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Generally, treatment default of diseases by patients is regarded as the biggest threat to favourable disease treatment outcomes. It is
seen as the reason for the resurgence of infectious diseases including tuberculosis in some developing countries. Sadly, its
occurrence in chronic disease management is associated with high morbidity and mortality rates. Many reasons have been
adduced for this phenomenon. Exploration of treatment default using biographic and behavioral metrics collected from patients
and healthcare providers remains a challenge. Te focus on contextual nonbiomedical measurements using a supervised machine
learning modeling technique is aimed at creating an understanding of the reasons why treatment default occurs, including
identifying important contextual parameters that contribute to treatment default.Te predicted accuracy scores of four supervised
machine learning algorithms, namely, gradient boosting, logistic regression, random forest, and support vector machine were
0.87, 0.90, 0.81, and 0.77, respectively. Additionally, performance indicators such as the positive predicted value score for the four
models ranged between 98.72%–98.87%, and the negative predicted values of gradient boosting, logistic regression, random forest,
and support vector machine were 50%, 75%, 22.22%, and 50%, respectively. Logistic regression appears to have the highest
negative-predicted value score of 75%, with the smallest error margin of 25% and the highest accuracy score of 0.90, and the
random forest had the lowest negative predicted value score of 22.22%, registering the highest error margin of 77.78%. By
performing a chi-square correlation statistic test of variable independence, this study suggests that age, presence of comorbidities,
concern for long queuing/waiting time at treatment facilities, availability of qualifed clinicians, and the patient’s nutritional state
whether on a controlled diet or not are likely to afect their adherence to disease treatment and could result in an increased risk of
default.

1. Introduction

Statistical data compiled [1] from all the regional and district
hospitals except the two leading teaching hospitals (Kor-
le-Bu Teaching Hospital and Komfo Anokye Teaching
Hospital) in Ghana show a depressing outlook on the in-
cidence of hypertension and other cardiovascular diseases
that has resulted in increase patient mortality and morbidity
rates with devastating consequence. Tis has been described
as a consequence of patient nonadherence/default or non-
compliance to prescribed treatment appointments. Hyper-
tension and associated cardiovascular diseases were listed as

the leading cause of deaths according to the report in [1]
among the population in 2017 and ranked third as the
biggest cause of patient admission in hospitals countrywide.
Tese statistical descriptions are also confrmed in [2], which
attributes 13 percent of total global deaths to the incidence of
hypertension and estimates them to be the largest risk factor
for deaths globally.

Cardiovascular diseases including hypertension are
chronic diseases that require long-term treatment man-
agement. Recent reports healthcare personnel [1, 2] con-
frming increasing mortality rates among sufering patients
require a critical look at treatment adherence together with
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default risks by considering both biographic and contextual
behavioral variables among patients and healthcare givers.
Te importance of behavioral analysis in healthcare is
underscored by the authors of [3], whose work afrms that
patient behaviors are important considerations for disease
treatment including the determination of disease causality.
Further studies to determine the impact of behavior on
patients stipulate that performance behavior of patients is
aimed at preventing disease occurrence, detecting onset of
diseases, and improving disease treatment outcomes, but
admittedly, the anticipated outcomes are also infuenced by
the behavior of healthcare professionals [4]. Teir defnition
of behavior by health care professionals emphasizes on
patient needs. behavior that takes into account the needs of
patients [4]. Additionally, studies regarding healthcare
provider behavior and its impact on patients, healthcare
working environments, colleague workers, etc., are em-
phasized by the author of [5], with a tacit admission that
there are negative outcomes of disrespectful behavior, some
of which cause recipients to experience fear and feel isolated,
includingmany others.Te impact of negative consequences
of these behavioral traits by healthcare providers on patient
treatment outcomes shows that disease treatment default by
patients can be established in context. Tis includes the
consideration of contextual variables about both parties
(healthcare providers and patients). Applying predictive
algorithms with the capability of showing hidden patterns of
information can assist in this endeavor.

