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We propose a simple model, derived from Pao-Sah theory, valid in all modes from weak to strong inversion, to calculate the drain
current in Metal Oxide Semiconductor Field Effect Transistor (MOSFET). The Pao-Sah double integral is decomposed into single
integrals with limits of integration calculated from Taylor polynomials of inverse functions. The solution is presented analytically
wherever possible, and the integration is made from simple numerical methods (Simpson, Romberg) or adaptative algorithms and
can be implemented in simple C-program or in usual mathematical software. The transconductance and the diffusion current are
also calculated with the same model.

1. Introduction

The Metal Oxide Semiconductor Field Effect Transistor
(MOSFET), first proposed in 1926 by Lilienfeld [1], is
considered one of the most widely used electronic devices,
particularly in digital integrated circuits due to the attractiv-
ity of Complementary Metal Oxide Semiconductor (CMOS)
logic, a device using energy only during transition states.
Since the early days and its simplified model of a conductive
channel when the gate voltageVg is above a threshold voltage
VT [2], the MOSFET has certainly been one of the electronic
devices which received the most extensive attention from
the microelectronic design community. The requirement in
the knowledge of the MOSFET working with a gate voltage
just below threshold, when the device is still conducting, has
induced a complete modeling of drain current in all conduc-
tive modes from strong to weak inversion. The first attempt
was in 1966, from Pao and Sah [3], who gave an expression
of the drain current in a double integration format derived
from the equation of the inversion charges versus surface
potential. Pierret and Shields gave in 1983 a single integral
expression based on the derivative of the electric field [4].
In 1995, Persi and Gildenblat proposed a computational

calculation of the double integral by numerical treatment
of carrier concentration and surface potential [5]. Recently,
a complete history of MOSFET modeling [6] has given a
reference for users of MOS transistors.

The MOSFET modeling is now so much well covered and
addressed in BSIM, EKV, and PSP compact models [8] that
yet-another-paper on the topic of MOSFET models among
the thousand of previous works could appear unnecessary.
But, if the state-of-the-art MOSFET models [8] are always
the reference in Computer Aided Design (CAD), it could also
be interesting to present a semianalytic resolution of Pao-
Sah integral which can be implemented in usual commercial
software, giving most results quite instantaneously.

Although most of the resolutions of Poisson-Boltzmann
equation use finite element software [9–11], we prefer to
focus our attention on the physics of the surface potential
in order to estimate the effect of gate/drain bias. In the
same time, an analytic resolution has the advantage to
highlight the influence of the different physical parameters
on the derived characteristics. We previously used a similar
method in the analytic description of scanning capacitance
microscopy based on silicon surface potential
[12].
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Under thermal equilibrium conditions, mobile charge
densities are exponential functions of the potential distri-
bution and this leads to a nonlinear differential equation
for the potential ϕ(x) in the form of the well known
Poisson-Boltzmann equation. Under the Gradual Channel
Approximation (GCA) [13], this equation is solved ana-
lytically and gives the exact 1-D electric field F(x). The
gate voltage Vg versus surface potential ϕS explicit equation
is inversed using Taylor expansion with an iterative step
compatible with the necessary accuracy of integral simula-
tion. The same algorithm is used to estimate the surface
potential versus the channel potentialV(y) induced by drain
bias.

We qualify our approach being “semianalytic” in the
sense that we solve all equations analytically up to the point
where analytic calculations can be done, then decompose
the Pao Sah double integral into single integrals and finally
we converge to an approximated solution by using simple
iterative algorithms which can easily be implemented in
usual commercial mathematical worksheet tools or even
encoded in simple C programs. This approach is equally
well suited for calculation (however not restricted to) of
the drift current, the transconductance and the diffusion
current, as is further discussed in next sections, since those
quantities share the same type of integration methodol-
ogies.

2. Surface Potential in MOSFET

In this paper, like in most other papers dealing with analytic
description of surface potential, we base our derivations on
the gradual channel approximation [13]. In this method,
the electric field magnitude in the y direction parallel to
the conducting channel is assumed to be much smaller than
in the vertical x direction toward silicon bulk allowing the
formulation div F = dF/dx and F[x, y] = −d[ϕ(x)]/dx. The
Poisson-Boltzmann equation can then be solved analytically
according to the 1-D model of Nicollian and Brews [14] from
the complete charge density: ρ(x, y) = q[p(x, y) − n(x, y) +
ND −NA].

