One can also choose F to be the vector of transfer
function coefficients.



TUNABLE ACTIVE FILTERS 105

THE LARGE-CHANGE-SENSITIVITY METHOD:

A new large-change-sensitivity method was recently proposed by Alajajian and
Trick. The foundation of the derivative is the differential form of Tellagen’s
theorem, which is

b m

(Al/k]g AIIT)= (AV’e- Allp) (69)
k-1 j-X

The terms on the fight hand side of (69) represent independent source branch
voltages and currents including output post branch constraints, while the voltages
and currents on the left hand side of the equation represent the remaining branch
constraints. Equation (69)was derived under the assumption that there are three
topologically identical networks, N, N, and NA. The component values in the N
network have been perturbed from those in N such that the voltages and currents
in the NA network are Vk + AVk, and Ik + AIIk, respectively. Equation (69)
relates changes in voltages and currents in the N network to the voltages and
currents in the N network.

Next we consider the branch constraints. The conductance branch constraints in
the manufactured network N are

Ik GkVk (70)

and in the tuned network N

subtracting (70) from (71) gives

(71)

Ik GkAVk + Gk(Vk + AVk) (72)

If the branch constraints of are chosen such that is the adjoint circuit of the
network N for example

]k Gklk (73)

then the substitution of these adjoint network branch constraints and the differen-
tial branch constraints into (69) give

2

k-X j-1
(74)

where r is the number of tuning elements and where a single input port and a
single output port is assumed on the RHS of (74). Let port I denote the input port
and port 2 denote the O/P port, and assume that the I/P port has a voltage
source connected across its terminal pair. Since the purpose of tuning is to correct
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for derivations in response at the output port (to within a constant), the quantities
of interest are the O/P voltage V, or its change AV. On this basis, choose V 0
and Ip2 1A so that (74) becomes

(Vk + AVk)kAGk AVp2 (75)
k-1

Requiring the output voltage of the tuned filter to be within a constant of the
nominal value over the frequency spectrum results in

V2 CVod Vm (76)

where Vom and Vod are the output voltages of the manufactured and nominal
design circuits, respectively, the superscript j denotes the frequency at which the
deviation is computed, and C is an unknown constant. Let q represent the number
of critical frequencies at which the measurements are made. Then (75) becomes

+

(V + VI)

v (v, + v,)v,

v1

Vod AG1 -Vm
(77)

In order to linearize this equation, one must take an assumption about the AVs. If
they are neglected, the consequence is that

OV
VkVk

om
(78)

OGk

and the result is a Newton step for solving the equation

G(y) 0 (79a)

G(y) [Vo(a, D1) ,Vo(a, %)]

C[Vod(01)...,Vod(oq)] (79b)

y (a, c) (79c)

where a is the vector of tuning conductance. The key to the large-change,
sensitivity method is a different assumption about the V, which works much better
than the Newton step.

TUNING RESISTOR AND FREQUENCY SELECHON:

A fundamental requirement common to all the algorithms is a tuning resistor and
frequency selection procedure that insures good performance of the algorithm.
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The performance is directly related to this choice, and it is not immediately
obvious how to make this selection when considering the interplay between the
different facts involved. For many well reasoned choices of tuning resistors, the
least squares and large-change-sensitivity algorithms did not converge, or
the convergence was very poor in that many iterations were necessary or negative
element values were generated. The resistor selection problem is more critical than
the frequency selection problem. These two problems are discussed separately
below.

TUNING RESISTOR CHOICE:

Since the tuning methods are attempting to solve a non-linear equation, and since
there is flexibility in the choice of parameters, it is logical to choose these
individual parameters, which have a strong effect on the functioning behavior.
However, it is more reasonable to choose a set of parameters that, as a group, has
a strong effect. This becomes dearer if one lets F be the function describing the
equation and x the set of possible tuning parameters. For instance, let F be the
composite function of the magnitude of the function in (59) taken at h set of
frequency points. The linearization of F about x0 is

r(Xo)(X Xo) + F(xo) (80)

Hence, the translated range space of F’(xo) approximates the range space of F in
a small region about x0 or in other words, the behavior of F’(xo) approximates the
behavior of F ignoring translation. Observe that each component of x corresponds
to a column of F’(xo) and that the number of resistors comprising x will almost
always be larger than the rank of F’(x) regardless of the number of component
functions in F. This is because F is composed of a rational function and typically
the nature of RC active filters is such that the number of components exceeds the
number of coefficients in the transfer function and obviously the maximum
possible rank is the number of coefficients. Thus, one can reason that it is
desirable to determine a set of ’strong’ linearly independent columns of F’(xo)
whose span approximates the span of F’(xo). These columns correspond to a set of
resistors that should facilitate good movement in a region about F(xo).
TUNING FREQUENCY CHOICE:

There are several factors involved in the selection of tuning frequencies, and it has
been found that one can heuristically choose these by keeping in mind the
following discussion. The effect of the choice of a particular frequency point is that
the response deviation is greatly reduced at that frequency. Because of this, and
the fact that the response gradients for two closely spaced frequencies will be
almost colinear, the frequencies should be reasonably spaced and placed in areas
where tight control over the response is desired. The filter specifications may
generate the need for tight control in certain intervals; in addition, the areas
around the poles and zeros generate the need for tight control. This is because the
poles and zeros determine the response and tuning frequencies placed near the
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poles and zeros have strong control over their location and, hence, strong control
on the response. Furthermore, the areas near the poles and zeros are usually areas
of high sensitivity; thus, the tuning components may required less adjustment. It
has been found that the stopband lobes are a good place for tuning frequencies
that are near the zeros; problems sometimes occurred when a tuning frequency
was placed too close to zero.

TUNING METHOD USED FOR MODIFIED KHN BIQUAD:

This tuning method gives us a means of electronically controlling the function of
filters. The I/P parameters are the control voltage (V), the FET parameters, the
element values, the op-amp parameters, and the specifications for the particular
filter. The design equations have been given. The output parameters will be the
gain of various filters, the center frequency, and the bandwidth. For each filter, the
corresponding transfer function is obtained in the O/P. For various values of V,
ranging from 0 to -3.5 V in increments of -0.5V, the output parameters and
filter transfer functions are printed out.

CONCLUSIONS

A simple technique of achieving electronic tunability of active filters using con-
trolled variable gain amplifiers has been utilized. The merits of this approach are a
considerably larger and linear tuning range than hitherto achievable by known
methods. It has been experimentally verified for the KHN biquad and found to
yield excellent results. An added important advantage of electronic tunability is
that we can design a digitally programmable versatile filter of this type.

Theoretically, by combining the highpass and lowpass outputs, a notch or
band-reject characteristic can also be obtained from this filter. But became the
KHN biquad is designed for the same cut-off frequency in both LPF and HPF, by
combining the highpass and lowpass outputs, an all pass characteristic should be
obtained. Because the gains (Knp and KLp) are the same for a particular gate
voltage, we can combine both HP and LP outputs to get all pas O/P (in this case),
which will have the same gain for aH frequencies. If the cut-off frequencies (Fc) for
the LPF and HPF are different and the Fc for LPF is less than Fc for HPF, we
can obtain band-reject or notch when both LP and HP are summed.

The electronic tunability could be used at a system level to display the fre-
quency spectrum of an incident signal. It could also be used in a mixer. If several
of these filters were suitably interconnected, they could also be designed to
operate as a frequency ’comb’ whose frequencies could be varied electronically.
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