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An efficient low power high speed 5-bit 5-GS/s flash analogue-to-digital converter (ADC) is proposed in this paper. The designing
of a thermometer code to binary code is one of the exacting issues of low power flash ADC.The embodiment consists of two main
blocks, a comparator and a digital encoder. To reduce the metastability and the effect of bubble errors, the thermometer code is
converted into the gray code and there after translated to binary code through encoder.The proposed encoder is thus implemented
by using differential cascade voltage switch logic (DCVSL) to maintain high speed and low power dissipation. The proposed 5-bit
flash ADC is designed using Cadence 180 nm CMOS technology with a supply rail voltage typically ±0.85V.The simulation results
include a total power dissipation of 46.69mW, integral nonlinearity (INL) value of −0.30 LSB and differential nonlinearity (DNL)
value of −0.24 LSB, of the flash ADC.

1. Introduction

Flash ADC has a high data conversion speed, low resolution,
and large chip area along with large power dissipation and is
therefore preferred for providing high sampling rates. Other
architectures like successive approximation register, sigma
delta, and dual slope offer less data rate and high resolution
compared to flash converter [1–4].

The sparkle or bubble error is caused due to the imperfect
input settling time ormismatching time of inputs of compara-
tor. If the output of comparator is either a logic “1” or logic
“0,” then this condition is known as metastability condition
that can be reduced by usingGray code encoder becauseGray
code encoding allows only 1-bit change in the output at a time
which may improve metastability.

The typical block diagram of flash ADC is as shown in
Figure 1. The blocks of flash ADCs are resistor string, com-
parator’s block, and thermometer to gray and gray to binary
encoder. It plays an important role especially in optical data
recording, magnetic read channel applications, digital com-
munication systems, and so forth that require a high data
processing rate and optical communication systems [5–10].
Generally, multi-GS/s ADCs which have low resolution are

used in high speedmeasurement systems [11].The flash ADC
contains bunch of 2𝑛 resistors and 2𝑛 − 1 comparators for 𝑛
bit ADC. The resistor string provides reference voltage (𝑉

𝑟
)

to comparators. These reference voltages and input signal
voltages (𝑉

𝑖
) are simultaneously activated by the comparators

containing 2𝑛 − 1 comparators [2]. If𝑉
𝑖
> 𝑉
𝑟
, then the output

of comparator goes high and when 𝑉
𝑖
< 𝑉
𝑟
, the output of

comparator records low. Hence, the output of comparator
is known as thermometer code. Flash ADC is designed
for 5 bits (𝑛 = 5) and the number of resistors required is
2
𝑛

= 2
5

= 32, whereas the number of comparators required
is 2𝑛 − 1 = 25 − 1 = 31. The important role for ADC is per-
formed by analogue blocks. The design constraints of
conversion speed are defined especially by the comparators
used in the design of flash ADC [8].

ADCs are used in application areas of camera, digital
TVs, mobile phones, wireless sensor networks, transmitter
and receiver circuits, and the conversion processes of signals
for base band applications [12–16].

The thermometer code is a good solution for low resolu-
tion and high speed converters; as the error rate increases, the
resolution and the speed also increase [15, 16].
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Figure 1: Block diagram of flash analogue-to-digital converter.
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Figure 2: The proposed flash ADC architecture.

The flash ADC requires a more number of comparators
to increase resolution. There is an exponential increase
in the number of comparators; hence, the circuit requires
large chip area, high bandwidth, and more power consump-
tion. Another important area of 5-bit flash ADC is in the
application of orthogonal frequency division multiplexing
ultrawide band systems [17–21].There has beenmuchwork in
implementation of lowpower andhigh speed encoders for the
design of the flash ADC. The ROM-based encoder is simple
and straight forward design, as it is slow and cannot suppress
bubble errors.Wallace tree based encoder counts the number
of bits “1” in the thermometer code. The disadvantages of
this encoder are large delay and power consumption [22–
24]. In this approach, the thermometer code to Gray code
and Gray to binary code encoders is used, where the gray
code encoder is efficient in removing metastability condition
and in suppressing the bubble errors. The encoder in this
paper has the benefits of high encoding speed and low power

consumption, as the DCVSL is used to gain high speed. The
proposed flash ADC is designed using encoder as shown in
Figure 8.