In the following, electrons distribution in the channel
will be considered out of thermal equilibrium with the
introduction of the quasi-Fermi energy [15]. The drift and
diffusion electron currents are shown in Figure 1. Source
and bulk will always be considered to be grounded (except
in Section 9) and gate voltage Vg is defined relative to flat
band.

The presentation relates to a p-type semiconductor
(n-MOSFET), but this is not restrictive and could easily
be extended to n-type semiconductor. Upon usual notation
conventions (see Nomenclature section), the bulk Fermi
level is ϕb. ϕ(x, y) is the potential in every points of the
semiconductor material and V(y) is the channel voltage
which defines the quasi-Fermi level offset from equilibrium
for electrons. Upon application of a drain bias VD, V(y)
ranges from 0 at the source side (y = 0) to VD at
the drain side (y = L). UT = KT/q is the thermal
voltage.

Drain (n)Source (n)

Substrate (p)

x

y

F(y)

Drift

Diffusion

uS(y)

e−

e−

Figure 1: The channel scheme in the Gradual Channel Approxima-
tion.

In the following, we use the reduced potentials ub =
ϕb/UT ,u(x, y) = ϕ(x, y)/UT and ξ(y) = V(y)/UT instead
of ϕb,ϕ(x, y) and V(y), respectively. uS(y) = u(x, y)|x=0,
FS(y) = F(x, y)|x=0,nS(y) = n(x, y)|x=0 are shorthand nota-
tions for surface quantities.

In the first MOSFET modeling, charge densities have
been written by introducing the quasi-Fermi level only in
n(x, y) with the expressions:

n
(
x, y

) = nie
u(x,y)−ξ(y), (1)

p(x) = nie
−u(x,y), (2)

NA = nie
−ub , (3)

ND = nie
ub . (4)

After solving the 1-D Poisson equation dF(x, y)/dx =
ρ(x, y), these expressions give the 1-D electric field by

F
(
x, y

)

=
√

2KTni
εS

×
√
e−ξ(y)

{
eu(x,y)−eub}+e−u(x,y)−[e−ub−eub ][ub−u

(
x, y

)]−e−ub ,
(5)

and its derivative

dF
(
x, y

)

dξ
(
y
) = −2KTni

εS

e−ξ(y)
[
eu(x,y) − eub

]

2F
(
x, y

) . (6)

As eub � eu(x,y) in the channel region, this expression is
equivalent to

dF
(
x, y

)

dξ
(
y
) = −2KT

εS

n
(
x, y

)

2F
(
x, y

) , (7)

This later expression gives a simple path to the Pao-Sah
integral [4].

But, as this has recently been emphasized and extensively
discussed in [16], since quasi-neutrality imposes that n(x →
∞) = ND, (4) must be corrected by

ND = nie
ub−ξ(y). (8)
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Figure 2: Upper uUp and lower uLow limits of the reduced surface
potential versus gate voltageVg. (a) equation (20) and (b) equation
(22). NA = 1017 cm−3 and tox = 10 nm. Vg = VT when (a) crosses
the line uLow = −ub.

With this exact formulation of the donor density, the
electric field gradient from the 1-D Poisson equation (5) now
reads

dF(x)
dx

= qni
εS

(
e−u(x,y) − eu(x,y)−ξ(y) + eub−ξ(y) − e−ub

)
,

(9)

which gives the electric field

F
(
x, y

) =
√

2KTni
εS

√
e−ξ(y)H

[
u
(
x, y

)]
+G

[
u
(
x, y

)]
,

(10)

where we have defined

H(u) = eu + eub[ub − u− 1],

G(u) = e−u − e−ub[ub − u + 1].
(11)

In this form, the derivative

dF
(
x, y

)

dξ
(
y
) = −2KT

εS

e−ξ(y)H
[
u
(
x, y

)]

2F
(
x, y

) , (12)

is no longer with a numerator proportional to n(x, y) as in
(7) and the Pao-Sah double integral must now be studied
by other methods as outlined in Section 5. In the following,
the surface electric field FS(y) = F(x, y)|x=0 is given by
substituting u and u(x, y) by uS(y) in (10)-(11).

