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 e adsorption of polymers a�ects the cost and oil recovery in oil reservoir exploitation and the �occulation e�ect in the treatment 
of oil sand tailings.  e adhesion and adsorption of a hydrophobically modi�ed polyacrylamide (HMPAM), i.e., P(AM-NaAA-
C16DMAAC), on silica and asphaltene were investigated using surface force measurements, thermodynamic analysis and quartz 
crystal microbalance with dissipation (QCM-D) measurement. Our study indicates that HMPAM polymer has strong interaction 
with both silica and asphaltene.  e adhesion force of HMPAM on silica was stronger than that on asphaltene surface. Consistently, 
the adsorption of HMPAM was also greater on silica surface, with a more rigid layer formed on the surface. For HMPAM/silica 
system, the attractive interaction and the strong adhesion are mainly driven by the hydrogen bonding and electrostatic interaction. 
For HMPAM/asphaltene system, it is mainly due to hydrophobic interaction between the long hydrocarbon chains of HMPAM 
and asphaltene. Furthermore, continuous adsorption of HMPAM was detected and multiple layers formed on both silica and 
asphaltene surfaces, which can be attributed to the hydrophobic chains of HMPAM polymers.  is work has illustrated the interaction 
mechanism of HMPAM polymer on hydrophilic silica and hydrophobic asphaltene surfaces, which provide insight into the industrial 
applications of hydrophobically modi�ed polymer.

1. Introduction 

Recently, special attention has been focused on the hydropho-
bically modi�ed polyacrylamide containing relatively low 
amounts of hydrophobic monomers (~2 mol%). Di�erent hydro-
phobic monomers were reported, such as di-alkyl substituted 
acrylamides di-n-propylacrylamide, di-n-octylacrylamide [1], 
N,N‐dihexylacrylamide or N,N‐diphenylacrylamide [2], 
N-octadecylacrylamide [3], sodium 2-acrylamido-tetradecane 
sulfonate [4], 3-acrylamido-2-hydroxypropyl triakylam monium 
chloride [5], poly(propylene glycol) monomethacrylate [6], iso-
meric 11‐acrylamidoundecanoic acid [7], stearyl methylacrylate 
[8], sodium 9-(and 10)-acrylamidostearate [9], etc. Due to the 
intramolecular and intermolecular interaction between the 
hydrophobic groups, the enlargement of hydrodynamic volume 
of polymers increases the viscosity of hydrophobically modi�ed 
polyacrylamide aqueous solutions, and intermolecular associa-
tion may further enhance the viscosity [10].  e aqueous solu-
tion of these polymers is expected to show special properties, 

including temperature, salt, and shear resistances [11, 12].  e 
viscosity of hydrophobically modi�ed polyacrylamide solution 
does not decrease at high salinity when its concentration is larger 
than the critical aggregation concentration [13]. For example, a 
kind of hydrophobically modi�ed polyacrylamide based novel 
functional polymer (RH-4) at the concentration of 2000 mg/L 
has lower the apparent viscosity as NaCl concentration increase 
until ~2000 mg/L but it increased with the NaCl concentration 
at 2000–8000 mg/L [14]. In a semi-dilute solution of polyacryla-
mide with hydrophobic t-octylacrylamide group (0.5 wt.%), the 
zero-shear viscosity decreases with salt concentration at low salt 
conditions (0~ 0.3 M KCl), while it displayed a monotonically 
increase with salt concentration at high salt conditions (0.3 ~ 4 M 
KCl) [15]. NaCl was found to promote the association and 
adsorption of a hydrophobically modi�ed polyacrylamide on 
kaolin particles, resulting in higher �occulation eªciency [16]. 
 e adsorption isotherms of a hydrophobically associating pol-
yacrylamide on K-montmorillonite and on siliceous minerals, 
has shown di�erent behaviors compared with a nonassociating 
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polymer [17]. Another kind of hydrophobically modified poly-
acrylamide with monomers of acrylamide and 2‐(methacryloy-
loxyl) ethylhexadecyldimethylammonium bromide displays the 
adsorption of multilayer on natural sand [18]. Guo et al., sys-
tematically studied the flow behavior through porous media and 
microdisplacement performances of hydrophobically modified 
partially hydrolyzed polyacrylamide (HMHPAM) [19–21]. �ey 
found that hydrodynamic sizes of HMHPAMs were much more 
 sensitive to the polymer concentration, filtration pressure, and 
associating monomer content than partially hydrolyzed poly-
acrylamide, and had better an efficiency than glycerol and 
HPAM for displacing the residual oil trapped in the “dead” ends 
of flow channel at the same viscosity. With the excellent proper-
ties, hydrophobically modified polyacrylamide polymers have 
been applied in enhanced oil recovery (EOR) of oil reservoir 
exploitation [7, 22–26], emulsified oil removal from aqueous 
solution [27] and oil sand tailings treatment [28].