Predictive algorithms have become powerful in-
struments for businesses (big and small) as a competitive
tool. In mortgage fnancial decisions, including assessing
payment behavior of homeowners [6], predictive analytics
have been employed to study and understand the behavior of
homeowners. Te other use of predictive algorithms is
providing insights into future human behavior based on
present or available information [7]. In the healthcare in-
dustry, predictive algorithms have been used in the area of
classifcation problems such as predicting the patient’s
nonattendance to a scheduled appointment clinic [8].
Further use of predictive algorithms is associated with early
detection and diagnoses of diseases for preventive medical
care due to increased medical treatment costs together with
increasing morbidity and mortality rates [9]. Advances in
technology, coupled with increased production of data
within healthcare systems, have heightened research in-
terests in healthcare applications for knowledge discovery
and insights into patterns of change [10]. Predictive machine
learning algorithms have therefore become useful in pro-
viding user-centered explanations of the factors that lead to
an increased risk of adverse outcomes in healthcare
settings [11].

Tere have been several predictive studies of disease
diagnosis and detection on hypertension and other car-
diovascular diseases predominantly using contextual vari-
ables such as biomedical and biographic metrics. Behavior is
mentioned among the fve broad determinants of health
[12]. However, studies requiring the use of behavior together
with either biographic or biomedical metrics for disease
treatment in this regard have been limited. Tis research

therefore explores contextual biographic and behavioral
traits of both patients and healthcare providers towards
disease treatment default using empirical data from a real
context with reliance on nonbiomedical variable metrics.

2. Related Work

A comparative analysis of diferent machine learning
modeling techniques within the healthcare delivery system
has been examined in various studies and related research
works. Tis section discusses prediction accuracy scores of
machine learning techniques used within the context of
healthcare practice to highlight the signifcance of machine
learning types in classifcation-based problem domains with
biomedical measurements. A study [13] to predic biabetes
disease with biomedical and biographic variables such as age,
education, systolic and diastolic blood pressure, body mass
index, direct and cholesterol using learning algorithms
namely; Naive Bayes, Decision Tree, Adaboost and Random
Forest showed auc score of 0.95 for Logistic regression and
Random forest. Tis study therefore concludes that the
combination of logistic regression with the random forest
showed superior performance and could be used in pre-
dicting diabetic patients.

Similar predictive studies [14] with the disease pre-
diction framework using machine learning techniques for
diabetes healthcare with a combination of biographic and
biomedical data such as age, blood pressure, glucose, and
insulin body mass index with algorithms such as K-nearest
neighbor (KNN), support vector machine (SVM), logistic
regression, and random forest concluded that logistic re-
gression had superior performance with a receiver operating
characteristic curve (ROC) score of 86%. Similarly, an
analysis of decision trees for diabetes prediction using both
biomedical and biographic variables such as gender, plasma,
insulin, glucose, body mass index, and blood pressure with
decision tree algorithms such as leaf area density (LAD),
naı̈ve Bayes, and genetic j48 also showed predicted accuracy
scores of 88%, 92%, and 95.8%, respectively [15].

Further studies on detailed analysis of kidney and heart
disease prediction with machine learning using two distinct
datasets consisting of both biomedical and biographic
variables such as age, blood pressure, specifc gravity, sugar,
albumin, red blood cells, puss cells, pus cell clumps, bacteria,
blood glucose level, blood urea, sex, education, current
smoking status, cigarettes smoked per day, BP medicines,
and prevalent smoking also showed accuracy scores of 100%
for chronic kidney disease and 85% for heart disease. Ma-
chine learning algorithms such as logistic regression, K-
nearest neighbor, naı̈ve Bayes, support vector machine, and
random forest [16] also produced accuracy scores of 100%
for chronic kidney disease and 85% for heart disease based
on a support value of 750 for all the algorithms.

Further studies for heart disease classifcation predicted
by the authors of [17], which aim to explore feature selec-
tions with a combination of chi-squared feature selection
methods and the Bayes net algorithm, achieved an accuracy
score of 85.00% using both biomedical and biographic
variables such as age, sex, measuring values of fasting blood
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sugar, resting blood pressure, serum cholesterol, resting
electrocardiographic reports, maximum heart rates, and
number of major vessels colored by fuoroscopy.