3. The Surface Potential Dependence to
Gate Bias

From electrostatic considerations [14], the gate voltage is
expressed by

Vg = γ0

√
e−ξ(y)H

[
uS
(
y
)]

+G
[
uS
(
y
)]

+UT
[
uS
(
y
)− u(b)

]
.

(13)
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Figure 3: [uS(y),V(y)] plots along the channel. (a) equation (14)
and (b) equation (24) (step h = 0.01). NA = 1017 cm−3, tox = 10 nm
and Vg = 5 V.
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Figure 4: [uS(y),V(y)] and [uS(y)− ξ(y),V(y)] plots for different
Vg bias. NA = 1017 cm−3 and tox = 10 nm.

The exponential expression in (13) allows to separate u(s)
and ξ(y)

ξ
(
y
) = ln

H
[
uS
(
y
)]

E
[
uS
(
y
)]−G[uS

(
y
)] , (14)

with the derivative

dξ
(
y
)

du(s)
= dH

[
uS
(
y
)]
/duS

(
y
)

H
[
uS
(
y
)]

− dE
[
uS
(
y
)]
/duS

(
y
)− dG[uS

(
y
)]
/duS

(
y
)

E
[
uS
(
y
)]−G[uS

(
y
)] ,

(15)
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Figure 5: The electron density [nS(y),V(y)] plots along the
channel from (1) and (14). NA = 1017 cm−3 and tox = 10 nm.
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Figure 6: Idrift versus drain voltage VD from (32) in log scale. NA =
1017 cm−3, tox = 10 nm and W/L = 10. Markers (+) corresponds to
(33).

in which we introduce the dimensionless quantity

E(u) =
{
Vg −UT[u− ub]

γ0

}2

. (16)

Several approximations to (13) have been reported. For
instance, the equation

Vg2 = Ψ(s) + γ

√
√
√√
(
ni

NA

)2

exp

[
Ψ(s)−V(y)

UT

]

+
Ψ(s)
UT

,

(17)

is often used in practice in a large variety of surface potential-
based models with the band-bending: Ψ(s) = ϕ(s) − ϕb.
It provides a sufficiently accurate solution for the surface
potential in inversion mode but generally lacks accuracy near
the flat-band conditions: u(s) = ub.
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Figure 7: Idrift versus drain voltage VD from (32) in linear scale
compared with [4] and [7]. (a) NA = 1015 cm−3, tox = 50 nm and
W/L = 10, (◦) corresponds to [4]. (b) NA = 5.1017 cm−3 and
tox = 5 nm, (◦) corresponds to [7].

4. The Surface Potential Dependence to
Drain Bias

The explicit relation ξ(y) = f [uS(y)] is given above from
(14). According to the importance of this expression in the
Pao-Sah double integral, we must pay a particular attention
to ξ(y) = f [uS(y)] and to the inverse function uS(y) =
f −1[ξ(y)] which will be used in the second integration of the
Pao-Sah double integral.

Unfortunately, (14) cannot be inversed by mathematical
function and needs a special treatment which is presented
next, after having fixed the limits of uS(y) compatible with
the denominator E[uS(y)]−G[uS(y)].

4.1. Boundary Limits of Surface Potential at Constant Gate
Voltage. Equation (14) has only physical meaning when
E[uS(y)]−G[uS(y)] > 0. At a constantVg value, the reduced
surface potential uS(y) ranges between uLow (lower value),
solution of (13) with ξ(y) = 0

Vg = γ0

√
H(uLow) +G(uLow) +UT(uLow − ub), (18)
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Figure 8: The transconductance from (39). (a) gm = f (Vg)(VS = 0
and VD = 5 V), (b) gm = f (VD)(VS = 0 and Vg = 5 V) (o) linear
charge sheet model,. (c) normalized transconductance [G(iF), iF]
plots, parameters are NA = 1017 cm−3, tox = 10 nm and W/L = 10.

and between uUp (upper value), solution of (13) with ξ(y) →
∞ leading to e−ξ(y) → 0