To be noted, the adsorption behavior of polyacrylamide 
directly affects its adsorption loss and the related cost  
[29, 30]. �e adsorption retention loss of polymer solution in 
reservoir pores should not be too large, so that the polymer 
solution in deep reservoir can keep sufficient concentration, 
and the reservoir near the injection well will not be blocked 
by large amount of polymer adsorption, which will affect the 
oil recovery. Also, the adsorption of flocculants would influ-
ence the flocculation efficiency in oil sand tailings treatment. 
�erefore, the adsorption and interaction mechanism of pol-
ymer at different solid/liquid interfaces are important for the 
application of hydrophobically modified polyacrylamide.

In this work, a hydrophobically modified polyacrylamide 
(HMPAM) was synthesized with a hydrophobic monomer 
hexadecyl dimethyl allyl ammonium chloride (~0.3 mol%). 
�e interaction and adsorption behaviors of HMPAM on silica 
and asphaltene surface were investigated using colloidal probe 
atomic force spectroscopy, thermodynamic analysis of inter-
action energy, and quartz crystal micro-balance with dissipa-
tion (QCM-D) monitoring technique. Our work revealed the 
fundamental interaction mechanisms between HMPAM and 
silica and asphaltene surface, which will benefit the develop-
ment of polymers in oil reservoir exploitation and oil sand 
tailings treatment.

2. Experimental

2.1. Materials. HMPAM were synthesized using the 
procedures described in our previous work [31, 32]. 
Diiodomethane, glycerol, hydrogen peroxide and sulfuric 
acid were purchased from Fisher Scientific (China). Ethanol, 
methylbenzene, Sodium dodecyl sulfate (SDS) and sodium 
hydroxide (NaOH) were purchased from Shanghai Aladdin 
Bio-Chem Technology Co., Ltd. Toluene was purchased from 
Nanjing Reagent (China). Octadecyltrichlorosilane (OTS, 
≥90%) was purchased from Sigma Aldrich, China. Water was 
purified by Milli-Q system. Nitrogen at 99.99+% purity levels 
was used to dry the surfaces. Silica sensors were purchased 
from Q-sense (Gothenburg, Sweden).

2.2. Preparation of Asphaltene Surfaces. Asphaltene was 
extracted from vacuum distillation feed Athabasca bitumen 
following the previous procedure [33, 34]. �e asphaltene 
sample was dissolved in toluene at the concentration of 
0.5 wt.%. �e asphaltene-toluene solution was sonicated for 
10 min and filtered through a 0.2 μm polytetrafluoroethylene 
filter (Nalgene) before use. Subsequently, the silica wafer was 
immersed in the piranha solution (7 : 3 vol./vol. concentrated 
H2SO4 : 30% H2O2) for 20 min and washed with ethyl alcohol. 
�en, the silica surface was rinsed thoroughly with copious 
amount of Milli-Q water and blown dry by nitrogen gas. �en 
the cleaned silica wafer was immersed in dilute asphaltene-
toluene solution (0.005 wt.%) for 12 h at 25°C. Finally, the 
prepared asphaltene surface was washed by toluene and dried 
by nitrogen gas before use.

�e asphaltene sensors for QCM-D were prepared by 
spin-coating asphaltene solution onto OTS-treated silica sen-
sors following the procedures shown in the literature [31]. 
Briefly, silica sensor was washed with 2% SDS, milli-Q water 
and UV/ozone followed the cleaning protocols provided by 
the Biolin Scientific. OTS was deposited on silica wafer by the 
vapor deposition as reported [33, 35]. Several drops of asphal-
tene were spin-coated on the OTS-treated silica sensor. �en 
the sensor was placed in vacuum overnight to remove any 
residual toluene.

