Research Article

Evaluation of Dermal Toxicity and Wound Healing Activity of Cnestis ferruginea Vahl ex DC

Akosua Dufie Ankomah,1 Yaw Duah Boakye,1, Theresar Appiah Agana,1 Vivian Etsiapa Baamah,1 Paul Poko Sampene Ossei,2 Francis Adu,1 and Christian Agyare1

1 Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
2 Department of Pathology, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Correspondence should be addressed to Yaw Duah Boakye; ydboakye.pharm@knust.edu.gh

Received 26 November 2021; Revised 23 March 2022; Accepted 11 April 2022; Published 23 May 2022

Academic Editor: Heng Yen Khong

Copyright © 2022 Akosua Dufie Ankomah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cnestis ferruginea is a tropical plant, which is traditionally used in the treatment and management of various conditions including skin infections and wounds. The aim of this study was to investigate the dermal toxicity and wound healing potential of C. ferruginea. Ten millimeter full-thickness mucosal wounds were created on the dorsal midportion of the Sprague Dawley rats. Wounds were treated with 10, 5, and 2.5% w/w aqueous creams, prepared from the methanol extract of the root bark of C. ferruginea (CFM). The wound tissues were harvested on day 21 for histology studies. Compared with the untreated group, 10, 5, and 2.5% w/w CFM-treated wounds significantly reduced the wound size over the study period (P < 0.0001). Tissue histology revealed a healed wound with well-regenerated collagen and skin appendages with no pus cells. A skin irritation test was conducted on CFM, as well as the dermal toxicity of CFM was determined in the repeated dose and acute dermal toxicity bioassays. These tests revealed that CFM showed no toxic effect on the skin and showed that CFM was not a skin irritant. C. ferruginea exhibited wound healing activity, which gives credence to its folkloric use.

1. Introduction

Every year around the world, many people get wounded as they are often inevitable occurrences[1]. Apart from the morbidity, disability, and reduced quality of life it imposes on patients, it also creates an economic challenge to the individual and the country at large [2]. Wounds are created when there are interruptions in the integrity of the skin and muscles, as well as bones [3]. It may be attributed to causes such as burns, gunshot, falls, surgical procedures, deleterious skin infection, or by other basal conditions [4]. Wounds appear to be the third most frequent nosocomial infection and unfortunately for developing and resource-constrained countries such as Ghana and others, traumatic and surgical site infections cause high morbidity and death rates [5].

When wounds occur, the body naturally regenerates the skin tissues through the wound healing process [6]. The process of wound healing includes different overlapping events and is categorized into four phases namely homeostasis, inflammation, proliferation, and remodeling phases [7]. Medicinal plants are used in managing acute and chronic wounds in many traditional medicine practice areas in the world, and this practice is a common one [8]. Undoubtedly, these plants have become a great source of wound healing agents to tap into [9].

Cnestis ferruginea of the family Connaraceae is a common plant found in the tropics [10]. Traditionally, it is used to treat migraine (root), headache (root), toothache (root), sinusitis (root), constipation (leaf or root), and conjunctivitis (fruit) [10]. It is used in the management of skin diseases and also in the management of wounds though this has not been scientifically studied [11]. Scientifically, C. ferruginea has been proven to exhibit several biological activities. The hydroethanolic leaf extract of C. ferruginea has been studied to have wound healing activity [12]. The
methanol root extract has been reported to exhibit analgesic and anti-inflammatory properties [13, 14]. The methanol and ethyl acetate leaf extracts of C. ferruginea have been reported to possess hypoglycaemic properties [15]. The aqueous, ethanol, and petroleum ether fractions of the leaf, stem, bark, and root extracts of C. ferruginea exhibit antioxidant activity [16]. The aqueous root extract of C. ferruginea has been reported to possess antistress potentials [17]. Also, it is worth mentioning that different chemicals are found in plants, which sometimes may be hazardous as causing corrosion and irritations to the skin [18]. For this reason, toxicity studies are very important in establishing the safety of plant use. This study therefore investigates the dermal toxicity and wound healing properties of root bark of C. ferruginea.