Vg = γ0

√

G
(
uUp

)
+UT

(
uUp − ub

)
, (19)

uLow and uU are defined by implicit relations to the gate
voltage Vg. Following a methodology previously described
in [17], uLow and uUp can easily be obtained iteratively from
first order Taylor expansion by setting Vg = k · δ, in
which δ is the sample step size and k an integer. For a
given step size and for k varying from 0 to Vg/δ, uLow and
uUp at iteration k are calculated values at previous iteration
according to

uLow,k+1 = uLow,k + δ
du

dVg

∣
∣
∣∣
∣
u=uLow,k

, (20)

du

dVg

∣
∣
∣∣
∣
u=uLow,k

= 1
UT

⎡

⎣1 +
γ0

UT

e−ub − eub − e−uLow,k + euLow,k

2
√
H(uLow,k) +G(uLow,k)

⎤

⎦

−1

,

(21)

uUp,k+1 = uUp,k + δ
du

dVg

∣
∣
∣
∣∣
u=uUp,k

, (22)
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Figure 9: The limits of surface potentials uS(0) and uS(L) versus
VD. (a) strong inversion, (b) weak inversion. NA = 1017 cm−3, tox =
10 nm,W/L = 10.
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du

dVg

∣∣
∣
∣∣
u=uUp,k

= 1
UT

⎡

⎣1 +
γ0

UT

e−ub − e−uUp,k

2
√
G(uUp,k)

⎤

⎦

−1

, (23)

In equations (20) and (22), the initial value k = 0
corresponds to flat band (Vg = 0), and the starting
conditions are uLow,0 = uUp,0 = ub.

In (20), uLow,k reaches the threshod voltage VT when: k =
kT = int(VT/δ); with the function int = (number down to the
nearest integer). As a result, VT = 1.2819 if NA = 1017 cm−3

and tox = 10 nm and kT = 12819. uLow,kT = 15.712 = −ub
when the step is δ = 10−4 and the corresponding band
bending is ΨS = UT(uLow,kT − ub) = −2ϕb.

As this has been previously shown [12], the error induced
by first order Taylor expansion depends on the step size δ.
Equations (20) and (22) show that the relative error is in the
same order of magnitude as the step δ. For instance, a step
δ = 10−10 gives a relative error less than 10−10.

Figure 2 shows uLow and uUp plots versusVg. The surface
potential has well defined upper and lower limits in strong
inversion, however, those limits are almost confounded in
weak inversion (small channel voltage drop), which might
give issues when uLow and uUp are used as integration limits
in Pao-Sah integral (see Section 7).

4.2. The Inversion of ξ(y) = f [uS(y)]. Equation (14) is an
explicit relationship between uS(y) and ξ(y). As this has been
done in previous section with the calculation of the lower
(uLow) and upper (uUp) limits of the surface potential, the
inversion of (14) can be obtained by a first order Taylor
expansion of the inverse function uS(y) = f −1[ξ(y)] by
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setting ξ(y,m) = m · h in which h is the sample step size
and m an integer:

uS,m+1 = uS,m + h
duS
dξ

∣
∣
∣∣
∣
uS=uS,m

, (24)

duS
dξ

∣
∣
∣∣
∣
uS=uS,m

=
{
euS,m − eub
H
(
uS,m

)

+
2UT

{
Vg −UT

[
uS,m − ub

]}
/γ2

0 + e−ub − e−uS,m

E
[
uS,m

]−G[uS,m
]

⎫
⎬

⎭

−1

.

(25)

In (24), initial value for uS is uS,0 = uLow,k; uLow,k from
(20) with k = Vg/UT , and iteration stops at m = M =
V(y)/hUT .

Figure 3 shows [uS(y),V(y)] plots along the channel in
strong inversion (Vg = 5 V). (a) is derived from (14) by
sampling uS(y) and (b) is derived from iterative (24) (step

h = 0.01). Curves (a) and (b) merge with an error less than
10−4.

Note that this representation is uS(y) versus V(y) and
not uS(y) = g(y) which would need the knowledge of
the variation of V(y) versus y. Such variations suppose a
complete 2-D resolution of the Poisson equation, but as
is discussed later in Section 4, under the gradual channel
approximation, a precise knowledge of V(y) versus y is not
needed for generating the main device current voltage and
other related characteristics.