2.3. AFM Force Measurements. �e interaction forces 
measurements between HMPAM and silica or asphaltene 
surface were conducted using an MFP-3D AFM instrument 
(Asylum Research, Santa Barbara, USA). �e HMPAM 
functionalized silica probes were prepared under the catalysis 
of EDC/NHS as described in the literature [36]. �e force 
measurements were conducted, also, as in the literature [36]. 
�e aqueous solution for the AFM force measurements was 
100 mM KCl. Force mapping mode was conducted to analyze 
the interactions for at least 100 times at more than 3 different 
areas of the silica or asphaltene surfaces.

2.4. Characterization. �e surface morphologies of silica and 
asphaltene surface before and a�er adsorption of HMPAM 
were imaged by the tapping mode. �e surface wettability 
was characterized by KRUSS DSA100 (Hamburg, Germany) 
instrument. �e errors of the contact angles at more than 3 
different areas were less than ±2%, and the average contact 
angles were used. �e QCM-D analysis was carried out to 
measure the in-situ adsorption kinetics of HMPAM using a 
Q-sense E1 system (Q-sense, Gothenburg, Sweden).

3. Results and Discussion

Figure 1 shows the different wettability of silica and asphaltene 
surfaces. �e water contact angles of silica and asphaltene sur-
faces were 36.7 ± 1.5° and 82.2 ± 2.1°. Asphaltene is more 
hydrophobic than silica surface. Both silica and asphaltene 
surfaces were submerged in 20 mg/L HMPAM of 100 mM KCl 
solution. A�er 3 hours, the surfaces were washed with 100 mM 
KCl solution, then the morphology of the surfaces was 
observed a�er being dried by nitrogen gas. In Figure 2, the 
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AFM imaging shows silica exhibits a smooth and uniform 
morphology, and the root-mean-square surface roughness 
(��) is only 0.06 nm. A¬er adsorption of HMPAM, the �� of 
silica surface increases to 0.75 nm. Di�erently, asphaltene sur-
face is rougher with the �� of 0.68 nm. A¬er adsorption of 
HMPAM, the asphaltene surface becomes slightly smoother 
with �� of 0.61 nm, which might be due to the large amount 
of HMPAM adsorption.

To measure the interaction between HAMPAM and silica 
and asphaltene, force measurement was carried out as shown 
in Figure 3. It shows an attraction between HMPAM and silica 
surface at up to 10 nm distance during approaching in 100 mM 
KCl solution (Figure 3(a)). It is also attraction between 
HMPAM and asphaltene surface (Figure 3(b)). But the attrac-
tion distance on asphaltene is longer up to 20 nm, which could 
attribute to the larger roughness of asphaltene surface and the 
hydrophobic interaction between the hydrophobic asphaltene 
surface and HMPAM. During retraction, jump-out behaviors 
were detected on both silica and asphaltene surfaces, indicat-
ing the adhesion between HMPAM and silica/asphaltene sur-
face. Force mapping was carried out on silica and asphaltene 
surfaces to statistically obtain the adhesion forces. In 
Figure 3(c), the �

adh
 of HMPAM on silica surface was 

3.30 ± 0.56 nN, slightly larger than on asphaltene surface at 
2.96 ± 0.41 nN.  is result indicates that the adhesion between 
HMPAM and silica surface is stronger than that between 
HMPAM and asphaltene surface.

 e curved probe surface and �at substrate can be corre-
lated according to the Johnson−Kendall−Roberts contact 
mechanics model [37, 38] as follows.

where �
adh

 is the adhesion energy (mJ/m2), � the radius of 
the probe (�).

 e measured adhesion energies of HMPAM are 0.350  
mJ/m2 on silica and 0.278 mJ/m2 on asphaltene, respectively. 
Generally, the adhesion interaction can be ascribed to van der 

(1)�
adh
= 1.5���

adh
,

Waals force, electrostatic interaction, hydrogen-bonding and 
hydrophobic interaction.  e van der Waals interaction is 
generally weak in the aqueous medium and only works in a 
few nanometers of the two surfaces.  e Debye length, describ-
ing the range of the electric double layer was 0.96 nm in 
100 mM KCl.  us, for hydrophilic silica surface, the adhesion 
can be induced by both electrostatic interaction between 
amine group in HMPAM and silica surface, and hydrogen 
bonding interaction between the C=O, NH2 groups of 
HMPAM and the –OH group on silica surface. Besides, the 
silica surface can be mildly hydrophobic with water contact 
angle of 36.7 ± 1.5°, according to the literature [39, 40].  ere 
could be hydrophobic attraction between HMPAM and silica 
surface. For asphaltene surface, hydrophobic interactions may 
dominate the adhesion, which is between the hydrophobic 
domains on asphaltene surface and the long hydrocarbon 
chains of HMPAM. It indicates that HMPAM has the capabil-
ity of attracting with both silica and asphaltene by various 
interactions.