The rest of the paper is endowed with all design steps and
simulation results. The concluding section of the proposed
flash ADC performance is compared with the similar designs
in the references.

2. Design Steps of 5-Bit Flash ADC

The proposed flash ADC block diagram is as shown in
Figure 2. It consists of comparator block, thermometer to
Gray code encoder block, and Gray code to binary code
encoder block.

2.1. Comparator Structure. The comparator circuit of the de-
signed flash ADC is as shown in Figure 3 and the transistor
aspect ratios are given in Table 1. In this schematic, transistors
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Figure 3: Schematic of comparator.

𝑀
1
, 𝑀
2
are the NMOS input differential pairs driven by

𝑀
5
tail current NMOS transistor. This differential pair is

loaded by PMOS cross-coupled transistors (𝑀
3
−𝑀
4
), which

has a positive feedback loop and diode-connected PMOS
transistors (𝑀

6
−𝑀
7
).The purpose of cross-coupled feedback

loop is to increase the voltage gain of differential pair (𝑀
1
−

𝑀
2
) and to load the output resistance.𝑀

10
and𝑀

11
form a

current mirror and its reference current is provided by the
transistors (𝑀

6
,𝑀
8
) together [9].

The common source PMOS amplifier (𝑀
9
) amplifies the

first-stage output of the comparator [21]. The last stage of
the comparator is current source inverter circuit (𝑀

12
−

𝑀
13
). This inverter achieves higher voltage gain than CMOS

inverter [22]. The results of the complete comparator are
shown in Figures 4(a), 4(b), and 4(c). The offset voltage
and gain band width product of comparator are 17.2mV and
6.77GHz.

2.2. Design of the Proposed Encoder. The conversion of the
thermometer code output of the comparator to binary code is
one of the bottlenecks in the high speed flash ADC design [1].
Programmable logic array-read-only memory, exclusive OR
encoder, orWallace tree encoder structures are generally used
for conversion [23, 24]. The Wallace tree adder technique
is effective in removing the bubble errors but it is at the
cost of speed reduction and increased power dissipation [25].
The metastability condition occurs due to the time variation
between the comparators input and the effect of bubble
errors can be reduced by converting the thermometer code
to Gray code. The truth table corresponding to 5-bit binary
to gray code is presented in Table 2.The relationship between
thermometer code, Gray code, and binary code is given below
[3]:

𝐺
0
= 𝑇
1
𝑇
3
+ 𝑇
5
𝑇
7
+ 𝑇
9
𝑇
11
+ 𝑇
13
𝑇
15
+ 𝑇
17
𝑇
19

+ 𝑇
21
𝑇
23
+ 𝑇
25
𝑇
27
+ 𝑇
29
𝑇
31
,

𝐺
1
= 𝑇
2
𝑇
6
+ 𝑇
10
𝑇
14
+ 𝑇
18
𝑇
22
+ 𝑇
26
𝑇
30
,

𝐺
2
= 𝑇
4
𝑇
12
+ 𝑇
20
𝑇
28
,

Table 1: Comparator schematic transistor aspect ratios.

Transistor 𝑊 (𝜇m) 𝐿 (𝜇m)
𝑀
1
,𝑀
2

3.0 0.2
𝑀
3
,𝑀
4
,𝑀
7
,𝑀
9

6.0 0.2
𝑀
5

2.0 0.18
𝑀
6
,𝑀
8

6.0 0.18
𝑀
10
,𝑀
11
,𝑀
13

2.0 0.2
𝑀
12

0.4 0.2

𝐺
3
= 𝑇
8
𝑇
24
,

𝐺
4
= 𝑇
16
,

𝐵
0
= 𝐺
0
⊕ 𝐵
1
,

𝐵
1
= 𝐺
1
⊕ 𝐵
2
,

𝐵
2
= 𝐺
2
⊕ 𝐵
3
,

𝐵
3
= 𝐺
3
⊕ 𝐵
4
,

𝐵
4
= 𝐺
4
.

(1)

The equations are derived from the following truthTable 2 for
this encoder.