A personalized modeling and prediction approach with
internet-connected smart devices for data generation [18]
used weighted voting logistic regression and random forest
machine learning techniques for type 2 diabetes prediction
and produced a model accuracy score of 0.884 with both
biomedical and biographic metrics such as age, gender, body
mass index, cholesterol level, marital status, employment
status, and income level.

Further predictive studies on the presence or absence of
heart disease using techniques such as the backpropagation
multilayer perceptron [19] showed an improved model
performance accuracy score of 96.30% with features such as
age, sex, fasting blood sugar, and resting blood sugar. Using
several machine learning techniques for supervised and
unsupervised learning in diabetes research predictions [10],
it was concluded that the use of support vector machines
proved to be the most successful while using clinical datasets
with features extracted from demographics, diagnoses,
disease comorbidities and symptoms, medications, labora-
tory measurements, and other procedures. Furthermore,
a predictive analysis of diabetic complications [20] using
naive Bayes tree, C4.5 decision tree-based classifcation, and
k-means clustering techniques with features such as age,
gender, body mass index, family history of diabetes, blood
pressure, duration of onset, and blood glucose level showed
an overall model accuracy of 68%. A similar study to identify
correlated variables such as demographic, clinical, and
healthcare resource utilization variables for the diagnosis of
diabetic peripheral neuropathy using the random forest
algorithm/technique achieved an ROC model performance
of 0.824 and a model accuracy of 89.6% with a 95% con-
fdence interval [21]. A similar study with variables such as
the number of prior convictions, age, type of index ofence,
diversity of criminal history, and substance abuse to predict
general criminal recidivism in mentally disordered ofenders
using the random forest technique also produced an AUC
score of 0.90 [22]. In diagnosing heart disease for diabetic
patients using variables such as age, sex, blood pressure, and
blood sugar in predicting the chances of a diabetic patient
developing heart disease, naı̈ve Bayes and support vector
machines showed signifcant prediction accuracy [23]. Al-
ternatively, a study [24] to identify the optimal model that
predicts HBsAg seroclearance of patients sufering from
chronic hepatitis B with selected variables such as age,
gender, family history, body mass index, and drinking
history used four machine learning algorithms, namely,
extreme gradient boosting (XGBoost), random forest (RF),
decision tree (DT), and logistic regression (LR) and iden-
tifed XGBoost to show superior model performance in
identifying predictive variable importance with an AUC
score of 89.1%.

In the studies discussed above and many others, refer-
ences are made of predicted accuracy scores (AUC) of
varying percentages from various machine learning algo-
rithms using biomedical and biographic variables.Te use of
biographic and behavioral metrics is noted in [22] for the

prediction of criminal recidivism with a sampled population
of 365. Te other distinct feature of the observed related
works is the use of sourced datasets from studies conducted
elsewhere. Te uniqueness of this study is the use of em-
pirical data collected from a real-world context by assessing
entities involved in disease treatment management for the
prediction of treatment default.

3. Research Contribution

One of the accomplishments in this research work is the use
of biographic and behavioral metrics of both patients and
healthcare providers to predict disease treatment default of
patients sufering from hypertension with and without
comorbidities.

3.1. Research Hypothesis

3.1.1. Null Hypothesis HO. No relationship exists between
disease treatment default and patient gender.

3.1.2. Alternative Hypothesis H1. Te relationship exists
between disease treatment default and patient gender.

A comparative analysis of four machine learning models,
namely, logistic regression, gradient boosting classifer,
support vector machine (SVM), and random forest classifer
is examined to determine the best predicted values such as
the true positive rate (TPR), false positive rate (FPR),
positive predicted value (PPV), and negative predicted value
(NPV) of each algorithm for performance evaluation.

Tis is accomplished in the listed steps as follows:

Step 1. Variable independence using the chi-square
correlation statistic is determined to establish the
gender relationship between the output class.
Step 2. Optimal threshold performance is determined
with the application of threshold optimization using
the area under the receiver operating
characteristic curve.
Step 3. Te predicted accuracy scores of the true
positive rate (TPR), false positive rate (FPR), positive
predicted value (PPV), and negative predicted value
(NPV) have been demonstrated using the four models.
Step 4. Te predicted scores such as the true positive
rate (TPR), false positive rate (FPR), positive predicted
value (PPV), and negative predicted value (NPV) to
estimate how well these models would perform in
subsequent predictions have been comparatively
evaluated.