Surface thermodynamic characterization of the HMPAM 
coated silica and asphaltene surfaces has been assessed to bet-
ter understand the interaction of HMPAM on these surfaces. 
According to the Van Oss-Chaudhury-Good theory, the sur-
face free energy of solid is composed of the non-polar part 
and polar part [41, 42].  e surface energy of solid can be 
calculated as follows.

where �
s
 (mJ⋅m−2) is the total surface free energy of solid, �LW

s

(mJ⋅m−2) the nonpolar part, referring to LIfshitz-van der 
Waals, �AB

s
 (mJ⋅m−2) the polar part, referring to short range 

acid-base interaction forces, �+
s
 (mJ⋅m−2) the acid part and  

�−
s
 (mJ⋅m−2) the base part.  e interface free energy of solid 

and liquid is expressed:

Young’s equation [43] is as follows:

where �
l
 (mN/m) is the surface tension of liquid, �

sl
 (mN/m) 

the interfacial tension of solid and liquid, �+�  (mN/m) the acid 
part of liquid, �−�  (mN/m) the base part of liquid, �(∘) the con-
tact angle, the �

a
 (J) is a adhesion work.

 us, combining the Equations (3), (4), and (5), there 
would be Equation (6):

Surface free energy can be calculated based on contact angles 
of three model liquids by the Equation (6).  e surface ten-
sions of three liquids, i.e., diiodomethane, glycerol and deion-
ized water, were shown in Table 1. Contact angles of the model 
liquids on silica and asphaltene surfaces before and a¬er the 

(2)�
s
= �LW

s
+ �AB

s
= �LW

s
+ 2(�+

s
�−
s
)1/2,

(3)�
sl
= �

s
+ �

l
− 2[(�LW

s
�LW
l
)1/2 + (�+

s
�−
l
)1/2 + (�−

s
�+
l
)1/2].

(4)�
s
= �

sl
+ �

l
cos�,

(5)�
sl
= �+

s
�−
s
�

a
,

(6)
�

a
= �1(1 + cos�) = 2[(�LWs �LWl )

1/2 + (�+
s
�−
l
)1/2 + (�−

s
�+
l
)1/2].

Figure 1:  Water contact angle on (a) silica and (b) asphaltene 
surfaces.

(a)

(b)



Advances in Polymer Technology4

(7)Δ�
adh
= Δ�LW + Δ�AB,

(8)

Δ�LW = 2 × [(�LW
w
)1/2 − (�LW2 )

1/2] × [(�LW1 )
1/2 − (�LW

w
)1/2],

(9)

Δ�AB =2 × {(�+
w
)1/2 × [(�−1 )

1/2 + (�−2 )
1/2 − (�−

w
)1/2]

+(�−
w
) × [(�+1 )

1/2 + (�+2 )
1/2 − (�+

w
)1/2] − (�+1 �−2 )

1/2 − (�−1 �+2 )},

adsorption of HMPAM were listed in Table 2.  e group of 
equations was solved when the contact angles were substituted 
to Equation (6) to estimate the surface free energy and its 
components.  e values of surface tension and components 
of the samples were collected in the Table 3.

 e surface free energy of silica is 57.40 mJ/m2, which 
agrees with the literature [45].  e �−

s
 of silica is 58.10 mJ/

m2, while that of asphaltene surface is 1.42 mJ/m2.  e �−
s
 is 

due to H-bonds, and the greater the �−
s
 is, the sample surface 

is more hydrophilic [42, 43]. It consists with the higher 
hydrophilicity of silica than asphaltene. A¬er adsorption of 
HMPAM, the �

s
 of asphaltene increased to 58.44 mJ/m2, 

while its �−
s
 remarkably increased to 33.03 mJ/m2. In con-

trast, the �
s
 of silica increased slightly to 63.32 mJ/m2. Its �AB

s

increased from 12.57 mJ/m2 to 19.64 mJ/m2, while the �LW
s

decreased from 44.83 mJ/m2 to 43.68 mJ/m2. To be noted, 
the surface free energy of both silica and asphaltene 
increased.

 e free energy Δ�(mJ/m2) of interactions between two 
solid surfaces can be calculated according to the following 
Equations [46].