Figure 4 shows a complete set of curves uS(y) versus
V(y) from Vg = 1.2 up to 5 V. uS(y) = uS,m is calculated
from (24) and ξ(y) from uS,m in (14). This figure illustrates
the pinch-off voltage in strong inversion which appears when
uS(y)− ξ(y) becomes to decrease.

In terms of surface electron density nS(y) = nieuS(y)−ξ(y)

(Figure 5), the difference between strong and weak inversion
is evident. The drift current dominates when surface electron
density is almost constant and diffusion takes place when
there is a dnS/dy gradient.

In strong inversion, the transition between nS(y) = cte
and the n(y)αe−ξ(y) regimes happens for a voltage Vt(Vg).
The inset plots in Figure 5 shows that Vt(Vg) = 0 when Vg

is equal to the threshold voltage VT = −2ϕb + γ
√
|2ϕb|/UT ≈

1.28 V defined in the charge sheet model [18].

5. The Pao-Sah Double Integral

Under the gradual channel approximation [13] the drift
drain-source current density varies from bulk silicon toward
gate oxide-silicon interface and along the channel:

J
(
x, y

) = qμnn
(
x, y

)
F
(
x, y

)
. (26)

Or, in terms of potential

J
[
u
(
x, y

)
, ξ
(
y
)] = qμnnie

[u(x,y)−ξ(y)]F
[
u
(
x, y

)
, ξ
(
y
)]
.

(27)
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With the introduction of the inversion charge density

Qinv = q
∫ xd

0
n
(
x, y

)
dx = qniUT

∫ uS(y)

0

eu−ξ(y)

F
(
u, ξ

(
y
))du,

(28)

where we recall F = −UT(du/dx) and xd the inversion
length in x direction; the expression for the drain-source drift
current follows

Idrift = μn
W

L

∫ VD

0
QinvdV

(
y
) = μn

W

L
UT

∫ ξ(L)

0
Qinvdξ

(
y
)
,

(29)

in which a total channel width W is assumed. The Pao-Sah
double integral then reads

Idrift = qniμn
W

L
U2
T

∫ ξ(L)

0

{∫ uS

0

eu−ξ(y)

F
(
u, ξ

(
y
))du

}

dξ
(
y
)
. (30)

Since ξ(y) can be expressed in terms of uS(y) or alter-
natively uS(y) defined as function of ξ(y), the Pao-Sah
double integral can be reduced into separate single integrals
depending on the choice we make for the integration
variable.

5.1. Solution from Surface Potential u(s). ξ(y) is a function of
uS(y) from (14). In (30), dξ(y) is replaced by

dξ
(
y
) = dξ

(
y
)

duS
(
y
)duS

(
y
)
, (31)

in which dξ(y)/duS(y) from (15), is function of uS(y).
The Pao-Sah double integral can be expressed in terms of

two single iterated integrals [19], and the drift current is given
by

Idrift = qni
W

L
U2
T

×
∫ uS(L)

uS(0)

{∫ uS(y)

0
μneff

eu−ξ(y)

F
(
u, ξ

(
y
))du

}
dξ
(
y
)

duS
(
y
)duS

(
y
)
.

(32)

The integral in braces is integrated first and gives a
function of uS(y) and the final integral is integrated with
respect to uS(y) from uS(0) to uS(L).

In (32):

(i) uS(y) is the surface potential along the channel.

(ii) ξ(y) is a function of uS(y) from (14).

(iii) dξ(y)/duS(y) is given by (15).

(iv) uS(0) is the surface potential in y = 0. At a constant
Vg bias, it corresponds to uLow,k solution of (20) with
k = Vg/δ.

(v) uS(L) is the surface potential in y = L. At a constant
Vg, it corresponds to uS,m solution of (24) with m =
VD/hUT.

(vi) μneff is the effective mobility which has extensively
been studied previously [20, 21]. The correction over
a constant mobility (μn = 550 cm2 · V−1s−1) used in
this paper, principally depends on F[u, ξ(y)] and is
easy to implement in the integral.