2. Materials and Methods

2.1. Plant Collection. Collection of the roots of C. ferruginea was conducted on the campus of the University of Cape Coast (Ghana post location: CC-140-7474, William Amo Road) in the Central Region of Ghana between October and November 2018. The plant was authenticated by Mr. Asare, a botanist at the Department of Herbal Medicine, Faculty of Pharmacy and Pharmaceutical Sciences (FPPS), Kwame Nkrumah University of Science and Technology (KNUST), Kumasi. A herbarium specimen (KNUST/HM1/2018/R005) was kept in the herbarium of the same department.

2.2. Preparation of Methanolic Extract. The roots were washed thoroughly under running tap water and dried at 28°C for two weeks. They were then cut into pieces and milled thereinto a coarse powder using a mechanical grinder. Three hundred (300) grams of the powdered root bark were weighed, and 3 L of methanol was gently added. This mixture was swirled and left to stand at room temperature (25°C) with intermittent shaking for 72 h. The mixture was then filtered through Whatman filter papers (number 1). The filtrate was evaporated to dryness using a hot air oven at 40°C to a constant dry mass. The extract obtained was labeled and kept in a desiccator at 28°C for later use and was named C. ferruginea methanol extract (CFM).

2.3. Experimental Animals. Adult Sprague Dawley rats (150–200 g) between 8 and 10 weeks of age were obtained from the University of Ghana Animal House, Accra, Ghana. They were kept in stainless steel cages at the animal house, Department of Pharmacology, KNUST, under ambient temperature (25°C), light, and relative humidity (55 to 60%). They were fed with rat feed (GAFCO, Tema, Ghana) and water ad libitum throughout the experiments.

2.4. Ethical Approval. Rats were handled in accordance with guidelines for care and use of laboratory animals laid down by the National Institute of Health (NIH, Department of Health and Human Services Publication No. 5, Revised 1985). All animal studies in this research were consented to by the Animal Ethical Committee with the ethical clearance number FPPS-AEC/CA07/19 at the Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

2.5. Toxicity Studies

2.5.1. Skin Irritation Test. Ten male Sprague Dawley rats (weighing 250–300 g) were used for the skin irritation test as described by the OECD guidelines 404 [19]. The animals were put into two groups of five animals each. Five rats were used as test rats (Tr), whereas five other rats were used as control rats (Cr). Hair from the back of the rats was clipped with a sterile razor towards the lower mid-position to about 20 cm in diameter and caged individually. The rats were left undisturbed for 24 h. A volume of 0.2 ml of water was added to 0.5 g of CFM and applied evenly to the shaved site on the test rats. The plant extracts were held in contact with the skin with gauze and a nonirritant adhesive tape for 1 h, after which it was removed and the surface of the skin was rinsed with distilled water and examined for skin irritation. Observation of the sites was also done at 24 h after application and repeated at 48 and 72 h. Likewise, the control rats received a topical application of sterile water (sterile cotton soaked with sterile water), which was also secured with a gauze and nonirritant tape. Observation of oedema and erythema was made and scored according to the Draize scoring system (Table 1) [20].

2.5.2. Acute Dermal Toxicity Test (Limit Test). This experiment was performed in accordance with the OECD guidelines [19]. Ten male Sprague Dawley rats with weights between 250 and 300 g were used for this test. About 10% of the entire body surface area on the dorsal positions of the rats were shaved with a razor blade. The animals were left undisturbed for 24 h in their clean cages. The rats were grouped into two groups of five rats each (test groups and a control group). Based on the OECD guideline 404, a limited test at one dose level should be at 2000 mg/kg body weight. As a result, CFM was applied at a dose of 2000 mg/kg to shaved sites on the test group rats after 24 h. The control group received the topical application of sterile water. These were secured with gauze and a nonirritant adhesive tape. The coverings were removed after 24 h. The animals were observed for changes and weekly re-weighting of rats [21]. The oedema and erythema scores were done based on the Draize dermal irritation scoring system. The weights of the animals were taken weekly. The liver, spleen, kidney, heart, brain, and lungs were weighed after the study period.