2.3. Implementation of the Proposed Encoder. There are differ-
ent logic styles to implement the design of the thermometer
code to Gray and Gray to binary code encoders. To avoid
the static power dissipation and to achieve high speed, the
implementation of encoder is validated using DCVSL [26].
DCVSL gate has speed advantage over pseudo-NMOS logic,
there by the parasitic capacitance of the output node of
DCVSL logic gets reduced and faster response is achieved.
The static power consumption present in static CMOS logic
is eliminated in DCVSL [9]. DCVSL is a CMOS circuit
technique that has potential advantages over conventional
NOR/NAND logic in terms of circuit delay, layout density,
logic flexibility, and power dissipation [10].
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Table 2: Binary to gray code encoder truth table.

𝐵
4
𝐵
3

𝐵
2

𝐵
1

𝐵
0

𝐺
4

𝐺
3

𝐺
2

𝐺
1

𝐺
0

Thermometer code (𝑇
31
, 𝑇
30
, . . . , 𝑇

1
)

0 0 0 0 0 0 0 0 0 0 0000000000000000000000000000000
0 0 0 0 1 0 0 0 0 1 0000000000000000000000000000001
0 0 0 1 0 0 0 0 1 1 0000000000000000000000000000011
0 0 0 1 1 0 0 0 1 0 0000000000000000000000000000111
0 0 1 0 0 0 0 1 1 0 0000000000000000000000000001111
0 0 1 0 1 0 0 1 1 1 0000000000000000000000000011111
0 0 1 1 0 0 0 1 0 1 0000000000000000000000000111111
0 0 1 1 1 0 0 1 0 0 0000000000000000000000001111111
0 1 0 0 0 0 1 1 0 0 0000000000000000000000011111111
0 1 0 0 1 0 1 1 0 1 0000000000000000000000111111111
0 1 0 1 0 0 1 1 1 1 0000000000000000000001111111111
0 1 0 1 1 0 1 1 1 0 0000000000000000000011111111111
0 1 1 0 0 0 1 0 1 0 0000000000000000000111111111111
0 1 1 0 1 0 1 0 1 1 0000000000000000001111111111111
0 1 1 1 0 0 1 0 0 1 0000000000000000011111111111111
0 1 1 1 1 0 1 0 0 0 0000000000000000111111111111111
1 0 0 0 0 1 1 0 0 0 0000000000000001111111111111111
1 0 0 0 1 1 1 0 0 1 0000000000000011111111111111111
1 0 0 1 0 1 1 0 1 1 0000000000000111111111111111111
1 0 0 1 1 1 1 0 1 0 0000000000001111111111111111111
1 0 1 0 0 1 1 1 1 0 0000000000011111111111111111111
1 0 1 0 1 1 1 1 1 1 0000000000111111111111111111111
1 0 1 1 0 1 1 1 0 1 0000000001111111111111111111111
1 0 1 1 1 1 1 1 0 0 0000000011111111111111111111111
1 1 0 0 0 1 0 1 0 0 0000000111111111111111111111111
1 1 0 0 1 1 0 1 0 1 0000001111111111111111111111111
1 1 0 1 0 1 0 1 1 1 0000011111111111111111111111111
1 1 0 1 1 1 0 1 1 0 0000111111111111111111111111111
1 1 1 0 0 1 0 0 1 0 0001111111111111111111111111111
1 1 1 0 1 1 0 0 1 1 0011111111111111111111111111111
1 1 1 1 0 1 0 0 0 1 0111111111111111111111111111111
1 1 1 1 1 1 0 0 0 0 1111111111111111111111111111111

The design of CMOS logic with DCVSL has many advan-
tages over static CMOS logic approach, andDCVSLhas speed
advantage over domino logic circuit.This logic style has both
noninverting and inverting logic implementation, where
domino logic cannot implement inverting logic operational
gates. However, these advantages are achieved at the expense
of the large area and the complexity associated with dual logic
networks including complementary signals [27].

In this paper DCVSL circuit is proposed, which does
not require complementary inputs. The proposed DCVSL
simplifies the logic tree complexity, reduces dynamic power,
and improves the performance of the circuits. The proposed
DCVSL is as shown in Figure 5.