5.2. Solution from Channel Potential ξ(y) = V(y)/UT . In the
drift current (30), it is possible to define the surface potential
uS versus ξ from (24). In this case, the channel potential is
sampled according to Taylor expansion, and the integral on
ξ = mh must be replaced by a discrete summation

Idrift = qniU
2
T
W

L

VD/hUT∑

m=0

{∫ uS,m

0
μneff

eu−mh

F
(
u, ξ

(
y
))du

}

h. (33)

This expression contains only one integral and is more
suitable for numerical treatment with a simple worksheet;
but this leads to a longer calculation time due to multiple
loops in the summation.

5.3. Drift Current-Voltage Characteristics. Equation (32) has
been calculated with a C-program in a large range of drain
and gate voltages. The integration is made from Simpson
algorithm.

Figure 6 shows the simulation results in log scale with
NA = 1017 cm−3 and tox = 10 nm. The solid lines correspond
to (32) and markers (+) to (33). The comparison between
(32) and (33), in weak and strong inversion gives numerical
values with accuracy better than 1%.

Figures 7(a) and 7(b) show the simulation results in
linear scale. Curve (a) is compared to data reported in [4]
(NA = 1015 cm−3, tox = 50 nm) and curve (b) with more
recent data reported in [7] (NA = 5.1017 cm−3, tox = 5 nm).
All these calculations have been performed using a constant
mobility: μn = 550 cm2 V−1s−1.

6. Transconductance

The transconductance of the drift current is defined from the
derivative [3]

gm = dIdrift

dVg

∣∣
∣
∣∣
VD

= dIdrift

duS

∣
∣∣
∣
VD

duS
dVg

∣∣
∣
∣∣
VD

. (34)

The mathematical definition of the integral operator [22]
gives the condition

If g(x) =
∫ x

0
f (u)du, then =⇒ dg(x)

dx
= f (x), (35)

and, consequently

d

duS

{∫ uS

0

eu−ξ

F(u, ξ)
du

}

= euS−ξ

F(uS, ξ)
. (36)

The transconductance is calculated at a constant VD bias.
The derivative of the drain current is only on uS and (36) in
(32) results in

dIdrift

duS
= qniU

2
T
W

L

∫ VD/UT

0

{

μneff
euS−ξ

F(uS, ξ)

}

dξ. (37)

The transconductance is

gm = qniU
2
T
W

L

∫ VD/UT

0
μneff

euS−ξ

F(uS, ξ)
duS
dVg

dξ, (38)
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which from (31) gives a single integral of the surface potential
uS(y)

gm = qniU
2
T
W

L

×
∫ uS(L)

uS(0)
μneff

euS−ξ

F(uS, ξ)

(
duS

(
y
)

dVg

)(
dξ
(
y
)

duS
(
y
)

)

duS
(
y
)
,

(39)

with

duS
(
y
)

dVg
= 1
UT

⎡

⎣1 +
γ0

UT

e−ξdH/du + dG/du

2
√
e−ξH +G

∣
∣
∣∣
∣
u=uS(y)

⎤

⎦

−1

.

(40)

Figure 8(a) shows [gm,Vg] plots in log scale when the
source is grounded (VS = 0,VD = 5 V) and Figure 8(b)
shows the simulation results in linear scale using (39)
compared to the charge sheet model in the quadratic region
when gm = μnC0VD(W/L) is a linear function versus VD.

In the E.K.V. model [23], the authors introduce the
normalized transconductance: G(iF) = gmnUT/iF with
iF = IF/2nβU2

T ; n is the slope factor and β = μnCoxW/L.
Figure 8(c) shows [G(iF), iF] plots using (39) and (32) (IF =
Idrift). The function G(iF), the asymtotes G(iF) = 1 and
G(iF) = (iF)−1/2, respectively, in weak and strong inversion
are in good agreement with this model.

7. The Accuracy of Pao-Sah Integral

We have integrated the Pao-Sah equation between the limits
uS(0) and uS(L) given by iterative equations (20) and (24).
Figure 9 shows the variations of these integration lim-
its versus VD, respectively, in strong (a) and weak inversion
(b). The difference between uS(0) and uS(L) is sufficient large
in strong inversion. However, the situation is not the same
in weak inversion. In this regime, the Pao-Sah integral will
be integrated on a very small range and the accuracy of the
simulation heavily depends on the number of digits used in
the floating point arithmetic.