2.5.3. Repeated Dose Dermal Toxicity Test. Hair occupying about ten percent of the entire back region of rats was
Table 1: Draize dermal irritation scoring system.

<table>
<thead>
<tr>
<th>Score</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No erythema or oedema</td>
</tr>
<tr>
<td>1</td>
<td>Very inappreciable oedema or erythema</td>
</tr>
<tr>
<td>2</td>
<td>Small oedema with raised skin at the edges of the area</td>
</tr>
<tr>
<td>3</td>
<td>Moderate to severe erythema or oedema</td>
</tr>
<tr>
<td>4</td>
<td>Severe erythema or oedema</td>
</tr>
</tbody>
</table>

shaved off each of the twenty experimental rats. The rats weighed between 250 and 300 g and were randomized into 4 groups of 5 rats each. These 4 groups consisted of 3 treatment groups, which used extract concentrations of 1000 mg/kg body weight (group 1), 500 mg/kg body weight (group 2), and 250 mg/kg body weight (group 3), and a control group, which employed the application of sterile distilled water only (group 4). A limit dose of not exceeding 1000 mg/kg body weight has been set as the maximum dose for this experiment as per the OECD guidelines [22]; hence, 1000 mg/kg body weight was employed as the highest test dose. The rats were then left untroubled for 24 h before the start of extract application. The extracts were applied to the shaved sites and kept in place with gauze and a nonirritating adhesive tape. The rats were treated with the extracts 12 hours for 21 days. Observation for clinical changes and weekly re-weighing was conducted [21]. Serum biochemistry, weights of internal organs (spleen, heart, liver, kidney, brain, and lungs), and histology of skin tissues were evaluated after the 21 days.

1. Serum Biochemistry. Blood samples were obtained as rats bled by the cardiac puncture method after being anaesthetized with pentobarbitone at a dose of 40 mg/kg body weight. This was used in the determination of haematology parameters using potassium EDTA as an anticoagulant. Measurements of clinical biochemical parameters such as albumin, alkaline phosphatase (ALP), aspartate transaminase (AST), alkaline transaminase (ALT), gamma-glutamyl transferase (GGT), and indirect bilirubin (IND BIL) were made using a chemistry analyser (VITROS 5600) [23].

2. Histological Examination. Tissues were excised from wounds on day 14 post-injury and immediately fixed in 10% buffered neutral formalin (Sigma-Aldrich, Michigan, USA). This was followed by tissue processing in an automatic tissue processor (Leica TP1020, Boston Laboratory Equipment, Boston, USA) and programmed to run a series of treatment by immersing the tissues in ethanol, xylene, and paraffin (Merck BDH, Poole, United Kingdom). The processed tissues were then cut into 5 mm sections with a Leica rotary microtome (Boston Laboratory Equipment, Boston, USA) and thereafter stained with haematoxylin and eosin (Sigma-Aldrich, St. Louis, Missouri, USA) after the paraffin was removed. The tissues were then examined with light microscope (Leica Microsystems, Wetzlar, Germany). Photomicrographs were taken at x40 magnification. The tissues were observed for the degree of cell repair, re-epithelialization, angiogenesis, collagen content, and granular tissue formation. Verhoeff–Van Gieson’s stain (Sigma-Aldrich, St.

<table>
<thead>
<tr>
<th>Secondary metabolite</th>
<th>Test performed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannins</td>
<td>Ferric chloride test</td>
<td>Boakye et al. [26]</td>
</tr>
<tr>
<td>Saponins</td>
<td>Foaming/frothing test</td>
<td>Boakye et al. [26]</td>
</tr>
<tr>
<td>Glycosides</td>
<td>Fehling’s test</td>
<td>Evans, [27]</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>Acetic anhydride test</td>
<td>Shaikh and Patil [29]</td>
</tr>
<tr>
<td>Steroids</td>
<td>Libermann–Burchard’s test</td>
<td>Shaikh and Patil [29]</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>Dragendorff’s/Kraut’s test</td>
<td>Boakye et al. [26]</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Lead acetate test</td>
<td>Evans, [27]</td>
</tr>
<tr>
<td>Coumarins</td>
<td>NaOH paper test</td>
<td>Shaikh and Patil [29]</td>
</tr>
</tbody>
</table>

Shakehand-Patil (38) was also employed to evaluate the level of collagen formation, deposition, and organization [24].