Comparative performance evaluation determines which
machine learning algorithm performs better given the re-
quired dataset format.

4. Materials and Methods

Te electronic medical record dataset of patients was ob-
tained through an institutional request for permission as per
the request reference number DCS/S.1/VOL.1 from Kwahu
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Government Hospital (a district healthcare facility in the
eastern region of Ghana). A total of 5,333 patients were
identifed as sufering from hypertension, and some of them
were also sufering from both hypertension and other dis-
eases (comorbidities). As a measure to protect the privacy
and confdentiality of patients involved by the institution,
individual patient names and location were omitted from the
records. Te features used were selected from clinical notes,
and biographic data were obtained.

Te classifcation-based machine learning algorithms
used are gradient boosting classifer, logistic regression,
support vector machine, and random forest. All software
developments were performed using Python version 3.10.5
and its packages for all data processing steps. Te results
obtained from data modeling are presented in the sub-
sequent section.

4.1. Results. Te sample size was 5333 patients which
consisted of 4,312 females constituting 80.86% of the total
sample population and 1,021 males constituting 19.14% of
the total sample population.Te statistical description of age
bracket and distribution density among those sampled is
illustrated in Figures 1 and 2, respectively.

Te highest age bracket distribution from the sampled
data according to Figure 1 is found among the ages between
66 and 76, and the least age bracket distribution is found
between 110 and 120. Age distribution density is higher
between ages 44 and 54 up to 88 and 98. Gender distribution
is displayed in Figure 3.

Basic categories of the sampled data were patients di-
agnosed with hypertension only and those who had been
diagnosed with hypertension and other cardiovascular
diseases such as diabetes. Figure 4 shows the frequency
distribution of patients with hypertension only (indicated by
blue color) and hypertension with comorbidities (indicated
by red color). Te female patient population accounted for
the highest number of patients with hypertension only and
hypertension with comorbidities, as illustrated in Figure 4,
against their male counterparts.

In Figure 3, the frequency distribution among gender
indicates a higher proportion of females with fewer males.

Representation of output class distribution in Figure 5
shows that negative class patients identifed as nondefaulters
were far more than those identifed as defaulters to treatment
default.

For the new patient, the onset of treatment begins with
signs and symptoms of discomfort, whereas for an existing
patient undergoing treatment, it begins with a visit as a result
of a scheduled appointment or realization of signs and
symptoms of discomfort. Figure 6 shows the disease treat-
ment process for both new and existing patients sufering
from hypertension and other forms of cardiovascular dis-
ease. In Figure 6, the rectangles indicate processes and
subprocesses, the arrows show task routes, the rhombus
show decision boundaries, and the oval represents the start
or end of processes. Deepened processes with texts show
data collection points, but for this research work, no
measuring biomedical item was collected. Tese points have

been illustrated for emphasis on collected behavioral and
biographic variables used. Certain processes had been
highlighted for emphasis about the behavior of health care
professionals especially on delivery of service.

Figure 7 shows a fowchart diagram illustrating various
stages and processes relevant to building machine learning
algorithms for prediction. It includes subprocesses, decision
points, and task evaluation points, as well as arrow pointers
for task routes. Tere are processes that depend on other
processes to begin, creating a dependent rule. In Figure 7, the
dependent process can be seen in the data processing stage
where many subprocesses are defned before the next task,
which is splitting of the dataset. At certain stages of the
process, decisions to determine the next course of action are
made. In machine learning prediction processes, there is
beginning and ending of all processes. A green oval shows
beginning of processes, whereas a red oval shows ending of
processes.

In order to establish variable relationships for the output
variable, the chi-square correlation statistic test was per-
formed on all the input variables. Tose with statistical
signifcance are selected and described as follows.