To reduce the power consumption and to increase the
performance, many clocked versions of DCVSL gates have
been introduced. The reduction of parasitic capacitances at
the output node provides a faster response and the static
power consumption is eliminated [28, 29]. The operation of

DCVSL is as follows. During precharge (clk = 0) phase,
transistors𝑄

4
,𝑄
5
are turned ON; the output node is charged

to 𝑉
𝐷𝐷

. The input is given to the NMOS logic tree and the
logic of operation is implemented using n-channel MOSFET.
A diode 𝑄

3
works as a dynamic current source to limit the

amount of charge transferred from one output node. For the
implementation of fast error-correction logic in memories,
this DCVSL logic can be used [10].The schematic of the Gray
code encoder for each bit is designed using proposed circuits
shown in Figure 6.

The circuits of Gray code bit-0, 1, 2, 3, 4 are shown in
Figures 6(a), 6(b), 6(c), 6(d), and 6(e). The logic of these
circuits is designed from (1) using the DCVS logic, and a
CMOS inverter is used at the output stage of the circuit.

By using the XOR gate, the Gray code will be converted
into binary code. The schematic of 2-input XOR gate is as
shown in Figure 7. The design of complete encoder is as
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Figure 9: Simulation results of encoder.

Table 3: Summary of proposed encoder.

Results Proposed Encoder
Resolution 5-bit
Worst case delay 30𝜇s
Technology 180 nm
No. of Transistors 156
Supply Voltage ±0.85V
Current 3.56mA
Power Dissipation 6.06mW

shown in Figure 8. The results of the proposed encoder are
presented in Table 3.

3. Simulation Results

The complete design of 5-bit 5-GS/s flash ADC circuit as
shown in Figure 1 is simulated using Cadence and the model
parameters of a gpdk 180 nm CMOS process. As resolution
increases, the maximum frequency of operation will get
decreased. The encoder in Figure 8 is simulated by providing
thermometer code as input which is presented in Table 2
and the results of encoder are as shown in Figure 9 and it is
verified using truth Table 2.

A ramp-shaped analogue input signal between −0.45
and 0.75V, at 1MHz, is applied to the ADC input for
transient analysis and the simulation results of 5-bit flash
ADC obtained are as shown in Figure 10. Figure 11 shows the

Table 4: Transistor count of the designed system blocks.

Name of the block Transistors count
Comparator block 403
Gray code encoder block 96
Binary encoder block 60
Total flash ADC blocks 559

following linearity plots of differential nonlinearity (DNL)
and integral nonlinearity (INL). Transistor count of the
designed system blocks is shown in Table 4.The RC extracted
layout of the complete converter is shown in Figure 12. The
advantages of this flash ADC are as follows: power consump-
tion is at minimum, errors in the design are minimized, and
the proposed configuration is designed at the high sampling
rate 5-GS/s. The performance summary and its comparison
with similar works in the literature are listed in Table 5 given
below.

4. Conclusion

A 5-GS/s 5-bit flash ADC is designed in 180 nm CMOS
technology using Cadence tools. In this flash ADC, the
proposed encoder uses a logic style called DCVSL structure
that improves the performance in terms of power consump-
tion and speed. The proposed flash ADC is highly linear
with worst-case DNL of −0.24 LSB and INL of −0.30 LSB
and also has a low power consumption of 46.69mW. This
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Figure 12: RC extracted layout of flash ADC.

Table 5: Comparative performance analysis of candidate design.

References
Proposed ADC
simulated results

Simulated results
[8]

Simulated results
[11]

Simulated results
[18]

Simulated results
[19]

Technology 180 nm 180 nm 500 nm 180 nm 180 nm

Resolution 5-bit 5-bit 5-bit 5-bit 4-bit

Supply voltage ±0.85V 1.8 V 2.5V 1.5 V 1.8 V
Analogue input voltage
range −0.45V to 0.75V differential input

range ± 0.4V — — 1Vpp

Power (mW) 46.69 63 83 68.63 70

Sampling rate GS/s 5 1 1.5 — 5.0

Maximum DNL (LSB) −0.24 0.175 0.43 0.0012 0.34

Maximum INL (LSB) −0.30 0.261 0.32 0.0015 0.24
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circuit can be expected to find wider applications in many
applied electronics, communications, instrumentation, and
signal processing applications.
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