2.6. Wound Healing Studies Using Excision Wound Model. Thirty Sprague Dawley rats (120–200 g) were used for this investigation. The rats were placed in groups of five in a total of six groups. The animals were anaesthetized with pentobarbitone at a dose of 40 mg/kg body weight. The dorsal furs of the animals were clipped in a circular manner to a diameter of about 50 mm by means of a razor blade and cleaned with 70% ethanol. The borders of the wound were outlined using a marker filled with ammonium oxalate violet paint on the shaved skin of the rats. The rats were inflicted with excision wounds along the markings using sterile toothed forceps, surgical blades, and pointed scissors to a diameter of 10 mm. The wounds were left open, and the animals were placed in cages with five rats in each cage [8]. The aqueous creams used for the wound healing experiment were prepared according to the method described in the British Pharmacopoeia (BP) [25]. The preservative was discarded from the preparation to prevent its interference with the wound healing activity of the extracts. One hundred grams of aqueous cream was prepared by mixing 30 g of emulsifying ointment in 70 mL of sterile distilled water. The mixture was heated in a water bath and stirred in one direction until a homogenous mixture was obtained. This mixture was allowed to cool. The extract was then incorporated into the homogenous cream separately to form three different concentrations of the extract creams at 2.5, 5, and 10% w/w. The physical stability of the creams was monitored for phase separation, colour, odour, and texture. Wound treatment began 24 h post-injury and lasted for 14 days.
Group 1: rats were treated with 10% w/w CFM aqueous cream
Group 2: rats were treated with 5% w/w CFM aqueous cream
Group 3: rats were treated with 2.5% w/w CFM aqueous cream
Group 4: rats were treated with 1% w/w silver sulphadiazine (SSD) as a positive control
Group 5: rats were treated with the blank aqueous cream only
Group 6: rats were left untreated (wounds cleaned with normal saline daily)

2.6.1. Assessment of Wound Diameter. The diameters of the wounds were measured every other day beginning from the wound creation day (Day 1) until Day 14 with a measuring rule. The contraction of the wounds based on size was recorded accordingly and calculated as a percentage with the following equation:

\[
\% \text{ of wound contraction} = \frac{(\text{initial wound size} - \text{specific day wound size}) \times 100}{\text{initial wound size}}
\]

2.6.2. Histology Studies. This was carried out using the same procedure as described in section 2.5.3.2.

2.7. Phytochemical Screening. The root bark extract of C. ferruginea was screened for the presence or absence of secondary metabolites such as tannins, glycosides, terpenoids, saponins, flavonoids, alkaloids, steroids, and coumarins. The phytochemical tests performed are summarized in Table 2.

2.8. Data Analysis. The data obtained for the tests carried out were statistically analysed with GraphPad Prism version 5.0 (GraphPad Software, San Diego, CA, USA), and results were presented as the mean ± standard error mean (SEM). A two-way ANOVA followed by the Bonferroni post hoc test was used to analyse the anti-inflammatory and wound healing time-course curves. The area under the curve (AUC) was analysed using the one-way ANOVA followed by Dunnett’s post hoc test.

3. Results

3.1. Toxicity Studies. In the skin irritation test, no erythema or oedema was seen in both the control animals and the test animals after 3 days of experimentation. In determining the dermal toxic effect of CFM in acute dermal toxicity bioassay, no significant \((P > 0.05)\) clinical change was observed in any of the treated rat groups except for the initial reaction within the first 30 mins of patch attachment when the rats tried to tear the patch off. The behavioral patterns and general appearance of the rats in the control and test groups were recorded after one hour and twelve hours post-application of test substances. No change meant that the manner in which the animals behaved after acclimatization did not alter when the skin was shaved and test substances were applied. No erythema or oedema was observed over the 14-day study period in both the control and CFM-treated animals. The maximum limit dose for a repeated dose toxicity test is recommended not to exceed 1000 mg/kg. Two other dose levels were proportionally set.