4.1.1. Chi-Square Correlation Statistic Score

On controlled diet:
p value� 4.577598097458345e− 32
Chi-square statistic value� 153.02396213387735
Dependent (reject H0)
Availability of a physician:
p value� 2.8205192634562076e− 55
Chi-square statistic value� 260.9682907753015
Dependent (reject H0)
Concern for long waiting/queuing time:
p value� 1.239782911843141e− 25
Chi-square statistic value� 122.96922267902593
Dependent (reject H0)
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Figure 1: Age bracket distribution.
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Hypertension with comorbidities:
p value� 2.4832105751483715e− 54
Chi-square statistic value� 256.5842340588116

Dependent (reject H0)
Patient’s age:
p value� 4.4969165821531835e− 05
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Figure 2: Age distribution density histogram.
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Chi-square statistic value� 259.20561138258796
Dependent (reject H0)
Gender:
p value� 0.4911070922909865
Chi-square statistic value� 3.4137909069569465
Independent (fail to reject H0)

Te chi-square correlation statistic test was performed
on (selected for its signifcance) input variables which are
described above. It shows p values and correlation status of
the dependent variable. Patients admitted to be on a con-
trolled diet, physician availability to examine patients,
concern for longer waiting or queuing time at healthcare
facilities, patients sufering from both hypertension and

hypertension with comorbidities, and the patient’s age are
estimated to infuence the dependent variable as null hy-
pothesis is rejected.

A comparative display of the model confusion matrices
obtained is shown.

Figure 8 shows a collection of the various confusion
matrices obtained from the four machine learning models.
Each matric has four sections indicating specifc values.
Description of colored section in the confused matrix named
from the top left section (True positive-TP), yellow shaded
section on the bottom right (True negative-TN), upper right
corner (False negative-FN) and bottom left corner (False
positive-FP). In Figure 8(a), gradient boosting correctly
classifed 1313 patients as nondefaulters and misclassifed 15
nondefaulters as defaulters and 3 default patients as
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Figure 6: Flowchart diagram of the disease treatment process.
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nondefaulters. In Figure 8(b), logistic regression correctly
classifed 1315 patients as nondefaulters and misclassifed 15
nondefault patients as default patients and 1 default patient

as a nondefaulter. In Figure 8(c), the random forest correctly
classifed 1309 nondefault patients and misclassifed 16
nondefault patients as defaulters and 7 default patients as
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Figure 8: Model confusion matrices for (a) gradient boosting, (b) logistic regression, (c) random forest, and (d) support vector machine.
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nondefaulters. Finally, in Figure 8(c), the support vector
machine correctly classifed 1315 nondefault patients and
misclassifed 17 nondefault patients as defaulters and 1
default patient as a nondefaulter.

Te predicted probability score rates in percentages are
illustrated in Table 1.

Specifcity and sensitivity both describe test accuracies
for the predicted output. How well a model is able to identify
true positives in a diagnostic test is referred to as its sen-
sitivity, and conversely, a model’s measure of true negatives
is termed its specifcity. Te false negative rate (FNR) is the
probability that a true positive result will not be true or
missed.

In Table 1, the FNR, as recorded by the four models, is
0.23% for gradient boosting, 0.08% for logistic regression,
0.53% for the random forest, and 0.08% for the support
vector machine. Te probability of a true positive result
being missed is much higher by the random forest classifer
than any of the other models. Logistic regression and the
support vector machine record the least probabilities of
a true positive result being missed.

Te true negative rate (TNR) is the probability that a true
negative result will be missed by the model. Te results
obtained, as shown in Table 1, show the TNR rate for various
models as follows: 16.67% for gradient boosting, 17.67% for
logistic regression, 11.11% for the random forest classifer,
and 5.56% for the support vector machine. Te support
vector machine is seen to have the least probability, followed
by the random forest, with logistic regression and gradient
boosting having the same score value.

Te false positive rate (FPR) also referred to as “fall out”
is described as the probability of a false alarm being raised.
Te FPR values for the models, as displayed in Table 1,
show that the support vector machine has the highest
record value of 94%, followed by the random forest (88%),
with logistic regression and gradient boosting recording
83.33% each.