The accuracy of Pao-Sah equation can be increased if the
step δ in (20) is decreased. As an example, in weak inversion,
δ = 10−10 gives an accurate value of uLow,k which leads to
Vg[uLow,k] equal toVg with an absolute error less than 10−10.

8. The Diffusion Current

8.1. Integral of Current Diffusion. The diffusion current
density of an n-MOSFET is given by

Jdiff
(
x, y

) = −μnKT
dn
(
x, y

)

dy
. (41)

As shown in Figure 1, the gradient of concentration gives
a diffusion of electrons moving from source to drain. The
diffusion current is in the same direction as the drift current.
For the same reason, it is evident that the diffusion current
will have a relative contribution higher in weak inversion

than in strong inversion. For instance, in strong inversion,
a large region of the channel has a constant electrons
concentration which does not contribute to the diffusion
current.

The total diffusion current is the integral of the diffusion
current density

Idiff =W
∫ xd

0
Jdiff
(
x, y

)
dx = −μnKTW d

dy

{∫ xd

0
n
(
x, y

)
dx

}

.

(42)

Equation (28) gives the equivalence to potentials

∫ xd

0
n
(
x, y

)
dx = niUT

∫ u(s)

0

eu−ξ

F(u, ξ)
du, (43)

and after integration on y, (42) becomes

Idiff = −qμnW
L
niU

2
T

∫ L

0
d

{∫ uS(y)

0

eu−ξ

F(u, ξ)
du

}

, (44)

and reduces to single integrals

Idiff = qμn
W

L
niU

2
T

×
{∫ uS(0)

0

eu−ξ(0)

F[u, ξ(0)]
du−

∫ uS(L)

0

eu−ξ(L)

F[u, ξ(L)]
du

}

.

(45)

Equation (45) is equivalent to the well known expression

Idiff = μn
W

L
UT[Qinv(0)−Qinv(L)]. (46)

This expression is easily calculated from the exponential
variations of Qinv versus Vg in weak inversion. Equation
(13) gives the exact relation Vg = f [uS(y), ξ(y)], and the
inversion charge Qinv versus uS(y) is given from (28).

Figure 10 shows [Qinv,Vg] plots according to (13) and
(28) for different VD bias. Qinv(0) corresponds to ξ(y) = 0
and Qinv(L) corresponds to the drain bias ξ(L) = VD/UT .
Qinv(L) is rapidly negligible in (45). Figure 11 shows Idiff(Vg)
plots in weak inversion calculated from (45) and compared
with (46) from Qinv in (28).

In weak inversion, the diffusion current is well captured
by

Jdiff = J0e
Vg/NKT , (47)

with N = 1.38, which is in good agreement with the slope of
[Qinv,Vg] plots (Figure 10).

8.2. Diffusion Plots Idiff(VD). A complete graph Idiff(VD) can
be plotted by sampling uS(L) from (24). Figure 12 shows the
contribution of the diffusion current (Idiff) compared with
the drift current (Id) in strong and weak inversion (Id1 > Idiff1

and Id2 < Idiff2). The diffusion current is negligible in strong
inversion and dominant in weak inversion.
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9. Effects of Source Bias

In Section 5, the Pao-Sah integral is calculated with a zero
bias source. If the source is biased with a voltage VSB versus
bulk silicon, the reduced drain-source potential ξ(y) along
the channel varies from ξ(0) = VSB/UT to ξ(L) = VD/UT .
Then, the surface potential uS,m starts at uS,mS given from (24)
with mS = VSB/hUT and stops at m =M = VDB/hUT .

The drift and the diffusion currents are always given by
(32) and (45) by substituting uS,0 by uS,mS solution of (24)
with mS = VSB/hUT .

By setting

G(uS) = qni
W

L
U2
T

∫ uS

0
μneff

eu−ξ

F(u, ξ)
du. (48)

Equation (32) can be rewritten with m index in uS

Id =
∫ uS,M

uS,0

G[u(s)]
dξ

duS
duS −

∫ uS,ms

uS,0

G[u(s)]
dξ

duS
duS, (49)

Id = IF + IR. (50)

The integrals in (49) correspond, respectively, to the
forward IF and reverse IR currents introduced in the E.K.V
model [23]. The same expressions can also be defined in the
diffusion current in (45).