Table 3: Relative organ weight of rats after the 14-day study period.

<table>
<thead>
<tr>
<th>Organs</th>
<th>Relative organ weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney</td>
<td>Control: 0.88 ± 0.03, 2000 mg/kg/day: 0.89 ± 0.02</td>
</tr>
<tr>
<td>Liver</td>
<td>Control: 3.47 ± 0.02, 2000 mg/kg/day: 3.46 ± 0.04</td>
</tr>
<tr>
<td>Brain</td>
<td>Control: 2.42 ± 0.03, 2000 mg/kg/day: 2.45 ± 0.03</td>
</tr>
<tr>
<td>Spleen</td>
<td>Control: 0.33 ± 0.01, 2000 mg/kg/day: 0.32 ± 0.02</td>
</tr>
<tr>
<td>Heart</td>
<td>Control: 0.46 ± 0.02, 2000 mg/kg/day: 0.46 ± 0.03</td>
</tr>
<tr>
<td>Lungs</td>
<td>Control: 0.80 ± 0.04, 2000 mg/kg/day: 0.79 ± 0.04</td>
</tr>
</tbody>
</table>

Values expressed as mean ± SEM, \(n = 5\) female rats. Comparison of CFM at 2000 mg/kg/day to control indicates significance levels of \(P = 0.25\) (Wilcoxon matched-pairs signed-rank test).
to be 500 mg/kg and 250 mg/kg. An increase in weight was observed within all the study groups in a similar fashion (Table 4). No rat died within the study period. There was no significant ($P > 0.05$) change in the average weight and relative organ weight of the CFM-treated group compared with the control group (Tables 4 and 5). In the haematological and serum biochemical analysis, the analysis showed similar results between the control animals and CFM-treated animals in the parameters, which were investigated (Tables 6 and 7). Skin tissue histology was performed on skin tissues of the rats from both CFM-treated and control groups. Observed from the tissues were collagen strands, blood vessels, skin appendages, epithelium, and muscle cells. No pus cells or ruptured blood vessels were observed (Figure 2).

3.2. Wound Healing Activity of CFM

3.2.1. Influence of CFM on Wound Contraction. The effect of CFM on the excision wounds of Sprague Dawley rats was evaluated by taking intermittent measurements over the 14 days on alternate days (Figure 3(a)). Compared with the untreated group, 2.5, 5, and 10% w/w aqueous creams of CFM-treated wounds significantly reduced the wound size over the study period ($P < 0.0001$). The blank cream (base), however, showed no significant effect on wound contraction compared with the untreated group ($P = 0.5029$). The silver sulphadiazine-treated group (positive control) showed a significant reduction in the wound size over the study period ($P < 0.0001$) compared with the untreated group (Figure 3(b)).

3.2.2. Histological Evaluation of CFM-Treated Wound Tissues. The wound tissues after the study period of 14 days were excised and evaluated histologically by staining the tissues with haematoxylin and eosin. Neovascularization, epithelial regeneration, and collagen deposition were looked out for in the evaluation. Tissue slides were read at a magnification of 40 and represented in Figure 4.