Table 1: Surface tension and components (mN/m) of three model 
liquids [44].

Liquid �LW �+ �− �AB �
Diiodomethane 50.80 0.00 0.00 0.00 50.80
Glycerol 34.00 3.92 57.40 30.00 64.00
Water 21.80 25.50 25.50 51.00 72.80
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Figure 2: AFM images of di�erent samples: (a) silica, (b) silica a¬er adsorption of HMPAM, (c) asphaltene, and (d) asphaltene a¬er adsorption 
of HMPAM.

(a) (b)

(c) (d)
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where �1 and �2 are the surface energy parameters of two solid 
surfaces, and �

w
 is the surface tension of water. When the value 

of Δ� is negative, the adhesion process will occur spontane-
ously.  e more negative the value of Δ� is, the more likely 
the adhesion process happens. In Table 4, the Δ� of the two 
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Figure 3: Typical force-distance pro�les of the HMPAM-coated silica 
probe on surfaces in 100 mM KCl solution: (a) silica, (b) asphaltene, 
and (c) summary of the adhesion.

Table 2: Contact angles of three model liquids on di�erent surfaces.

Di�erent surfaces
Contact angle (°)

Diiodomethane Glycerol Water
Asphaltene 55.6 57.9 82
Silica 28.5 27.5 36.7
HMPAM on asphaltene 34.5 29.2 34.3
HMPAM on silica 31.3 15.7 22

Table 3: Surface free energy (mJ/m2) of di�erent surfaces.

Di�erent surfaces �LW
s
�+
s
�−
s �AB

s
�
s

Asphaltene 31.12 3.48 1.42 4.45 35.57
Silica 44.83 0.68 58.10 12.57 57.40
HMPAM on 
asphaltene 42.27 1.98 33.03 16.17 58.44

HMPAM on silica 43.68 2.51 38.4 19.64 63.32

Table 4: Free energy of interaction (mJ/m2) between surfaces.

Surfaces Δ�LW Δ�AB Δ�
adh

Two asphaltene surfaces −1.65 −49.14 −50.80
Two silica surfaces −8.21 43.48 35.26
Asphaltene and silica −3.69 −16.22 −19.90
HMPAM adsorbed silica and 
asphaltene −3.53 −12.63 −16.16

Two HMPAM adsorbed silica −7.53 −30.68 −38.21
HMPAM adsorbed silica and silica −7.86 −41.13 −48.99
Two HMPAM adsorbed asphaltene 
surfaces −6.72 −33.67 −40.39

HMPAM adsorbed asphaltene and 
HMPAM adsorbed silica −7.11 −33.39 −40.50
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injection).
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HMPAM and silica surface. On asphaltene surface, the attrac-
tion and adhesion may be attributed to hydrophobic interac-
tions between the long hydrocarbon chains of HMPAM and 
asphaltene. Furthermore, it was revealed that HMPAM per-
formed continuous adsorption and formed multiple layers on 
both silica and asphaltene surfaces, which could be attributed 
to the hydrophobic chains of HMPAM polymers.  is work 
has illustrated the interaction mechanism of HMPAM on 
hydrophilic silica and hydrophobic asphaltene surfaces, which 
provide insight into the development of polymers for applica-
tions in oil reservoir exploitation and oil sand tailings 
treatment.
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namic analysis and QCM-D measurement.  e surface force 
measurements and thermodynamic analysis of interaction 
energy have clearly shown the HMPAM have strong attractive 
interaction with both silica and asphaltene.  e results show 
that the HMPAM polymer has strong attractive interaction 
with both silica and asphaltene.  e adhesion force of HMPAM 
on silica surface (3.30 ± 0.56 nN) is stronger than that on 
asphaltene surface (2.96 ± 0.41 nN). QCM-D measurement 
suggests the adsorption amount of HMPAM on the silica sur-
face (Δ� of −21.5 Hz) was larger than that on the asphaltene 
surface (Δ� of −14.6 Hz). And the adsorption layer was less 
dissipative on silica surface (Δ� of 5.0 × 10−6), agreeing with 
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