Te positive predicted value (PPV) is the probability that
a positive result is truly positive (a default patient is truly
a defaulter). In Table 1, it can be seen that all the models
show higher positive predicted values above 98%, that is, the
probability that the prediction of a default patient will not be
missed. Te negative predicted value (NPV) is the proba-
bility that a nondefault patient will also not bemissed. Actual
prediction of patients classifed as nondefaulters by the four
models according to Table 1 shows that logistic regression
shows a higher negative predicted value score of 75%, fol-
lowed by both gradient boosting and support vector

machines at 50% each, with the random forest recording the
least percentage score.Tis means that if a predicted result of
logistic regression is indicated as 75% for the NPV, then
there is a 75% chance it is indeed negative. For the random
forest classifer, a 22.22% NPV is indicative of only 22.22%
chance of a negative result being accurate.

Te true positive rate (TPR) is the probability that an
actual positive will test positive. It is also known as a sen-
sitivity test. Te TPR values for all models as recorded in
Table 1 are greater than 99%.

From the classifcation report shown in Table 2, the
weighted average macro precision scores for the individual
models were above 0.98, making F1 score higher above 0.9.
Te high weighted macroaverage F1 score is obtained for an
imbalanced dataset (Figure 5) where the individual class
score contribution is weighted by its size. High weighted
macroaverage scores for precision, recall, and F1 score are
indicative of prediction success.

Te area under the receiver operating characteristic
curve (roc_auc) describes various model performances at
separate threshold levels. Figure 9 shows a plot of two
important parameters, the false positive rate and the true
positive rate. In the ROC curve, model performance can be
evaluated at diferent threshold points. Using the AUC
technique, the aggregate model performance of the models
can be calculated across all threshold points. Te AUC score
for logistic regression is 0.90, 0.77 for the support vector
machine, 0.87 for the gradient boosting classifer, and 0.81
for the random forest, and these values indicate individual
model prediction accuracy. Te dotted black line shown in
Figure 9 represents the baseline model, which is indicative of
poor model performance.

4.2.AlgorithmPerformanceMetricDiscussion. Tis section is
divided into two parts: the frst part deals with a statistical
description of the sampled data and the second part de-
scribes actual performance metrics of the models used,

Table 1: Specifcity and sensitivity test scores.

Model FNR (%) TNR (%) FPR (%) PPV (%) NPV (%) TPR (%)
Gradient boosting 0.23 16.67 83.33 98.87 50.0 99.77
Logistic regression 0.08 16.67 83.33 98.87 75.0 99.92
Random forest 0.53 11.11 88.89 98.79 22.22 99.47
Support vector machine 0.08 5.56 94.44 98.72 50.0 99.92
Te highlighted scores tell us how much trust to put into a test result. Can a negative test result be truly trusted or not. probability of trust in a test result.
Negative predicted value is the ratio of patients truly predicted as defaulters to all patients diagnosed as defaulters. It is a probability estimate for a nondefault
status if described as a default patient. High percentage value means that the probability for a prediction miss is lower (minimal error). Lower percentage
means a very high probability for a prediction miss.

Table 2: Precision, recall, and F1 score weighted macro average
scores.

Classifcation report
Model Precision Recall F1 score
Gradient boosting 0.98 0.99 0.98
Logistic regression 0.98 0.99 0.98
Random forest 0.98 0.98 0.98
Support vector machine 0.98 0.99 0.98
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including results presented in various fgures, graphs, and
tables.

In Figure 1, a presentation of age bracket distribution of
the sampled data shows that the incidence of hypertension
and its associated diseases (comorbidities) is prevalent
among the age bracket 66–76.Te incidence of hypertension
alone and hypertension with comorbidities among gender,
as shown in Figure 4, indicates that the female population
had the highest prevalence rate than males.

A determination of variable relationships using Chi-
square correlation statistic of input variables to estimate
gender, age, availability of a physician, hypertension with
comorbidities, queue/waiting time and controlled diet
presented under sub section Chi-square correlation Statistic
score produced three scores namely; Ch-square statistic
value, p value and variable correlation state. Comparison of
p value with alpha value of 1 results in output decision;
a rejection or failure to reject the null hypothesis.