Untreated wound tissues revealed massive necrosis of the skin tissues, which is indicative of poor wound contraction (Figure 4(a)). Base-treated wound tissues (aqueous cream only) were also observed to be inflamed. Pus cells were seen all over the epidermal layer with ruptured blood vessels. A poor healing process occurred (Figure 4(b)). In the CFM-treated (2.5% w/w) wound tissues, skin tissues are comprised of the moderately thinned epidermis with moderate residual inflammatory cells and ruptured blood vessels. A moderately healed wound was observed (Figure 4(c)). CFM-treated (5% w/w) wound tissues: there was increased collagen formation. No oedematous skin appendages were observed. These indicated good wound healing activity (Figure 4(d)). In CFM-treated (10% w/w) wound tissues, skin tissues were observed to have normal skin appendages and well-formed blood vessels. The hair follicles and the underlying fatty layer were normal, indicative of well-healed wounds (Figure 4(e)). Silver sulphadiazine-treated (1%) wound tissues showed normal skin appendages and well-formed blood vessels. Wound edges appeared normal, which was indicative of good wound healing activity (Figure 4(f)).

3.3. Phytochemical Screening. The qualitative assessment for the secondary metabolites of the root bark extract of C. ferruginea was undertaken to indicate the presence or absence of secondary metabolites such as tannins, glyco-side, terpenoids, saponins, flavonoids, alkaloids, steroids, and coumarins. The phytochemical composition of C. ferruginea root bark extract is shown in Table 8.

4. Discussion

4.1. Dermal Toxicity of CFM. Skin irritation involves local inflammation, which presents as erythema and oedema following direct skin injury [30]. This direct skin injury may be a single, repeated, or prolonged contact with chemical substance to the skin [31]. The rat model, which is a well-established model for dermal toxicity studies [32–35], was used in this study as they were readily available and would offer easy comparative studies as the subsequent predictive studies in this research used rats as the preferred model for study. Again, rats are known to respond to therapies and their toxic effects in a way similar to humans hence can be used to predict the likelihood of a potential toxicity of an agent when administered to humans [36]. The skin irritation test revealed that CFM was not an irritant as no erythema and oedema were observed in the test group at all the times employed in the experiment. The erythema scores and the oedema scores were all zero (0).

The acute dermal toxicity studies were performed according to the OECD guidelines. This test is often a stepping stone for long-term toxicity tests as it sets the suitable dose for use in such studies and provides a gist of the dose-response relationship. Again, it reveals the most affected organ in the study, and if any is found, it provides a basis for better designing of long-term studies [23]. The animals showed no significant clinical change. The behavior of the control and the test-treated animals was alike. No oedema or erythema was observed over the entire period of study. Toxic agents may affect major organs in the body, thus impairing their physiological functions. For this reason, the internal organs were assessed by way of their weights, which may give a prior idea about some physiological happenings to the body. The weights of the internal organs to the body ratio of the animals as expressed in relative weights showed similarities between the CFM-treated animals and the control group animals in the study. This shows that the extract did not exhibit any deviating effect on the internal organs of the rats. Organ weight changes, that is, atrophy and hypertrophy, have long been accepted as a sensitive indicator of chemically induced changes to organs. In toxicological experiments, a comparison of organ weights between treated and untreated groups of animals has conventionally been used to evaluate the toxic effect of the test article [37, 38]. According to Nirogi et al. [39] changes in organ weights are predictive of the mechanism of toxicity instead of histopathology and therefore should be...
augmented with biochemical and haematological parameters. The individual weights of the rats progressed steadily over the study period in all study groups. The repeated dose dermal toxicity test followed the acute dermal toxicity test. In this study, the assessment of toxicity was followed by haematology and serum biochemistry studies. Platelets were significantly elevated in 1000 mg/kg CFM-treated rats (836 ± 14.1(10⁷/µL); 864 ± 15.2(10⁷/µL)) compared with the control group (P = 0.02). All other parameters did not show significant differences between the control and test groups. In reference to the sub-chronic test conducted by Ishola et al. [40], CFM may possibly have an effect on the formation of platelets and must be used with caution over long periods. Thus, upon dermal usage, the extract may have a toxic assaults at very high concentrations upon repeated use. However, it is difficult to declare this plant as toxic due to
Figure 2: Histology of skin tissues after 21-day toxicity study period. (a) Skin tissue of control animal, (b) skin tissue of CFM-treated rat at 250 mg/kg, (c) skin tissue of CFM-treated rat at 500 mg/kg, and (d) skin tissue of CFM-treated rat at 1000 mg/kg. Picture note. CS: collagen strands; BV: blood vessels; SA: skin appendages; E: epithelium; MC: muscle cell.