10. Transfer Characteristics

The transfer characteristics represented in Figure 13 shows
I = Idrift + Idiff = f (Vg) calculated from (32) and (45)
for constant VDS and different VSB. The parameters of I =
f (Vg) are VFB(flatband) = 0, NA = 1017 cm−3, tox = 10 nm,
VDS = 5 volt and VSB from 0 to 1 volt.

As a comparison, Figure 14 shows the curves I = f (Vg)
with the same parameters reported in [4]. The conditions are
VFB(flatband) = 0.92 for NA = 1014 cm−3and VFB = 0.86 for
NA = 1015 cm−3. The oxide thickness is tox = 13 nm and
the drain bias is VD = 1 volt. Our simulations are in good
agreement with these results.

11. Conclusion

In previous papers, we presented an analytic resolution of
Poisson-Boltzmann equation applicable in semiconductor
junctions [12, 24]. We showed that the analytic method,
which can be lead as far as possible without approximation
(except the hypothesis of Channel Gradual Approximation),
is able to illustrate the influence of physical parameters
in surface potential and carriers density. By following the
same methodology, the drift and diffusion current and the
transconductance in MOSFET are given by iterated integrals
easily solved quite instantaneously. The iterative treatment
by Taylor expansions leads to a reasonable computation
efficiency and simulation speed. All simulations using the
flowchart as described in Section 5.1 are almost instanta-
neous with a simple C-program.

The excellent agreement of our results with the standard
models [8], can be considered as an accurate tools for users

in the complete knowledge of the MOSFET without access to
specific CAD software. Moreover, we are well aware that the
present work can not be a complete model of the MOSFET in
terms of equivalent circuit with resistances and capacitances.
But, by a simple calculation, available to a large community,
it could give an overview of the complete MOSFET in all
inversion modes with a single integral formulation.

Figure 15 shows the user interface for current calculation.
The parameters are doping NA, oxide thickness tox, and gate
and drain voltages Vg and VD.

12. Annex: Taylor Polynomials of
Inverse Functions

If a function y = f (x) has continuous derivatives up to
(n)th order f (n)(x), then this function can be expanded in
the following Taylor polynomials [25]

f (x) = f (x0) +
n∑

1

(x − x0)n

n!
f (n)(x) + R(n), (51)

where R(n) is called the remainder after n + 1 terms.
This expansion converges over a certain range of x, if

limn→∞R(n) = 0, and the expansion is called the Taylor
Series of f (x) expanded about x0.

In inverse function, if y = f (x) is a one-to-one function,
then f −1 is continuous and, if f −1 has continuous derivatives
up to (n)th order, f −1 can be expanded in the Taylor
polynomials. These conditions have been previously verified
in the inversion of surface potential [12], with an accuracy
compatible with the integral simulations.

The limits of Paoh-Sah integral are based on the inverse
function uS(y) = f −1[ξ(y)], The first derivative variations
given by (25) are shown in Figure 16 for different Vg bias.
The first derivative is define in all the [0,VD] region and
varies from 1 to ≈10−13 without discontinuity. The strong
decrease observed for a VD value depending on Vg is due
to the asymptotic value in the surface potential uS(y) when
uS(y) reaches uUp, solution of E(u)−G(u) = 0.

Nomenclature

Vg: Voltage gate with bulk silicon grounded

εS and εox: Silicon and silicon oxide permittivity

tox: Oxide thickness

L: Channel length

W : Channel width

ni: Intrinsic carrier concentration in cm−3

NA and ND: Dopant concentrations in cm−3

UT = KT/q: Thermal voltage

ϕ(b) = ϕb = −UT ln(NA/ni): Bulk potential of p-
doped silicon

u(x) = ϕ(x)/UT : Reduced potential

VT = −2ϕb + γ
√
|2ϕb|/UT : Threshold voltage in

strong inversion
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γ0 = (1/Cox)
√

2KTεSni: Intrinsic body factor with
Cox = tox/εox

γ = (1/Cox)
√

2KTεSNA: p-type semiconductor body
factor.

Numerical applications use SI units, excepted dopant con-
centration in cm−3, εS and εox in farads.cm−1.
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