Te chi-square correlation statistic of variance showed
no correlation between treatment default and gender,
thereby failing to rejectHO.However, other variables such as
age, presence of comorbidities, concern for long waiting/
queuing time, controlled diet, and availability of a physician
showed correlation with the output variable (treatment
default status), and null hypothesis was rejected.

Generally, all the models as shown in Table 1 show
capacity to predict true positive values, as shown by their
scoring percentages (gradient boosting, 99.77%; logistic
regression, 99.92%; random forest, 99.47%; and SVM,
99.92%). Te important additional performance metric in
Table 1 with the highlighted text shows the negative
predicted values (NPVs) of all the models. Te negative
predicted values in Table 1 according to individual models
show that logistic regression has a higher score of 75%,
followed by both gradient boosting and support vector
machines scoring 50% each, with the random forest al-
gorithm scoring the least score of 22.22%.

Tis was to defne what negative predicted value or score
mean for predictions by linking it with the score value of
logistic regression. Logistic Regression’s prediction of neg-
ative values will be accurate at 75% rate.

Tis is of utmost importance for predictions in medical
diagnosis, disease detection, and other problems in the
healthcare domain. Te accuracy of a negative or positive
result being truly negative or positive is essential to avoid
missing diagnosis, especially in diseases that require urgent
attention. It is for this reason that a logistic regression score
of 75% is considered critically important.

Additional performance evaluations with defnitions of
false negative rates and an explanation for the score are
obtained. However, the random forest classifer shows
a probability score of 0.53%, approximated as 1, which
makes it very likely to miss a true positive result. As shown in
Figure 5, the output class contains data imbalance; therefore,
it is important to consider loss based on proportion and the
use of weighted macroaverages. Te weighted macro-
averages for precision, recall, and F1 score according to the
classifcation report shown in Table 2 are 98% for gradient
boosting, 99% for logistic regression, 98% for the random
forest, and 98% for the support vector machine.

Te additional evaluation metric used for model per-
formance is the roc_auc curve, as shown in Figure 9. Tis
curve is an aggregate measure across all threshold points for
model performance. Te AUC scores shown in Figure 9 for
the support vector machine model are 0.77, 0.81 for the
random forest, 0.90 for logistic regression, and 0.87 for
gradient boosting, respectively.

From the various performance metrics, as shown in
Table 1 and Figure 9, the logistic regression model is con-
sidered the obvious model of choice for this classifcation
prediction. It has shown superior performance with an AUC
score of 0.90, a negative predicted value (NPV) score of 75%,
and an FNR of 0.08%.

5. Discussion

Te stated focus of this research was to use biographic and
behavioral metrics to predict disease treatment default and
to test for null hypothesis as to whether gender biases have
any correlation with hypertension treatment default. Te
use of the chi-square correlation statistic of variable in-
dependence as shown proves no dependency of patient
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gender on treatment default but rejects the null hypothesis
with respect to other contextual variables. Further model
evaluations to determine superior model performance in
Table 1 and Figure 9 also identify logistic regression as
having a higher NPV, as shown in Table 1, and SVM has
the least probability score for an FNR (0.08%) and the
highest AUC score of 0.90, as shown in Figure 9. Based on
the above statistical values, the logistic regression model
used in this context is seen to be superior in performance
to the other three models evaluated. Tis comparative
analysis narrative, especially the use of NPV, proves that
model accuracy prediction score evaluation linked to the
problem context helps determine model performance
superiority.

6. Conclusion and Future Work

Tis research article has demonstrated how both biographic
and behavioral metrics can be used to predict disease
treatment default without biomedical measurements. It has
also been determined (based on the collected data) that
gender biases do not afect hypertension treatment default
risks, but other contextual variables such as age, comor-
bidities, queuing time, availability of a clinician, and patients
on a controlled diet can afect treatment default outcomes.
Finally, the superiority of the logistic regression algorithm to
predict disease treatment default in hypertensive patients
has been established. Further work in this area is to in-
vestigate time complexities of the algorithms used to de-
termine efcient and efective machine learning models
among the selected variables (Table 3).
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