Figure 3: Influence of CFM on the rate of contraction of excision wounds. (a) Time-course curve of CFM on wound contraction expressed as percentage. (b) AUC of percentage wound contraction.
this very one outlier unless upon further studies. In toxicity studies, after chemical analyses and observations, it is usually important to investigate the histopathologic outcome of the target organs or the organ under study for a better conclusion and evaluation of the chemical agent under study [41]. The skin, being the target organ under study, revealed intact epidermal layers comprising normal skin appendages and dermis. The hair follicles and the sebaceous glands as well as other skin appendages all remained normal in the control and treatment groups. No inflammatory cells or ruptured blood vessels were observed in any group. The dermis also revealed dense collagen. The impact of CFM on the skin is thus safe.

4.2. Wound Healing Activity of CFM. Wound healing is a natural occurrence, which deals with tissue regrowth and regeneration [42]. This study showed that the treatment of excised wounds of Sprague Dawley rats with aqueous creams of the methanol extract of the root bark of *C. ferruginea* accelerated the wound healing process. Yakubu et al. [12] have also reported that the hydroethanolic leaf extract of *C. ferruginea* exhibits wound healing activity. All the three extracts used, significantly (*P* < 0.0001) promoted wound healing (measured as rate of wound contraction) as compared to the control. Wound contraction is the movement of the edges of a full-thickness wound towards the midportion to ensure the closure of the injury [43].

Microorganisms play an inevitable role in wounds by colonizing them; thus, every wound stands the risk of getting infected. These microorganisms may produce chemicals, which prolong the inflammatory stage of wound healing by the production of various enzymes [44]. Again, some of these attacking microorganisms may form biofilms on the wounds. These biofilms act as physical barriers, which prevent the penetration of antimicrobials. This propels the wounds into chronic stages as there remains an

<table>
<thead>
<tr>
<th>Table 8: Phytochemical composition of CFM.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary metabolite</td>
</tr>
<tr>
<td>Tannins</td>
</tr>
<tr>
<td>Glycosides</td>
</tr>
<tr>
<td>Saponins</td>
</tr>
<tr>
<td>Flavonoids</td>
</tr>
<tr>
<td>Coumarins</td>
</tr>
<tr>
<td>Steroids</td>
</tr>
<tr>
<td>Terpenoids</td>
</tr>
<tr>
<td>Alkaloids</td>
</tr>
</tbody>
</table>

+ presence of phytochemical, − absence of phytochemical.
accumulation of damaged tissues and proteins [45]. Plant
effects with antimicrobial activity have also been reported
to promote wound healing since infected or colonized
wounds usually delay the healing process and sometimes
lead to chronic wounds [8]. Hence, the reported anti-
microbial activity of C. ferruginea [46] may contribute to its
wound healing activity. Also, subinhibitory concentrations of
the methanolic extract of C. ferruginea, tested for their ability
to inhibit biofilms in four microorganisms namely P. aeruginosa, E. coli, S. aureus, and K. pneumoniae, were
able to significantly reduce the formation of biofilms,
P<0.0001 in a study by Ankomah et al. [46]. This is an
indication that C. ferruginea may be a very good choice in
managing wounds as it will be able to prevent or decrease the
formation of biofilms in microorganisms, which usually
makes the management of wounds challenging. The anti-
oxidant and anti-inflammatory properties of C. ferruginea
were also reported by Akharaiyi et al. [16]. These properties
of the plant may have conferred the observed wound healing
properties on the plant as compared to the groups, which
were not treated with extracts. The observation, however,
revealed that this wound healing property of the plant was
dose-dependent with respect to the concentrations studied.
The untreated group in comparison with the base-treated
group did not show any significant increase in wound
contraction. Collagen is one of the most abundant proteins
of extracellular matrix [47]. Not only do they provide
structural support to the skin but also control some cellular
functions such as cell shape, differentiation, migration, and
synthesis of a number of other proteins [48]. Also, collagen
ensures the migration of endothelial cells to form new blood
vessels to help granulate tissue formation, which eventually
improves wound healing and is observed as a decrease in the
wound area or wound contraction [49]. Fibroblasts also play
a vital role in the formation of the granulation tissue, which
moves mainly from the nearby dermis to the wound in
response to cytokines and growth factors [50]. It is also
worth mentioning that after wounds are created, the in-
flammatory stage begins to clear the wound of dead cells and
microbes. This induces the creation of a dense but poorly
organized capillary bed. During the angiogenic phase, most
of these newly formed vessels are pruned, creating a final
vessel density that is similar to that of normal skin [51].

Histology of the wound tissues revealed a well-formed
skin in rats treated with 10% w/w CFM cream and the rats
treated with 1% w/w silver sulphadiazine cream with no
residual inflammatory cells and normal blood vessels and
normal extracellular matrix indicating no sign of excessive
wound healing. The histology also revealed that the untreated
and base-treated groups had very poorly healed wounds due
to massive necrosis of skin. 2.5% and 5% w/w CFM-treated
rats had mild to moderate collagenization and fibrous tissue
formation and moderate residual inflammatory cells. CFM
thus ensured proper wound healing with the highest study
dose of 10% w/w of the extract, showing the best activity.

The findings of this study give credence to the folkloric
use of C. ferruginea in the treatment of wounds. Addition-
ally, this study has shown that the plant extract is safe for
use topically, which may partly confirm why the plant is still
used in the management of wounds. Secondary metabolites
possessed by plants are responsible for the pharmacological
effects they exhibit [52]. The observed wound healing ac-
tivity of C. ferruginea root extract may be due to the presence
of phytochemicals such as flavonoids, tannins, saponins, and
triterpenoids that the plant possesses (Table 8). Flavonoids
prevent the onset of cell necrosis and improve the flow of
blood to the wounded site [53]. Again, flavonoids and
tannins are well known to have antioxidant, astringent, and
antimicrobial activities, which are essential for wound
healing [54]. Tannins also have the ability to promote fi-
broblast proliferation and initiate its migration into wounds
[55]. Likewise, saponins have also been reported to contain
antibacterial properties [56]. Saponins from plant studies
have been reported to enhance wound healing activity
[57, 58] and prevent excessive scar formation in experi-
mental mice [59]. Triterpenoids are also phytochemicals,
well known to have anti-inflammatory and antibacterial
activities [60].

5. Conclusion
C. ferruginea methanol root extract exhibited wound healing
activity. Wound closure rate revealed that 10% w/w CFM-
treated wounds showed the best wound healing activity as
compared to 5% and 2.5% w/w CFM-treated rats, which
showed moderate wound healing activity. Tissue histology
revealed a healed wound with well-regenerated collagen and
skin appendages with no pus cells. CFM also showed no
toxic effect on the skin. The wound healing activity of
C. ferruginea gives credence to its folkloric use. However, the
efficacy of the root extract should be evaluated in other
wound models.

Data Availability
The datasets used and/or analysed during this study are
included within the article. Further clarification can be
obtained from the corresponding author.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Authors’ Contributions
FA, CA, and YDB conceived and designed the experiment.
ADA performed the experiments. ADA, TAA, and VEB
analysed and interpreted the data. PPSO assisted in and
provided reagents for the histology studies. FA, CA, and
YDB provided all other reagents and materials. VEB and
TAA provided analysis tools. ADA and YDB developed
the first draft of the manuscript. All authors contributed equally
to the revision of the manuscript to its final stage.

Acknowledgments
The authors wish to thank the technicians at the Microbi-
ology Section, Department of Pharmaceutics, and techni-
cians in the Animal House, Department of Pharmacology,
Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, for their support.

References

[34] M. G. Prado-Ochoa, R. A. Gutiérrez-Amezquita, V. H. Abrego-Reyes et al., "Assessment of acute oral and..."

